Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

"""Module for querying SymPy objects about assumptions.""" 

from __future__ import print_function, division 

 

from sympy.core import sympify 

from sympy.core.cache import cacheit 

from sympy.core.relational import Relational 

from sympy.logic.boolalg import (to_cnf, And, Not, Or, Implies, Equivalent, 

BooleanFunction, BooleanAtom) 

from sympy.logic.inference import satisfiable 

from sympy.assumptions.assume import (global_assumptions, Predicate, 

AppliedPredicate) 

from sympy.core.decorators import deprecated 

from sympy.utilities.decorator import memoize_property 

 

 

# Deprecated predicates should be added to this list 

deprecated_predicates = [ 

'bounded', 

'infinity', 

'infinitesimal' 

] 

 

# Memoization storage for predicates 

predicate_storage = {} 

predicate_memo = memoize_property(predicate_storage) 

# Memoization is necessary for the properties of AssumptionKeys to 

# ensure that only one object of Predicate objects are created. 

# This is because assumption handlers are registered on those objects. 

 

 

class AssumptionKeys(object): 

""" 

This class contains all the supported keys by ``ask``. 

""" 

 

@predicate_memo 

def hermitian(self): 

""" 

Hermitian predicate. 

 

``ask(Q.hermitian(x))`` is true iff ``x`` belongs to the set of 

Hermitian operators. 

 

References 

========== 

 

.. [1] http://mathworld.wolfram.com/HermitianOperator.html 

 

""" 

# TODO: Add examples 

return Predicate('hermitian') 

 

@predicate_memo 

def antihermitian(self): 

""" 

Antihermitian predicate. 

 

``Q.antihermitian(x)`` is true iff ``x`` belongs to the field of 

antihermitian operators, i.e., operators in the form ``x*I``, where 

``x`` is Hermitian. 

 

References 

========== 

 

.. [1] http://mathworld.wolfram.com/HermitianOperator.html 

 

""" 

# TODO: Add examples 

return Predicate('antihermitian') 

 

@predicate_memo 

def real(self): 

r""" 

Real number predicate. 

 

``Q.real(x)`` is true iff ``x`` is a real number, i.e., it is in the 

interval `(-\infty, \infty)`. Note that, in particular the infinities 

are not real. Use ``Q.extended_real`` if you want to consider those as 

well. 

 

A few important facts about reals: 

 

- Every real number is positive, negative, or zero. Furthermore, 

because these sets are pairwise disjoint, each real number is exactly 

one of those three. 

 

- Every real number is also complex. 

 

- Every real number is finite. 

 

- Every real number is either rational or irrational. 

 

- Every real number is either algebraic or transcendental. 

 

- The facts ``Q.negative``, ``Q.zero``, ``Q.positive``, 

``Q.nonnegative``, ``Q.nonpositive``, ``Q.nonzero``, ``Q.integer``, 

``Q.rational``, and ``Q.irrational`` all imply ``Q.real``, as do all 

facts that imply those facts. 

 

- The facts ``Q.algebraic``, and ``Q.transcendental`` do not imply 

``Q.real``; they imply ``Q.complex``. An algebraic or transcendental 

number may or may not be real. 

 

- The "non" facts (i.e., ``Q.nonnegative``, ``Q.nonzero``, 

``Q.nonpositive`` and ``Q.noninteger``) are not equivalent to not the 

fact, but rather, not the fact *and* ``Q.real``. For example, 

``Q.nonnegative`` means ``~Q.negative & Q.real``. So for example, 

``I`` is not nonnegative, nonzero, or nonpositive. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, symbols 

>>> x = symbols('x') 

>>> ask(Q.real(x), Q.positive(x)) 

True 

>>> ask(Q.real(0)) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Real_number 

 

""" 

return Predicate('real') 

 

@predicate_memo 

def extended_real(self): 

r""" 

Extended real predicate. 

 

``Q.extended_real(x)`` is true iff ``x`` is a real number or 

`\{-\infty, \infty\}`. 

 

See documentation of ``Q.real`` for more information about related facts. 

 

Examples 

======== 

 

>>> from sympy import ask, Q, oo, I 

>>> ask(Q.extended_real(1)) 

True 

>>> ask(Q.extended_real(I)) 

False 

>>> ask(Q.extended_real(oo)) 

True 

 

""" 

return Predicate('extended_real') 

 

@predicate_memo 

def imaginary(self): 

""" 

Imaginary number predicate. 

 

``Q.imaginary(x)`` is true iff ``x`` can be written as a real 

number multiplied by the imaginary unit ``I``. Please note that ``0`` 

is not considered to be an imaginary number. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, I 

>>> ask(Q.imaginary(3*I)) 

True 

>>> ask(Q.imaginary(2 + 3*I)) 

False 

>>> ask(Q.imaginary(0)) 

False 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Imaginary_number 

 

""" 

return Predicate('imaginary') 

 

@predicate_memo 

def complex(self): 

""" 

Complex number predicate. 

 

``Q.complex(x)`` is true iff ``x`` belongs to the set of complex 

numbers. Note that every complex number is finite. 

 

Examples 

======== 

 

>>> from sympy import Q, Symbol, ask, I, oo 

>>> x = Symbol('x') 

>>> ask(Q.complex(0)) 

True 

>>> ask(Q.complex(2 + 3*I)) 

True 

>>> ask(Q.complex(oo)) 

False 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Complex_number 

 

""" 

return Predicate('complex') 

 

@predicate_memo 

def algebraic(self): 

r""" 

Algebraic number predicate. 

 

``Q.algebraic(x)`` is true iff ``x`` belongs to the set of 

algebraic numbers. ``x`` is algebraic if there is some polynomial 

in ``p(x)\in \mathbb\{Q\}[x]`` such that ``p(x) = 0``. 

 

Examples 

======== 

 

>>> from sympy import ask, Q, sqrt, I, pi 

>>> ask(Q.algebraic(sqrt(2))) 

True 

>>> ask(Q.algebraic(I)) 

True 

>>> ask(Q.algebraic(pi)) 

False 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Algebraic_number 

""" 

return Predicate('algebraic') 

 

@predicate_memo 

def transcendental(self): 

""" 

Transcedental number predicate. 

 

``Q.transcendental(x)`` is true iff ``x`` belongs to the set of 

transcendental numbers. A transcendental number is a real 

or complex number that is not algebraic. 

 

""" 

# TODO: Add examples 

return Predicate('transcendental') 

 

@predicate_memo 

def integer(self): 

""" 

Integer predicate. 

 

``Q.integer(x)`` is true iff ``x`` belongs to the set of integer numbers. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, S 

>>> ask(Q.integer(5)) 

True 

>>> ask(Q.integer(S(1)/2)) 

False 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Integer 

 

""" 

return Predicate('integer') 

 

@predicate_memo 

def rational(self): 

""" 

Rational number predicate. 

 

``Q.rational(x)`` is true iff ``x`` belongs to the set of 

rational numbers. 

 

Examples 

======== 

 

>>> from sympy import ask, Q, pi, S 

>>> ask(Q.rational(0)) 

True 

>>> ask(Q.rational(S(1)/2)) 

True 

>>> ask(Q.rational(pi)) 

False 

 

References 

========== 

 

https://en.wikipedia.org/wiki/Rational_number 

 

""" 

return Predicate('rational') 

 

@predicate_memo 

def irrational(self): 

""" 

Irrational number predicate. 

 

``Q.irrational(x)`` is true iff ``x`` is any real number that 

cannot be expressed as a ratio of integers. 

 

Examples 

======== 

 

>>> from sympy import ask, Q, pi, S, I 

>>> ask(Q.irrational(0)) 

False 

>>> ask(Q.irrational(S(1)/2)) 

False 

>>> ask(Q.irrational(pi)) 

True 

>>> ask(Q.irrational(I)) 

False 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Irrational_number 

 

""" 

return Predicate('irrational') 

 

@predicate_memo 

def finite(self): 

""" 

Finite predicate. 

 

``Q.finite(x)`` is true if ``x`` is neither an infinity 

nor a ``NaN``. In other words, ``ask(Q.finite(x))`` is true for all ``x`` 

having a bounded absolute value. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, Symbol, S, oo, I 

>>> x = Symbol('x') 

>>> ask(Q.finite(S.NaN)) 

False 

>>> ask(Q.finite(oo)) 

False 

>>> ask(Q.finite(1)) 

True 

>>> ask(Q.finite(2 + 3*I)) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Finite 

 

""" 

return Predicate('finite') 

 

@predicate_memo 

@deprecated(useinstead="finite", issue=9425, deprecated_since_version="1.0") 

def bounded(self): 

""" 

See documentation of ``Q.finite``. 

""" 

return Predicate('finite') 

 

@predicate_memo 

def infinite(self): 

""" 

Infinite number predicate. 

 

``Q.infinite(x)`` is true iff the absolute value of ``x`` is 

infinity. 

 

""" 

# TODO: Add examples 

return Predicate('infinite') 

 

@predicate_memo 

@deprecated(useinstead="infinite", issue=9426, deprecated_since_version="1.0") 

def infinity(self): 

""" 

See documentation of ``Q.infinite``. 

""" 

return Predicate('infinite') 

 

@predicate_memo 

@deprecated(useinstead="zero", issue=9675, deprecated_since_version="1.0") 

def infinitesimal(self): 

""" 

See documentation of ``Q.zero``. 

""" 

return Predicate('zero') 

 

@predicate_memo 

def positive(self): 

r""" 

Positive real number predicate. 

 

``Q.positive(x)`` is true iff ``x`` is real and `x > 0`, that is if ``x`` 

is in the interval `(0, \infty)`. In particular, infinity is not 

positive. 

 

A few important facts about positive numbers: 

 

- Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same 

thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, 

whereas ``Q.nonpositive(x)`` means that ``x`` is real and not 

positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to 

`Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is 

true, whereas ``Q.nonpositive(I)`` is false. 

 

- See the documentation of ``Q.real`` for more information about 

related facts. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, symbols, I 

>>> x = symbols('x') 

>>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x)) 

True 

>>> ask(Q.positive(1)) 

True 

>>> ask(Q.nonpositive(I)) 

False 

>>> ask(~Q.positive(I)) 

True 

 

""" 

return Predicate('positive') 

 

@predicate_memo 

def negative(self): 

r""" 

Negative number predicate. 

 

``Q.negative(x)`` is true iff ``x`` is a real number and :math:`x < 0`, that is, 

it is in the interval :math:`(-\infty, 0)`. Note in particular that negative 

infinity is not negative. 

 

A few important facts about negative numbers: 

 

- Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same 

thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, 

whereas ``Q.nonnegative(x)`` means that ``x`` is real and not 

negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to 

``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is 

true, whereas ``Q.nonnegative(I)`` is false. 

 

- See the documentation of ``Q.real`` for more information about 

related facts. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, symbols, I 

>>> x = symbols('x') 

>>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x)) 

True 

>>> ask(Q.negative(-1)) 

True 

>>> ask(Q.nonnegative(I)) 

False 

>>> ask(~Q.negative(I)) 

True 

 

""" 

return Predicate('negative') 

 

@predicate_memo 

def zero(self): 

""" 

Zero number predicate. 

 

``ask(Q.zero(x))`` is true iff the value of ``x`` is zero. 

 

Examples 

======== 

 

>>> from sympy import ask, Q, oo, symbols 

>>> x, y = symbols('x, y') 

>>> ask(Q.zero(0)) 

True 

>>> ask(Q.zero(1/oo)) 

True 

>>> ask(Q.zero(0*oo)) 

False 

>>> ask(Q.zero(1)) 

False 

>>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) 

True 

 

""" 

return Predicate('zero') 

 

@predicate_memo 

def nonzero(self): 

""" 

Nonzero real number predicate. 

 

``ask(Q.nonzero(x))`` is true iff ``x`` is real and ``x`` is not zero. Note in 

particular that ``Q.nonzero(x)`` is false if ``x`` is not real. Use 

``~Q.zero(x)`` if you want the negation of being zero without any real 

assumptions. 

 

A few important facts about nonzero numbers: 

 

- ``Q.nonzero`` is logically equivalent to ``Q.positive | Q.negative``. 

 

- See the documentation of ``Q.real`` for more information about 

related facts. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, symbols, I, oo 

>>> x = symbols('x') 

>>> print(ask(Q.nonzero(x), ~Q.zero(x))) 

None 

>>> ask(Q.nonzero(x), Q.positive(x)) 

True 

>>> ask(Q.nonzero(x), Q.zero(x)) 

False 

>>> ask(Q.nonzero(0)) 

False 

>>> ask(Q.nonzero(I)) 

False 

>>> ask(~Q.zero(I)) 

True 

>>> ask(Q.nonzero(oo)) #doctest: +SKIP 

False 

 

""" 

return Predicate('nonzero') 

 

@predicate_memo 

def nonpositive(self): 

""" 

Nonpositive real number predicate. 

 

``ask(Q.nonpositive(x))`` is true iff ``x`` belongs to the set of 

negative numbers including zero. 

 

- Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same 

thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, 

whereas ``Q.nonpositive(x)`` means that ``x`` is real and not 

positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to 

`Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is 

true, whereas ``Q.nonpositive(I)`` is false. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, I 

>>> ask(Q.nonpositive(-1)) 

True 

>>> ask(Q.nonpositive(0)) 

True 

>>> ask(Q.nonpositive(1)) 

False 

>>> ask(Q.nonpositive(I)) 

False 

>>> ask(Q.nonpositive(-I)) 

False 

 

""" 

return Predicate('nonpositive') 

 

@predicate_memo 

def nonnegative(self): 

""" 

Nonnegative real number predicate. 

 

``ask(Q.nonnegative(x))`` is true iff ``x`` belongs to the set of 

positive numbers including zero. 

 

- Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same 

thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, 

whereas ``Q.nonnegative(x)`` means that ``x`` is real and not 

negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to 

``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is 

true, whereas ``Q.nonnegative(I)`` is false. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, I 

>>> ask(Q.nonnegative(1)) 

True 

>>> ask(Q.nonnegative(0)) 

True 

>>> ask(Q.nonnegative(-1)) 

False 

>>> ask(Q.nonnegative(I)) 

False 

>>> ask(Q.nonnegative(-I)) 

False 

 

""" 

return Predicate('nonnegative') 

 

@predicate_memo 

def even(self): 

""" 

Even number predicate. 

 

``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even 

integers. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, pi 

>>> ask(Q.even(0)) 

True 

>>> ask(Q.even(2)) 

True 

>>> ask(Q.even(3)) 

False 

>>> ask(Q.even(pi)) 

False 

 

""" 

return Predicate('even') 

 

@predicate_memo 

def odd(self): 

""" 

Odd number predicate. 

 

``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, pi 

>>> ask(Q.odd(0)) 

False 

>>> ask(Q.odd(2)) 

False 

>>> ask(Q.odd(3)) 

True 

>>> ask(Q.odd(pi)) 

False 

 

""" 

return Predicate('odd') 

 

@predicate_memo 

def prime(self): 

""" 

Prime number predicate. 

 

``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater 

than 1 that has no positive divisors other than ``1`` and the 

number itself. 

 

Examples 

======== 

 

>>> from sympy import Q, ask 

>>> ask(Q.prime(0)) 

False 

>>> ask(Q.prime(1)) 

False 

>>> ask(Q.prime(2)) 

True 

>>> ask(Q.prime(20)) 

False 

>>> ask(Q.prime(-3)) 

False 

 

""" 

return Predicate('prime') 

 

@predicate_memo 

def composite(self): 

""" 

Composite number predicate. 

 

``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has 

at least one positive divisor other than ``1`` and the number itself. 

 

Examples 

======== 

 

>>> from sympy import Q, ask 

>>> ask(Q.composite(0)) 

False 

>>> ask(Q.composite(1)) 

False 

>>> ask(Q.composite(2)) 

False 

>>> ask(Q.composite(20)) 

True 

 

""" 

return Predicate('composite') 

 

@predicate_memo 

def commutative(self): 

""" 

Commutative predicate. 

 

``ask(Q.commutative(x))`` is true iff ``x`` commutes with any other 

object with respect to multiplication operation. 

 

""" 

# TODO: Add examples 

return Predicate('commutative') 

 

@predicate_memo 

def is_true(self): 

""" 

Generic predicate. 

 

``ask(Q.is_true(x))`` is true iff ``x`` is true. This only makes 

sense if ``x`` is a predicate. 

 

Examples 

======== 

 

>>> from sympy import ask, Q, symbols 

>>> x = symbols('x') 

>>> ask(Q.is_true(True)) 

True 

 

""" 

return Predicate('is_true') 

 

@predicate_memo 

def symmetric(self): 

""" 

Symmetric matrix predicate. 

 

``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to 

its transpose. Every square diagonal matrix is a symmetric matrix. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 2, 2) 

>>> Y = MatrixSymbol('Y', 2, 3) 

>>> Z = MatrixSymbol('Z', 2, 2) 

>>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) 

True 

>>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) 

True 

>>> ask(Q.symmetric(Y)) 

False 

 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Symmetric_matrix 

 

""" 

# TODO: Add handlers to make these keys work with 

# actual matrices and add more examples in the docstring. 

return Predicate('symmetric') 

 

@predicate_memo 

def invertible(self): 

""" 

Invertible matrix predicate. 

 

``Q.invertible(x)`` is true iff ``x`` is an invertible matrix. 

A square matrix is called invertible only if its determinant is 0. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 2, 2) 

>>> Y = MatrixSymbol('Y', 2, 3) 

>>> Z = MatrixSymbol('Z', 2, 2) 

>>> ask(Q.invertible(X*Y), Q.invertible(X)) 

False 

>>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) 

True 

>>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Invertible_matrix 

 

""" 

return Predicate('invertible') 

 

@predicate_memo 

def orthogonal(self): 

""" 

Orthogonal matrix predicate. 

 

``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix. 

A square matrix ``M`` is an orthogonal matrix if it satisfies 

``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of 

``M`` and ``I`` is an identity matrix. Note that an orthogonal 

matrix is necessarily invertible. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol, Identity 

>>> X = MatrixSymbol('X', 2, 2) 

>>> Y = MatrixSymbol('Y', 2, 3) 

>>> Z = MatrixSymbol('Z', 2, 2) 

>>> ask(Q.orthogonal(Y)) 

False 

>>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) 

True 

>>> ask(Q.orthogonal(Identity(3))) 

True 

>>> ask(Q.invertible(X), Q.orthogonal(X)) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix 

 

""" 

return Predicate('orthogonal') 

 

@predicate_memo 

def unitary(self): 

""" 

Unitary matrix predicate. 

 

``Q.unitary(x)`` is true iff ``x`` is a unitary matrix. 

Unitary matrix is an analogue to orthogonal matrix. A square 

matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I`` 

where :math:``M^T`` is the conjugate transpose matrix of ``M``. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol, Identity 

>>> X = MatrixSymbol('X', 2, 2) 

>>> Y = MatrixSymbol('Y', 2, 3) 

>>> Z = MatrixSymbol('Z', 2, 2) 

>>> ask(Q.unitary(Y)) 

False 

>>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) 

True 

>>> ask(Q.unitary(Identity(3))) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Unitary_matrix 

 

""" 

return Predicate('unitary') 

 

@predicate_memo 

def positive_definite(self): 

r""" 

Positive definite matrix predicate. 

 

If ``M`` is a :math:``n \times n`` symmetric real matrix, it is said 

to be positive definite if :math:`Z^TMZ` is positive for 

every non-zero column vector ``Z`` of ``n`` real numbers. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol, Identity 

>>> X = MatrixSymbol('X', 2, 2) 

>>> Y = MatrixSymbol('Y', 2, 3) 

>>> Z = MatrixSymbol('Z', 2, 2) 

>>> ask(Q.positive_definite(Y)) 

False 

>>> ask(Q.positive_definite(Identity(3))) 

True 

>>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & 

... Q.positive_definite(Z)) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix 

 

""" 

return Predicate('positive_definite') 

 

@predicate_memo 

def upper_triangular(self): 

""" 

Upper triangular matrix predicate. 

 

A matrix ``M`` is called upper triangular matrix if :math:`M_{ij}=0` 

for :math:`i<j`. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, ZeroMatrix, Identity 

>>> ask(Q.upper_triangular(Identity(3))) 

True 

>>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) 

True 

 

References 

========== 

 

.. [1] http://mathworld.wolfram.com/UpperTriangularMatrix.html 

 

""" 

return Predicate('upper_triangular') 

 

@predicate_memo 

def lower_triangular(self): 

""" 

Lower triangular matrix predicate. 

 

A matrix ``M`` is called lower triangular matrix if :math:`a_{ij}=0` 

for :math:`i>j`. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, ZeroMatrix, Identity 

>>> ask(Q.lower_triangular(Identity(3))) 

True 

>>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) 

True 

 

References 

========== 

 

.. [1] http://mathworld.wolfram.com/LowerTriangularMatrix.html 

""" 

return Predicate('lower_triangular') 

 

@predicate_memo 

def diagonal(self): 

""" 

Diagonal matrix predicate. 

 

``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal 

matrix is a matrix in which the entries outside the main diagonal 

are all zero. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix 

>>> X = MatrixSymbol('X', 2, 2) 

>>> ask(Q.diagonal(ZeroMatrix(3, 3))) 

True 

>>> ask(Q.diagonal(X), Q.lower_triangular(X) & 

... Q.upper_triangular(X)) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Diagonal_matrix 

 

""" 

return Predicate('diagonal') 

 

@predicate_memo 

def fullrank(self): 

""" 

Fullrank matrix predicate. 

 

``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix. 

A matrix is full rank if all rows and columns of the matrix 

are linearly independent. A square matrix is full rank iff 

its determinant is nonzero. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity 

>>> X = MatrixSymbol('X', 2, 2) 

>>> ask(Q.fullrank(X.T), Q.fullrank(X)) 

True 

>>> ask(Q.fullrank(ZeroMatrix(3, 3))) 

False 

>>> ask(Q.fullrank(Identity(3))) 

True 

 

""" 

return Predicate('fullrank') 

 

@predicate_memo 

def square(self): 

""" 

Square matrix predicate. 

 

``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix 

is a matrix with the same number of rows and columns. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity 

>>> X = MatrixSymbol('X', 2, 2) 

>>> Y = MatrixSymbol('X', 2, 3) 

>>> ask(Q.square(X)) 

True 

>>> ask(Q.square(Y)) 

False 

>>> ask(Q.square(ZeroMatrix(3, 3))) 

True 

>>> ask(Q.square(Identity(3))) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Square_matrix 

 

""" 

return Predicate('square') 

 

@predicate_memo 

def integer_elements(self): 

""" 

Integer elements matrix predicate. 

 

``Q.integer_elements(x)`` is true iff all the elements of ``x`` 

are integers. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 4, 4) 

>>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) 

True 

 

""" 

return Predicate('integer_elements') 

 

@predicate_memo 

def real_elements(self): 

""" 

Real elements matrix predicate. 

 

``Q.real_elements(x)`` is true iff all the elements of ``x`` 

are real numbers. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 4, 4) 

>>> ask(Q.real(X[1, 2]), Q.real_elements(X)) 

True 

 

""" 

return Predicate('real_elements') 

 

@predicate_memo 

def complex_elements(self): 

""" 

Complex elements matrix predicate. 

 

``Q.complex_elements(x)`` is true iff all the elements of ``x`` 

are complex numbers. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 4, 4) 

>>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) 

True 

>>> ask(Q.complex_elements(X), Q.integer_elements(X)) 

True 

 

""" 

return Predicate('complex_elements') 

 

@predicate_memo 

def singular(self): 

""" 

Singular matrix predicate. 

 

A matrix is singular iff the value of its determinant is 0. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 4, 4) 

>>> ask(Q.singular(X), Q.invertible(X)) 

False 

>>> ask(Q.singular(X), ~Q.invertible(X)) 

True 

 

References 

========== 

 

.. [1] http://mathworld.wolfram.com/SingularMatrix.html 

 

""" 

return Predicate('singular') 

 

@predicate_memo 

def normal(self): 

""" 

Normal matrix predicate. 

 

A matrix is normal if it commutes with its conjugate transpose. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 4, 4) 

>>> ask(Q.normal(X), Q.unitary(X)) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Normal_matrix 

 

""" 

return Predicate('normal') 

 

@predicate_memo 

def triangular(self): 

""" 

Triangular matrix predicate. 

 

``Q.triangular(X)`` is true if ``X`` is one that is either lower 

triangular or upper triangular. 

 

Examples 

======== 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 4, 4) 

>>> ask(Q.triangular(X), Q.upper_triangular(X)) 

True 

>>> ask(Q.triangular(X), Q.lower_triangular(X)) 

True 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/Triangular_matrix 

 

""" 

return Predicate('triangular') 

 

@predicate_memo 

def unit_triangular(self): 

""" 

Unit triangular matrix predicate. 

 

A unit triangular matrix is a triangular matrix with 1s 

on the diagonal. 

 

Examples 

======== 

 

>>> from sympy import Q, ask, MatrixSymbol 

>>> X = MatrixSymbol('X', 4, 4) 

>>> ask(Q.triangular(X), Q.unit_triangular(X)) 

True 

 

""" 

return Predicate('unit_triangular') 

 

 

Q = AssumptionKeys() 

 

def _extract_facts(expr, symbol, check_reversed_rel=True): 

""" 

Helper for ask(). 

 

Extracts the facts relevant to the symbol from an assumption. 

Returns None if there is nothing to extract. 

""" 

if isinstance(symbol, Relational): 

if check_reversed_rel: 

rev = _extract_facts(expr, symbol.reversed, False) 

if rev is not None: 

return rev 

if isinstance(expr, bool): 

return 

if not expr.has(symbol): 

return 

if isinstance(expr, AppliedPredicate): 

if expr.arg == symbol: 

return expr.func 

else: 

return 

if isinstance(expr, Not) and expr.args[0].func in (And, Or): 

cls = Or if expr.args[0] == And else And 

expr = cls(*[~arg for arg in expr.args[0].args]) 

args = [_extract_facts(arg, symbol) for arg in expr.args] 

if isinstance(expr, And): 

args = [x for x in args if x is not None] 

if args: 

return expr.func(*args) 

if args and all(x != None for x in args): 

return expr.func(*args) 

 

 

def ask(proposition, assumptions=True, context=global_assumptions): 

""" 

Method for inferring properties about objects. 

 

**Syntax** 

 

* ask(proposition) 

 

* ask(proposition, assumptions) 

 

where ``proposition`` is any boolean expression 

 

Examples 

======== 

 

>>> from sympy import ask, Q, pi 

>>> from sympy.abc import x, y 

>>> ask(Q.rational(pi)) 

False 

>>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) 

True 

>>> ask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) 

False 

 

**Remarks** 

Relations in assumptions are not implemented (yet), so the following 

will not give a meaningful result. 

 

>>> ask(Q.positive(x), Q.is_true(x > 0)) # doctest: +SKIP 

 

It is however a work in progress. 

 

""" 

from sympy.assumptions.satask import satask 

 

if not isinstance(proposition, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): 

raise TypeError("proposition must be a valid logical expression") 

 

if not isinstance(assumptions, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): 

raise TypeError("assumptions must be a valid logical expression") 

 

if isinstance(proposition, AppliedPredicate): 

key, expr = proposition.func, sympify(proposition.arg) 

else: 

key, expr = Q.is_true, sympify(proposition) 

 

assumptions = And(assumptions, And(*context)) 

assumptions = to_cnf(assumptions) 

 

local_facts = _extract_facts(assumptions, expr) 

 

known_facts_cnf = get_known_facts_cnf() 

known_facts_dict = get_known_facts_dict() 

 

if local_facts and satisfiable(And(local_facts, known_facts_cnf)) is False: 

raise ValueError("inconsistent assumptions %s" % assumptions) 

 

# direct resolution method, no logic 

res = key(expr)._eval_ask(assumptions) 

if res is not None: 

return bool(res) 

 

if local_facts is None: 

return satask(proposition, assumptions=assumptions, context=context) 

 

 

# See if there's a straight-forward conclusion we can make for the inference 

if local_facts.is_Atom: 

if key in known_facts_dict[local_facts]: 

return True 

if Not(key) in known_facts_dict[local_facts]: 

return False 

elif (local_facts.func is And and 

all(k in known_facts_dict for k in local_facts.args)): 

for assum in local_facts.args: 

if assum.is_Atom: 

if key in known_facts_dict[assum]: 

return True 

if Not(key) in known_facts_dict[assum]: 

return False 

elif assum.func is Not and assum.args[0].is_Atom: 

if key in known_facts_dict[assum]: 

return False 

if Not(key) in known_facts_dict[assum]: 

return True 

elif (isinstance(key, Predicate) and 

local_facts.func is Not and local_facts.args[0].is_Atom): 

if local_facts.args[0] in known_facts_dict[key]: 

return False 

 

# Failing all else, we do a full logical inference 

res = ask_full_inference(key, local_facts, known_facts_cnf) 

if res is None: 

return satask(proposition, assumptions=assumptions, context=context) 

return res 

 

 

def ask_full_inference(proposition, assumptions, known_facts_cnf): 

""" 

Method for inferring properties about objects. 

 

""" 

if not satisfiable(And(known_facts_cnf, assumptions, proposition)): 

return False 

if not satisfiable(And(known_facts_cnf, assumptions, Not(proposition))): 

return True 

return None 

 

 

def register_handler(key, handler): 

""" 

Register a handler in the ask system. key must be a string and handler a 

class inheriting from AskHandler:: 

 

>>> from sympy.assumptions import register_handler, ask, Q 

>>> from sympy.assumptions.handlers import AskHandler 

>>> class MersenneHandler(AskHandler): 

... # Mersenne numbers are in the form 2**n + 1, n integer 

... @staticmethod 

... def Integer(expr, assumptions): 

... from sympy import log 

... return ask(Q.integer(log(expr + 1, 2))) 

>>> register_handler('mersenne', MersenneHandler) 

>>> ask(Q.mersenne(7)) 

True 

 

""" 

if type(key) is Predicate: 

key = key.name 

try: 

getattr(Q, key).add_handler(handler) 

except AttributeError: 

setattr(Q, key, Predicate(key, handlers=[handler])) 

 

 

def remove_handler(key, handler): 

"""Removes a handler from the ask system. Same syntax as register_handler""" 

if type(key) is Predicate: 

key = key.name 

getattr(Q, key).remove_handler(handler) 

 

 

def single_fact_lookup(known_facts_keys, known_facts_cnf): 

# Compute the quick lookup for single facts 

mapping = {} 

for key in known_facts_keys: 

mapping[key] = {key} 

for other_key in known_facts_keys: 

if other_key != key: 

if ask_full_inference(other_key, key, known_facts_cnf): 

mapping[key].add(other_key) 

return mapping 

 

 

def compute_known_facts(known_facts, known_facts_keys): 

"""Compute the various forms of knowledge compilation used by the 

assumptions system. 

 

This function is typically applied to the results of the ``get_known_facts`` 

and ``get_known_facts_keys`` functions defined at the bottom of 

this file. 

""" 

from textwrap import dedent, wrap 

 

fact_string = dedent('''\ 

""" 

The contents of this file are the return value of 

``sympy.assumptions.ask.compute_known_facts``. 

 

Do NOT manually edit this file. 

Instead, run ./bin/ask_update.py. 

""" 

 

from sympy.core.cache import cacheit 

from sympy.logic.boolalg import And, Not, Or 

from sympy.assumptions.ask import Q 

 

# -{ Known facts in Conjunctive Normal Form }- 

@cacheit 

def get_known_facts_cnf(): 

return And( 

%s 

) 

 

# -{ Known facts in compressed sets }- 

@cacheit 

def get_known_facts_dict(): 

return { 

%s 

} 

''') 

# Compute the known facts in CNF form for logical inference 

LINE = ",\n " 

HANG = ' '*8 

cnf = to_cnf(known_facts) 

c = LINE.join([str(a) for a in cnf.args]) 

mapping = single_fact_lookup(known_facts_keys, cnf) 

items = sorted(mapping.items(), key=str) 

keys = [str(i[0]) for i in items] 

values = ['set(%s)' % sorted(i[1], key=str) for i in items] 

m = LINE.join(['\n'.join( 

wrap("%s: %s" % (k, v), 

subsequent_indent=HANG, 

break_long_words=False)) 

for k, v in zip(keys, values)]) + ',' 

return fact_string % (c, m) 

 

# handlers tells us what ask handler we should use 

# for a particular key 

_val_template = 'sympy.assumptions.handlers.%s' 

_handlers = [ 

("antihermitian", "sets.AskAntiHermitianHandler"), 

("finite", "calculus.AskFiniteHandler"), 

("commutative", "AskCommutativeHandler"), 

("complex", "sets.AskComplexHandler"), 

("composite", "ntheory.AskCompositeHandler"), 

("even", "ntheory.AskEvenHandler"), 

("extended_real", "sets.AskExtendedRealHandler"), 

("hermitian", "sets.AskHermitianHandler"), 

("imaginary", "sets.AskImaginaryHandler"), 

("integer", "sets.AskIntegerHandler"), 

("irrational", "sets.AskIrrationalHandler"), 

("rational", "sets.AskRationalHandler"), 

("negative", "order.AskNegativeHandler"), 

("nonzero", "order.AskNonZeroHandler"), 

("nonpositive", "order.AskNonPositiveHandler"), 

("nonnegative", "order.AskNonNegativeHandler"), 

("zero", "order.AskZeroHandler"), 

("positive", "order.AskPositiveHandler"), 

("prime", "ntheory.AskPrimeHandler"), 

("real", "sets.AskRealHandler"), 

("odd", "ntheory.AskOddHandler"), 

("algebraic", "sets.AskAlgebraicHandler"), 

("is_true", "common.TautologicalHandler"), 

("symmetric", "matrices.AskSymmetricHandler"), 

("invertible", "matrices.AskInvertibleHandler"), 

("orthogonal", "matrices.AskOrthogonalHandler"), 

("unitary", "matrices.AskUnitaryHandler"), 

("positive_definite", "matrices.AskPositiveDefiniteHandler"), 

("upper_triangular", "matrices.AskUpperTriangularHandler"), 

("lower_triangular", "matrices.AskLowerTriangularHandler"), 

("diagonal", "matrices.AskDiagonalHandler"), 

("fullrank", "matrices.AskFullRankHandler"), 

("square", "matrices.AskSquareHandler"), 

("integer_elements", "matrices.AskIntegerElementsHandler"), 

("real_elements", "matrices.AskRealElementsHandler"), 

("complex_elements", "matrices.AskComplexElementsHandler"), 

] 

 

for name, value in _handlers: 

register_handler(name, _val_template % value) 

 

@cacheit 

def get_known_facts_keys(): 

return [ 

getattr(Q, attr) 

for attr in Q.__class__.__dict__ 

if not (attr.startswith('__') or 

attr in deprecated_predicates)] 

 

@cacheit 

def get_known_facts(): 

return And( 

Implies(Q.infinite, ~Q.finite), 

Implies(Q.real, Q.complex), 

Implies(Q.real, Q.hermitian), 

Equivalent(Q.extended_real, Q.real | Q.infinite), 

Equivalent(Q.even | Q.odd, Q.integer), 

Implies(Q.even, ~Q.odd), 

Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite), 

Implies(Q.integer, Q.rational), 

Implies(Q.rational, Q.algebraic), 

Implies(Q.algebraic, Q.complex), 

Equivalent(Q.transcendental | Q.algebraic, Q.complex), 

Implies(Q.transcendental, ~Q.algebraic), 

Implies(Q.imaginary, Q.complex & ~Q.real), 

Implies(Q.imaginary, Q.antihermitian), 

Implies(Q.antihermitian, ~Q.hermitian), 

Equivalent(Q.irrational | Q.rational, Q.real), 

Implies(Q.irrational, ~Q.rational), 

Implies(Q.zero, Q.even), 

 

Equivalent(Q.real, Q.negative | Q.zero | Q.positive), 

Implies(Q.zero, ~Q.negative & ~Q.positive), 

Implies(Q.negative, ~Q.positive), 

Equivalent(Q.nonnegative, Q.zero | Q.positive), 

Equivalent(Q.nonpositive, Q.zero | Q.negative), 

Equivalent(Q.nonzero, Q.negative | Q.positive), 

 

Implies(Q.orthogonal, Q.positive_definite), 

Implies(Q.orthogonal, Q.unitary), 

Implies(Q.unitary & Q.real, Q.orthogonal), 

Implies(Q.unitary, Q.normal), 

Implies(Q.unitary, Q.invertible), 

Implies(Q.normal, Q.square), 

Implies(Q.diagonal, Q.normal), 

Implies(Q.positive_definite, Q.invertible), 

Implies(Q.diagonal, Q.upper_triangular), 

Implies(Q.diagonal, Q.lower_triangular), 

Implies(Q.lower_triangular, Q.triangular), 

Implies(Q.upper_triangular, Q.triangular), 

Implies(Q.triangular, Q.upper_triangular | Q.lower_triangular), 

Implies(Q.upper_triangular & Q.lower_triangular, Q.diagonal), 

Implies(Q.diagonal, Q.symmetric), 

Implies(Q.unit_triangular, Q.triangular), 

Implies(Q.invertible, Q.fullrank), 

Implies(Q.invertible, Q.square), 

Implies(Q.symmetric, Q.square), 

Implies(Q.fullrank & Q.square, Q.invertible), 

Equivalent(Q.invertible, ~Q.singular), 

Implies(Q.integer_elements, Q.real_elements), 

Implies(Q.real_elements, Q.complex_elements), 

) 

 

from sympy.assumptions.ask_generated import ( 

get_known_facts_dict, get_known_facts_cnf)