Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

from __future__ import print_function, division 

 

from collections import defaultdict 

from functools import cmp_to_key 

 

from .basic import Basic 

from .compatibility import reduce, is_sequence, range 

from .logic import _fuzzy_group, fuzzy_or, fuzzy_not 

from .singleton import S 

from .operations import AssocOp 

from .cache import cacheit 

from .numbers import ilcm, igcd 

from .expr import Expr 

 

# Key for sorting commutative args in canonical order 

_args_sortkey = cmp_to_key(Basic.compare) 

def _addsort(args): 

# in-place sorting of args 

args.sort(key=_args_sortkey) 

 

 

def _unevaluated_Add(*args): 

"""Return a well-formed unevaluated Add: Numbers are collected and 

put in slot 0 and args are sorted. Use this when args have changed 

but you still want to return an unevaluated Add. 

 

Examples 

======== 

 

>>> from sympy.core.add import _unevaluated_Add as uAdd 

>>> from sympy import S, Add 

>>> from sympy.abc import x, y 

>>> a = uAdd(*[S(1.0), x, S(2)]) 

>>> a.args[0] 

3.00000000000000 

>>> a.args[1] 

x 

 

Beyond the Number being in slot 0, there is no other assurance of 

order for the arguments since they are hash sorted. So, for testing 

purposes, output produced by this in some other function can only 

be tested against the output of this function or as one of several 

options: 

 

>>> opts = (Add(x, y, evaluated=False), Add(y, x, evaluated=False)) 

>>> a = uAdd(x, y) 

>>> assert a in opts and a == uAdd(x, y) 

 

""" 

args = list(args) 

newargs = [] 

co = S.Zero 

while args: 

a = args.pop() 

if a.is_Add: 

# this will keep nesting from building up 

# so that x + (x + 1) -> x + x + 1 (3 args) 

args.extend(a.args) 

elif a.is_Number: 

co += a 

else: 

newargs.append(a) 

_addsort(newargs) 

if co: 

newargs.insert(0, co) 

return Add._from_args(newargs) 

 

 

class Add(Expr, AssocOp): 

 

__slots__ = [] 

 

is_Add = True 

 

@classmethod 

def flatten(cls, seq): 

""" 

Takes the sequence "seq" of nested Adds and returns a flatten list. 

 

Returns: (commutative_part, noncommutative_part, order_symbols) 

 

Applies associativity, all terms are commutable with respect to 

addition. 

 

NB: the removal of 0 is already handled by AssocOp.__new__ 

 

See also 

======== 

 

sympy.core.mul.Mul.flatten 

 

""" 

from sympy.calculus.util import AccumBounds 

rv = None 

if len(seq) == 2: 

a, b = seq 

if b.is_Rational: 

a, b = b, a 

if a.is_Rational: 

if b.is_Mul: 

rv = [a, b], [], None 

if rv: 

if all(s.is_commutative for s in rv[0]): 

return rv 

return [], rv[0], None 

 

terms = {} # term -> coeff 

# e.g. x**2 -> 5 for ... + 5*x**2 + ... 

 

coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0 

# e.g. 3 + ... 

order_factors = [] 

 

for o in seq: 

 

# O(x) 

if o.is_Order: 

for o1 in order_factors: 

if o1.contains(o): 

o = None 

break 

if o is None: 

continue 

order_factors = [o] + [ 

o1 for o1 in order_factors if not o.contains(o1)] 

continue 

 

# 3 or NaN 

elif o.is_Number: 

if (o is S.NaN or coeff is S.ComplexInfinity and 

o.is_finite is False): 

# we know for sure the result will be nan 

return [S.NaN], [], None 

if coeff.is_Number: 

coeff += o 

if coeff is S.NaN: 

# we know for sure the result will be nan 

return [S.NaN], [], None 

continue 

 

elif isinstance(o, AccumBounds): 

coeff = o.__add__(coeff) 

continue 

 

elif o is S.ComplexInfinity: 

if coeff.is_finite is False: 

# we know for sure the result will be nan 

return [S.NaN], [], None 

coeff = S.ComplexInfinity 

continue 

 

# Add([...]) 

elif o.is_Add: 

# NB: here we assume Add is always commutative 

seq.extend(o.args) # TODO zerocopy? 

continue 

 

# Mul([...]) 

elif o.is_Mul: 

c, s = o.as_coeff_Mul() 

 

# check for unevaluated Pow, e.g. 2**3 or 2**(-1/2) 

elif o.is_Pow: 

b, e = o.as_base_exp() 

if b.is_Number and (e.is_Integer or 

(e.is_Rational and e.is_negative)): 

seq.append(b**e) 

continue 

c, s = S.One, o 

 

else: 

# everything else 

c = S.One 

s = o 

 

# now we have: 

# o = c*s, where 

# 

# c is a Number 

# s is an expression with number factor extracted 

# let's collect terms with the same s, so e.g. 

# 2*x**2 + 3*x**2 -> 5*x**2 

if s in terms: 

terms[s] += c 

if terms[s] is S.NaN: 

# we know for sure the result will be nan 

return [S.NaN], [], None 

else: 

terms[s] = c 

 

# now let's construct new args: 

# [2*x**2, x**3, 7*x**4, pi, ...] 

newseq = [] 

noncommutative = False 

for s, c in terms.items(): 

# 0*s 

if c is S.Zero: 

continue 

# 1*s 

elif c is S.One: 

newseq.append(s) 

# c*s 

else: 

if s.is_Mul: 

# Mul, already keeps its arguments in perfect order. 

# so we can simply put c in slot0 and go the fast way. 

cs = s._new_rawargs(*((c,) + s.args)) 

newseq.append(cs) 

elif s.is_Add: 

# we just re-create the unevaluated Mul 

newseq.append(Mul(c, s, evaluate=False)) 

else: 

# alternatively we have to call all Mul's machinery (slow) 

newseq.append(Mul(c, s)) 

 

noncommutative = noncommutative or not s.is_commutative 

 

# oo, -oo 

if coeff is S.Infinity: 

newseq = [f for f in newseq if not 

(f.is_nonnegative or f.is_real and f.is_finite)] 

 

elif coeff is S.NegativeInfinity: 

newseq = [f for f in newseq if not 

(f.is_nonpositive or f.is_real and f.is_finite)] 

 

if coeff is S.ComplexInfinity: 

# zoo might be 

# infinite_real + finite_im 

# finite_real + infinite_im 

# infinite_real + infinite_im 

# addition of a finite real or imaginary number won't be able to 

# change the zoo nature; adding an infinite qualtity would result 

# in a NaN condition if it had sign opposite of the infinite 

# portion of zoo, e.g., infinite_real - infinite_real. 

newseq = [c for c in newseq if not (c.is_finite and 

c.is_real is not None)] 

 

# process O(x) 

if order_factors: 

newseq2 = [] 

for t in newseq: 

for o in order_factors: 

# x + O(x) -> O(x) 

if o.contains(t): 

t = None 

break 

# x + O(x**2) -> x + O(x**2) 

if t is not None: 

newseq2.append(t) 

newseq = newseq2 + order_factors 

# 1 + O(1) -> O(1) 

for o in order_factors: 

if o.contains(coeff): 

coeff = S.Zero 

break 

 

# order args canonically 

_addsort(newseq) 

 

# current code expects coeff to be first 

if coeff is not S.Zero: 

newseq.insert(0, coeff) 

 

# we are done 

if noncommutative: 

return [], newseq, None 

else: 

return newseq, [], None 

 

@classmethod 

def class_key(cls): 

"""Nice order of classes""" 

return 3, 1, cls.__name__ 

 

def as_coefficients_dict(a): 

"""Return a dictionary mapping terms to their Rational coefficient. 

Since the dictionary is a defaultdict, inquiries about terms which 

were not present will return a coefficient of 0. If an expression is 

not an Add it is considered to have a single term. 

 

Examples 

======== 

 

>>> from sympy.abc import a, x 

>>> (3*x + a*x + 4).as_coefficients_dict() 

{1: 4, x: 3, a*x: 1} 

>>> _[a] 

0 

>>> (3*a*x).as_coefficients_dict() 

{a*x: 3} 

""" 

 

d = defaultdict(list) 

for ai in a.args: 

c, m = ai.as_coeff_Mul() 

d[m].append(c) 

for k, v in d.items(): 

if len(v) == 1: 

d[k] = v[0] 

else: 

d[k] = Add(*v) 

di = defaultdict(int) 

di.update(d) 

return di 

 

@cacheit 

def as_coeff_add(self, *deps): 

""" 

Returns a tuple (coeff, args) where self is treated as an Add and coeff 

is the Number term and args is a tuple of all other terms. 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> (7 + 3*x).as_coeff_add() 

(7, (3*x,)) 

>>> (7*x).as_coeff_add() 

(0, (7*x,)) 

""" 

if deps: 

l1 = [] 

l2 = [] 

for f in self.args: 

if f.has(*deps): 

l2.append(f) 

else: 

l1.append(f) 

return self._new_rawargs(*l1), tuple(l2) 

coeff, notrat = self.args[0].as_coeff_add() 

if coeff is not S.Zero: 

return coeff, notrat + self.args[1:] 

return S.Zero, self.args 

 

def as_coeff_Add(self, rational=False): 

"""Efficiently extract the coefficient of a summation. """ 

coeff, args = self.args[0], self.args[1:] 

 

if coeff.is_Number and not rational or coeff.is_Rational: 

return coeff, self._new_rawargs(*args) 

return S.Zero, self 

 

# Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we 

# let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See 

# issue 5524. 

 

@cacheit 

def _eval_derivative(self, s): 

return self.func(*[a.diff(s) for a in self.args]) 

 

def _eval_nseries(self, x, n, logx): 

terms = [t.nseries(x, n=n, logx=logx) for t in self.args] 

return self.func(*terms) 

 

def _matches_simple(self, expr, repl_dict): 

# handle (w+3).matches('x+5') -> {w: x+2} 

coeff, terms = self.as_coeff_add() 

if len(terms) == 1: 

return terms[0].matches(expr - coeff, repl_dict) 

return 

 

def matches(self, expr, repl_dict={}, old=False): 

return AssocOp._matches_commutative(self, expr, repl_dict, old) 

 

@staticmethod 

def _combine_inverse(lhs, rhs): 

""" 

Returns lhs - rhs, but treats arguments like symbols, so things like 

oo - oo return 0, instead of a nan. 

""" 

from sympy import oo, I, expand_mul 

if lhs == oo and rhs == oo or lhs == oo*I and rhs == oo*I: 

return S.Zero 

return expand_mul(lhs - rhs) 

 

@cacheit 

def as_two_terms(self): 

"""Return head and tail of self. 

 

This is the most efficient way to get the head and tail of an 

expression. 

 

- if you want only the head, use self.args[0]; 

- if you want to process the arguments of the tail then use 

self.as_coef_add() which gives the head and a tuple containing 

the arguments of the tail when treated as an Add. 

- if you want the coefficient when self is treated as a Mul 

then use self.as_coeff_mul()[0] 

 

>>> from sympy.abc import x, y 

>>> (3*x*y).as_two_terms() 

(3, x*y) 

""" 

if len(self.args) == 1: 

return S.Zero, self 

return self.args[0], self._new_rawargs(*self.args[1:]) 

 

def as_numer_denom(self): 

 

# clear rational denominator 

content, expr = self.primitive() 

ncon, dcon = content.as_numer_denom() 

 

# collect numerators and denominators of the terms 

nd = defaultdict(list) 

for f in expr.args: 

ni, di = f.as_numer_denom() 

nd[di].append(ni) 

# put infinity in the numerator 

if S.Zero in nd: 

n = nd.pop(S.Zero) 

assert len(n) == 1 

n = n[0] 

nd[S.One].append(n/S.Zero) 

 

# check for quick exit 

if len(nd) == 1: 

d, n = nd.popitem() 

return self.func( 

*[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d) 

 

# sum up the terms having a common denominator 

for d, n in nd.items(): 

if len(n) == 1: 

nd[d] = n[0] 

else: 

nd[d] = self.func(*n) 

 

# assemble single numerator and denominator 

denoms, numers = [list(i) for i in zip(*iter(nd.items()))] 

n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:])) 

for i in range(len(numers))]), Mul(*denoms) 

 

return _keep_coeff(ncon, n), _keep_coeff(dcon, d) 

 

def _eval_is_polynomial(self, syms): 

return all(term._eval_is_polynomial(syms) for term in self.args) 

 

def _eval_is_rational_function(self, syms): 

return all(term._eval_is_rational_function(syms) for term in self.args) 

 

def _eval_is_algebraic_expr(self, syms): 

return all(term._eval_is_algebraic_expr(syms) for term in self.args) 

 

# assumption methods 

_eval_is_real = lambda self: _fuzzy_group( 

(a.is_real for a in self.args), quick_exit=True) 

_eval_is_complex = lambda self: _fuzzy_group( 

(a.is_complex for a in self.args), quick_exit=True) 

_eval_is_antihermitian = lambda self: _fuzzy_group( 

(a.is_antihermitian for a in self.args), quick_exit=True) 

_eval_is_finite = lambda self: _fuzzy_group( 

(a.is_finite for a in self.args), quick_exit=True) 

_eval_is_hermitian = lambda self: _fuzzy_group( 

(a.is_hermitian for a in self.args), quick_exit=True) 

_eval_is_integer = lambda self: _fuzzy_group( 

(a.is_integer for a in self.args), quick_exit=True) 

_eval_is_rational = lambda self: _fuzzy_group( 

(a.is_rational for a in self.args), quick_exit=True) 

_eval_is_algebraic = lambda self: _fuzzy_group( 

(a.is_algebraic for a in self.args), quick_exit=True) 

_eval_is_commutative = lambda self: _fuzzy_group( 

a.is_commutative for a in self.args) 

 

def _eval_is_imaginary(self): 

nz = [] 

im_I = [] 

for a in self.args: 

if a.is_real: 

if a.is_zero: 

pass 

elif a.is_zero is False: 

nz.append(a) 

else: 

return 

elif a.is_imaginary: 

im_I.append(a*S.ImaginaryUnit) 

elif (S.ImaginaryUnit*a).is_real: 

im_I.append(a*S.ImaginaryUnit) 

else: 

return 

if self.func(*nz).is_zero: 

return fuzzy_not(self.func(*im_I).is_zero) 

elif self.func(*nz).is_zero is False: 

return False 

 

def _eval_is_zero(self): 

if self.is_commutative is False: 

# issue 10528: there is no way to know if a nc symbol 

# is zero or not 

return 

nz = [] 

z = 0 

im_or_z = False 

im = False 

for a in self.args: 

if a.is_real: 

if a.is_zero: 

z += 1 

elif a.is_zero is False: 

nz.append(a) 

else: 

return 

elif a.is_imaginary: 

im = True 

elif (S.ImaginaryUnit*a).is_real: 

im_or_z = True 

else: 

return 

if z == len(self.args): 

return True 

if self.func(*nz).is_zero: 

if not im_or_z and not im: 

return True 

if im and not im_or_z: 

return False 

if self.func(*nz).is_zero is False: 

return False 

 

def _eval_is_odd(self): 

l = [f for f in self.args if not (f.is_even is True)] 

if not l: 

return False 

if l[0].is_odd: 

return self._new_rawargs(*l[1:]).is_even 

 

def _eval_is_irrational(self): 

for t in self.args: 

a = t.is_irrational 

if a: 

others = list(self.args) 

others.remove(t) 

if all(x.is_rational is True for x in others): 

return True 

return None 

if a is None: 

return 

return False 

 

def _eval_is_positive(self): 

from sympy.core.exprtools import _monotonic_sign 

if self.is_number: 

return super(Add, self)._eval_is_positive() 

c, a = self.as_coeff_Add() 

if not c.is_zero: 

v = _monotonic_sign(a) 

if v is not None: 

s = v + c 

if s.is_positive and a.is_nonnegative: 

return True 

if len(self.free_symbols) == 1: 

v = _monotonic_sign(self) 

if v is not None and v.is_positive: 

return True 

pos = nonneg = nonpos = unknown_sign = False 

saw_INF = set() 

args = [a for a in self.args if not a.is_zero] 

if not args: 

return False 

for a in args: 

ispos = a.is_positive 

infinite = a.is_infinite 

if infinite: 

saw_INF.add(fuzzy_or((ispos, a.is_nonnegative))) 

if True in saw_INF and False in saw_INF: 

return 

if ispos: 

pos = True 

continue 

elif a.is_nonnegative: 

nonneg = True 

continue 

elif a.is_nonpositive: 

nonpos = True 

continue 

 

if infinite is None: 

return 

unknown_sign = True 

 

if saw_INF: 

if len(saw_INF) > 1: 

return 

return saw_INF.pop() 

elif unknown_sign: 

return 

elif not nonpos and not nonneg and pos: 

return True 

elif not nonpos and pos: 

return True 

elif not pos and not nonneg: 

return False 

 

def _eval_is_nonnegative(self): 

from sympy.core.exprtools import _monotonic_sign 

if not self.is_number: 

c, a = self.as_coeff_Add() 

if not c.is_zero and a.is_nonnegative: 

v = _monotonic_sign(a) 

if v is not None: 

s = v + c 

if s.is_nonnegative: 

return True 

if len(self.free_symbols) == 1: 

v = _monotonic_sign(self) 

if v is not None and v.is_nonnegative: 

return True 

 

def _eval_is_nonpositive(self): 

from sympy.core.exprtools import _monotonic_sign 

if not self.is_number: 

c, a = self.as_coeff_Add() 

if not c.is_zero and a.is_nonpositive: 

v = _monotonic_sign(a) 

if v is not None: 

s = v + c 

if s.is_nonpositive: 

return True 

if len(self.free_symbols) == 1: 

v = _monotonic_sign(self) 

if v is not None and v.is_nonpositive: 

return True 

 

def _eval_is_negative(self): 

from sympy.core.exprtools import _monotonic_sign 

if self.is_number: 

return super(Add, self)._eval_is_negative() 

c, a = self.as_coeff_Add() 

if not c.is_zero: 

v = _monotonic_sign(a) 

if v is not None: 

s = v + c 

if s.is_negative and a.is_nonpositive: 

return True 

if len(self.free_symbols) == 1: 

v = _monotonic_sign(self) 

if v is not None and v.is_negative: 

return True 

neg = nonpos = nonneg = unknown_sign = False 

saw_INF = set() 

args = [a for a in self.args if not a.is_zero] 

if not args: 

return False 

for a in args: 

isneg = a.is_negative 

infinite = a.is_infinite 

if infinite: 

saw_INF.add(fuzzy_or((isneg, a.is_nonpositive))) 

if True in saw_INF and False in saw_INF: 

return 

if isneg: 

neg = True 

continue 

elif a.is_nonpositive: 

nonpos = True 

continue 

elif a.is_nonnegative: 

nonneg = True 

continue 

 

if infinite is None: 

return 

unknown_sign = True 

 

if saw_INF: 

if len(saw_INF) > 1: 

return 

return saw_INF.pop() 

elif unknown_sign: 

return 

elif not nonneg and not nonpos and neg: 

return True 

elif not nonneg and neg: 

return True 

elif not neg and not nonpos: 

return False 

 

def _eval_subs(self, old, new): 

if not old.is_Add: 

return None 

 

coeff_self, terms_self = self.as_coeff_Add() 

coeff_old, terms_old = old.as_coeff_Add() 

 

if coeff_self.is_Rational and coeff_old.is_Rational: 

if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y 

return self.func(new, coeff_self, -coeff_old) 

if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y 

return self.func(-new, coeff_self, coeff_old) 

 

if coeff_self.is_Rational and coeff_old.is_Rational \ 

or coeff_self == coeff_old: 

args_old, args_self = self.func.make_args( 

terms_old), self.func.make_args(terms_self) 

if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x 

self_set = set(args_self) 

old_set = set(args_old) 

 

if old_set < self_set: 

ret_set = self_set - old_set 

return self.func(new, coeff_self, -coeff_old, 

*[s._subs(old, new) for s in ret_set]) 

 

args_old = self.func.make_args( 

-terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d 

old_set = set(args_old) 

if old_set < self_set: 

ret_set = self_set - old_set 

return self.func(-new, coeff_self, coeff_old, 

*[s._subs(old, new) for s in ret_set]) 

 

def removeO(self): 

args = [a for a in self.args if not a.is_Order] 

return self._new_rawargs(*args) 

 

def getO(self): 

args = [a for a in self.args if a.is_Order] 

if args: 

return self._new_rawargs(*args) 

 

@cacheit 

def extract_leading_order(self, symbols, point=None): 

""" 

Returns the leading term and its order. 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> (x + 1 + 1/x**5).extract_leading_order(x) 

((x**(-5), O(x**(-5))),) 

>>> (1 + x).extract_leading_order(x) 

((1, O(1)),) 

>>> (x + x**2).extract_leading_order(x) 

((x, O(x)),) 

 

""" 

from sympy import Order 

lst = [] 

symbols = list(symbols if is_sequence(symbols) else [symbols]) 

if not point: 

point = [0]*len(symbols) 

seq = [(f, Order(f, *zip(symbols, point))) for f in self.args] 

for ef, of in seq: 

for e, o in lst: 

if o.contains(of) and o != of: 

of = None 

break 

if of is None: 

continue 

new_lst = [(ef, of)] 

for e, o in lst: 

if of.contains(o) and o != of: 

continue 

new_lst.append((e, o)) 

lst = new_lst 

return tuple(lst) 

 

def as_real_imag(self, deep=True, **hints): 

""" 

returns a tuple representing a complex number 

 

Examples 

======== 

 

>>> from sympy import I 

>>> (7 + 9*I).as_real_imag() 

(7, 9) 

>>> ((1 + I)/(1 - I)).as_real_imag() 

(0, 1) 

>>> ((1 + 2*I)*(1 + 3*I)).as_real_imag() 

(-5, 5) 

""" 

sargs, terms = self.args, [] 

re_part, im_part = [], [] 

for term in sargs: 

re, im = term.as_real_imag(deep=deep) 

re_part.append(re) 

im_part.append(im) 

return (self.func(*re_part), self.func(*im_part)) 

 

def _eval_as_leading_term(self, x): 

from sympy import expand_mul, factor_terms 

 

old = self 

 

expr = expand_mul(self) 

if not expr.is_Add: 

return expr.as_leading_term(x) 

 

infinite = [t for t in expr.args if t.is_infinite] 

 

expr = expr.func(*[t.as_leading_term(x) for t in expr.args]).removeO() 

if not expr: 

# simple leading term analysis gave us 0 but we have to send 

# back a term, so compute the leading term (via series) 

return old.compute_leading_term(x) 

elif expr is S.NaN: 

return old.func._from_args(infinite) 

elif not expr.is_Add: 

return expr 

else: 

plain = expr.func(*[s for s, _ in expr.extract_leading_order(x)]) 

rv = factor_terms(plain, fraction=False) 

rv_simplify = rv.simplify() 

# if it simplifies to an x-free expression, return that; 

# tests don't fail if we don't but it seems nicer to do this 

if x not in rv_simplify.free_symbols: 

if rv_simplify.is_zero and plain.is_zero is not True: 

return (expr - plain)._eval_as_leading_term(x) 

return rv_simplify 

return rv 

 

def _eval_adjoint(self): 

return self.func(*[t.adjoint() for t in self.args]) 

 

def _eval_conjugate(self): 

return self.func(*[t.conjugate() for t in self.args]) 

 

def _eval_transpose(self): 

return self.func(*[t.transpose() for t in self.args]) 

 

def __neg__(self): 

return self.func(*[-t for t in self.args]) 

 

def _sage_(self): 

s = 0 

for x in self.args: 

s += x._sage_() 

return s 

 

def primitive(self): 

""" 

Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```. 

 

``R`` is collected only from the leading coefficient of each term. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y 

 

>>> (2*x + 4*y).primitive() 

(2, x + 2*y) 

 

>>> (2*x/3 + 4*y/9).primitive() 

(2/9, 3*x + 2*y) 

 

>>> (2*x/3 + 4.2*y).primitive() 

(1/3, 2*x + 12.6*y) 

 

No subprocessing of term factors is performed: 

 

>>> ((2 + 2*x)*x + 2).primitive() 

(1, x*(2*x + 2) + 2) 

 

Recursive subprocessing can be done with the as_content_primitive() 

method: 

 

>>> ((2 + 2*x)*x + 2).as_content_primitive() 

(2, x*(x + 1) + 1) 

 

See also: primitive() function in polytools.py 

 

""" 

 

terms = [] 

inf = False 

for a in self.args: 

c, m = a.as_coeff_Mul() 

if not c.is_Rational: 

c = S.One 

m = a 

inf = inf or m is S.ComplexInfinity 

terms.append((c.p, c.q, m)) 

 

if not inf: 

ngcd = reduce(igcd, [t[0] for t in terms], 0) 

dlcm = reduce(ilcm, [t[1] for t in terms], 1) 

else: 

ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0) 

dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1) 

 

if ngcd == dlcm == 1: 

return S.One, self 

if not inf: 

for i, (p, q, term) in enumerate(terms): 

terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) 

else: 

for i, (p, q, term) in enumerate(terms): 

if q: 

terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) 

else: 

terms[i] = _keep_coeff(Rational(p, q), term) 

 

# we don't need a complete re-flattening since no new terms will join 

# so we just use the same sort as is used in Add.flatten. When the 

# coefficient changes, the ordering of terms may change, e.g. 

# (3*x, 6*y) -> (2*y, x) 

# 

# We do need to make sure that term[0] stays in position 0, however. 

# 

if terms[0].is_Number or terms[0] is S.ComplexInfinity: 

c = terms.pop(0) 

else: 

c = None 

_addsort(terms) 

if c: 

terms.insert(0, c) 

return Rational(ngcd, dlcm), self._new_rawargs(*terms) 

 

def as_content_primitive(self, radical=False, clear=True): 

"""Return the tuple (R, self/R) where R is the positive Rational 

extracted from self. If radical is True (default is False) then 

common radicals will be removed and included as a factor of the 

primitive expression. 

 

Examples 

======== 

 

>>> from sympy import sqrt 

>>> (3 + 3*sqrt(2)).as_content_primitive() 

(3, 1 + sqrt(2)) 

 

Radical content can also be factored out of the primitive: 

 

>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) 

(2, sqrt(2)*(1 + 2*sqrt(5))) 

 

See docstring of Expr.as_content_primitive for more examples. 

""" 

con, prim = self.func(*[_keep_coeff(*a.as_content_primitive( 

radical=radical, clear=clear)) for a in self.args]).primitive() 

if not clear and not con.is_Integer and prim.is_Add: 

con, d = con.as_numer_denom() 

_p = prim/d 

if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args): 

prim = _p 

else: 

con /= d 

if radical and prim.is_Add: 

# look for common radicals that can be removed 

args = prim.args 

rads = [] 

common_q = None 

for m in args: 

term_rads = defaultdict(list) 

for ai in Mul.make_args(m): 

if ai.is_Pow: 

b, e = ai.as_base_exp() 

if e.is_Rational and b.is_Integer: 

term_rads[e.q].append(abs(int(b))**e.p) 

if not term_rads: 

break 

if common_q is None: 

common_q = set(term_rads.keys()) 

else: 

common_q = common_q & set(term_rads.keys()) 

if not common_q: 

break 

rads.append(term_rads) 

else: 

# process rads 

# keep only those in common_q 

for r in rads: 

for q in list(r.keys()): 

if q not in common_q: 

r.pop(q) 

for q in r: 

r[q] = prod(r[q]) 

# find the gcd of bases for each q 

G = [] 

for q in common_q: 

g = reduce(igcd, [r[q] for r in rads], 0) 

if g != 1: 

G.append(g**Rational(1, q)) 

if G: 

G = Mul(*G) 

args = [ai/G for ai in args] 

prim = G*prim.func(*args) 

 

return con, prim 

 

@property 

def _sorted_args(self): 

from sympy.core.compatibility import default_sort_key 

return tuple(sorted(self.args, key=lambda w: default_sort_key(w))) 

 

def _eval_difference_delta(self, n, step): 

from sympy.series.limitseq import difference_delta as dd 

return self.func(*[dd(a, n, step) for a in self.args]) 

 

from .mul import Mul, _keep_coeff, prod 

from sympy.core.numbers import Rational