Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

""" 

Adaptive numerical evaluation of SymPy expressions, using mpmath 

for mathematical functions. 

""" 

from __future__ import print_function, division 

 

import math 

 

import mpmath.libmp as libmp 

from mpmath import ( 

make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec) 

from mpmath import inf as mpmath_inf 

from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf, 

fnan, fnone, fone, fzero, mpf_abs, mpf_add, 

mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt, 

mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin, 

mpf_sqrt, normalize, round_nearest, to_int, to_str) 

from mpmath.libmp import bitcount as mpmath_bitcount 

from mpmath.libmp.backend import MPZ 

from mpmath.libmp.libmpc import _infs_nan 

from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps 

from mpmath.libmp.gammazeta import mpf_bernoulli 

 

from .compatibility import SYMPY_INTS, range 

from .sympify import sympify 

from .singleton import S 

 

from sympy.utilities.iterables import is_sequence 

 

LG10 = math.log(10, 2) 

rnd = round_nearest 

 

 

def bitcount(n): 

return mpmath_bitcount(int(n)) 

 

# Used in a few places as placeholder values to denote exponents and 

# precision levels, e.g. of exact numbers. Must be careful to avoid 

# passing these to mpmath functions or returning them in final results. 

INF = float(mpmath_inf) 

MINUS_INF = float(-mpmath_inf) 

 

# ~= 100 digits. Real men set this to INF. 

DEFAULT_MAXPREC = 333 

 

 

class PrecisionExhausted(ArithmeticError): 

pass 

 

#----------------------------------------------------------------------------# 

# # 

# Helper functions for arithmetic and complex parts # 

# # 

#----------------------------------------------------------------------------# 

 

""" 

An mpf value tuple is a tuple of integers (sign, man, exp, bc) 

representing a floating-point number: [1, -1][sign]*man*2**exp where 

sign is 0 or 1 and bc should correspond to the number of bits used to 

represent the mantissa (man) in binary notation, e.g. 

 

>>> from sympy.core.evalf import bitcount 

>>> sign, man, exp, bc = 0, 5, 1, 3 

>>> n = [1, -1][sign]*man*2**exp 

>>> n, bitcount(man) 

(10, 3) 

 

A temporary result is a tuple (re, im, re_acc, im_acc) where 

re and im are nonzero mpf value tuples representing approximate 

numbers, or None to denote exact zeros. 

 

re_acc, im_acc are integers denoting log2(e) where e is the estimated 

relative accuracy of the respective complex part, but may be anything 

if the corresponding complex part is None. 

 

""" 

 

 

def fastlog(x): 

"""Fast approximation of log2(x) for an mpf value tuple x. 

 

Notes: Calculated as exponent + width of mantissa. This is an 

approximation for two reasons: 1) it gives the ceil(log2(abs(x))) 

value and 2) it is too high by 1 in the case that x is an exact 

power of 2. Although this is easy to remedy by testing to see if 

the odd mpf mantissa is 1 (indicating that one was dealing with 

an exact power of 2) that would decrease the speed and is not 

necessary as this is only being used as an approximation for the 

number of bits in x. The correct return value could be written as 

"x[2] + (x[3] if x[1] != 1 else 0)". 

Since mpf tuples always have an odd mantissa, no check is done 

to see if the mantissa is a multiple of 2 (in which case the 

result would be too large by 1). 

 

Examples 

======== 

 

>>> from sympy import log 

>>> from sympy.core.evalf import fastlog, bitcount 

>>> s, m, e = 0, 5, 1 

>>> bc = bitcount(m) 

>>> n = [1, -1][s]*m*2**e 

>>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc)) 

(10, 3.3, 4) 

""" 

 

if not x or x == fzero: 

return MINUS_INF 

return x[2] + x[3] 

 

 

def pure_complex(v, or_real=False): 

"""Return a and b if v matches a + I*b where b is not zero and 

a and b are Numbers, else None. If `or_real` is True then 0 will 

be returned for `b` if `v` is a real number. 

 

>>> from sympy.core.evalf import pure_complex 

>>> from sympy import sqrt, I, S 

>>> a, b, surd = S(2), S(3), sqrt(2) 

>>> pure_complex(a) 

>>> pure_complex(a, or_real=True) 

(2, 0) 

>>> pure_complex(surd) 

>>> pure_complex(a + b*I) 

(2, 3) 

>>> pure_complex(I) 

(0, 1) 

""" 

h, t = v.as_coeff_Add() 

if not t: 

if or_real: 

return h, t 

return 

c, i = t.as_coeff_Mul() 

if i is S.ImaginaryUnit: 

return h, c 

 

 

def scaled_zero(mag, sign=1): 

"""Return an mpf representing a power of two with magnitude ``mag`` 

and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just 

remove the sign from within the list that it was initially wrapped 

in. 

 

Examples 

======== 

 

>>> from sympy.core.evalf import scaled_zero 

>>> from sympy import Float 

>>> z, p = scaled_zero(100) 

>>> z, p 

(([0], 1, 100, 1), -1) 

>>> ok = scaled_zero(z) 

>>> ok 

(0, 1, 100, 1) 

>>> Float(ok) 

1.26765060022823e+30 

>>> Float(ok, p) 

0.e+30 

>>> ok, p = scaled_zero(100, -1) 

>>> Float(scaled_zero(ok), p) 

-0.e+30 

""" 

if type(mag) is tuple and len(mag) == 4 and iszero(mag, scaled=True): 

return (mag[0][0],) + mag[1:] 

elif isinstance(mag, SYMPY_INTS): 

if sign not in [-1, 1]: 

raise ValueError('sign must be +/-1') 

rv, p = mpf_shift(fone, mag), -1 

s = 0 if sign == 1 else 1 

rv = ([s],) + rv[1:] 

return rv, p 

else: 

raise ValueError('scaled zero expects int or scaled_zero tuple.') 

 

 

def iszero(mpf, scaled=False): 

if not scaled: 

return not mpf or not mpf[1] and not mpf[-1] 

return mpf and type(mpf[0]) is list and mpf[1] == mpf[-1] == 1 

 

 

def complex_accuracy(result): 

""" 

Returns relative accuracy of a complex number with given accuracies 

for the real and imaginary parts. The relative accuracy is defined 

in the complex norm sense as ||z|+|error|| / |z| where error 

is equal to (real absolute error) + (imag absolute error)*i. 

 

The full expression for the (logarithmic) error can be approximated 

easily by using the max norm to approximate the complex norm. 

 

In the worst case (re and im equal), this is wrong by a factor 

sqrt(2), or by log2(sqrt(2)) = 0.5 bit. 

""" 

re, im, re_acc, im_acc = result 

if not im: 

if not re: 

return INF 

return re_acc 

if not re: 

return im_acc 

re_size = fastlog(re) 

im_size = fastlog(im) 

absolute_error = max(re_size - re_acc, im_size - im_acc) 

relative_error = absolute_error - max(re_size, im_size) 

return -relative_error 

 

 

def get_abs(expr, prec, options): 

re, im, re_acc, im_acc = evalf(expr, prec + 2, options) 

if not re: 

re, re_acc, im, im_acc = im, im_acc, re, re_acc 

if im: 

return libmp.mpc_abs((re, im), prec), None, re_acc, None 

elif re: 

return mpf_abs(re), None, re_acc, None 

else: 

return None, None, None, None 

 

 

def get_complex_part(expr, no, prec, options): 

"""no = 0 for real part, no = 1 for imaginary part""" 

workprec = prec 

i = 0 

while 1: 

res = evalf(expr, workprec, options) 

value, accuracy = res[no::2] 

# XXX is the last one correct? Consider re((1+I)**2).n() 

if (not value) or accuracy >= prec or -value[2] > prec: 

return value, None, accuracy, None 

workprec += max(30, 2**i) 

i += 1 

 

 

def evalf_abs(expr, prec, options): 

return get_abs(expr.args[0], prec, options) 

 

 

def evalf_re(expr, prec, options): 

return get_complex_part(expr.args[0], 0, prec, options) 

 

 

def evalf_im(expr, prec, options): 

return get_complex_part(expr.args[0], 1, prec, options) 

 

 

def finalize_complex(re, im, prec): 

if re == fzero and im == fzero: 

raise ValueError("got complex zero with unknown accuracy") 

elif re == fzero: 

return None, im, None, prec 

elif im == fzero: 

return re, None, prec, None 

 

size_re = fastlog(re) 

size_im = fastlog(im) 

if size_re > size_im: 

re_acc = prec 

im_acc = prec + min(-(size_re - size_im), 0) 

else: 

im_acc = prec 

re_acc = prec + min(-(size_im - size_re), 0) 

return re, im, re_acc, im_acc 

 

 

def chop_parts(value, prec): 

""" 

Chop off tiny real or complex parts. 

""" 

re, im, re_acc, im_acc = value 

# Method 1: chop based on absolute value 

if re and re not in _infs_nan and (fastlog(re) < -prec + 4): 

re, re_acc = None, None 

if im and im not in _infs_nan and (fastlog(im) < -prec + 4): 

im, im_acc = None, None 

# Method 2: chop if inaccurate and relatively small 

if re and im: 

delta = fastlog(re) - fastlog(im) 

if re_acc < 2 and (delta - re_acc <= -prec + 4): 

re, re_acc = None, None 

if im_acc < 2 and (delta - im_acc >= prec - 4): 

im, im_acc = None, None 

return re, im, re_acc, im_acc 

 

 

def check_target(expr, result, prec): 

a = complex_accuracy(result) 

if a < prec: 

raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n" 

"from zero. Try simplifying the input, using chop=True, or providing " 

"a higher maxn for evalf" % (expr)) 

 

 

def get_integer_part(expr, no, options, return_ints=False): 

""" 

With no = 1, computes ceiling(expr) 

With no = -1, computes floor(expr) 

 

Note: this function either gives the exact result or signals failure. 

""" 

from sympy.functions.elementary.complexes import re, im 

# The expression is likely less than 2^30 or so 

assumed_size = 30 

ire, iim, ire_acc, iim_acc = evalf(expr, assumed_size, options) 

 

# We now know the size, so we can calculate how much extra precision 

# (if any) is needed to get within the nearest integer 

if ire and iim: 

gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc) 

elif ire: 

gap = fastlog(ire) - ire_acc 

elif iim: 

gap = fastlog(iim) - iim_acc 

else: 

# ... or maybe the expression was exactly zero 

return None, None, None, None 

 

margin = 10 

 

if gap >= -margin: 

ire, iim, ire_acc, iim_acc = \ 

evalf(expr, margin + assumed_size + gap, options) 

 

# We can now easily find the nearest integer, but to find floor/ceil, we 

# must also calculate whether the difference to the nearest integer is 

# positive or negative (which may fail if very close). 

def calc_part(expr, nexpr): 

from sympy.core.add import Add 

nint = int(to_int(nexpr, rnd)) 

n, c, p, b = nexpr 

is_int = (p == 0) 

if not is_int: 

# if there are subs and they all contain integer re/im parts 

# then we can (hopefully) safely substitute them into the 

# expression 

s = options.get('subs', False) 

if s: 

doit = True 

from sympy.core.compatibility import as_int 

for v in s.values(): 

try: 

as_int(v) 

except ValueError: 

try: 

[as_int(i) for i in v.as_real_imag()] 

continue 

except (ValueError, AttributeError): 

doit = False 

break 

if doit: 

expr = expr.subs(s) 

 

expr = Add(expr, -nint, evaluate=False) 

x, _, x_acc, _ = evalf(expr, 10, options) 

try: 

check_target(expr, (x, None, x_acc, None), 3) 

except PrecisionExhausted: 

if not expr.equals(0): 

raise PrecisionExhausted 

x = fzero 

nint += int(no*(mpf_cmp(x or fzero, fzero) == no)) 

nint = from_int(nint) 

return nint, fastlog(nint) + 10 

 

re_, im_, re_acc, im_acc = None, None, None, None 

 

if ire: 

re_, re_acc = calc_part(re(expr, evaluate=False), ire) 

if iim: 

im_, im_acc = calc_part(im(expr, evaluate=False), iim) 

 

if return_ints: 

return int(to_int(re_ or fzero)), int(to_int(im_ or fzero)) 

return re_, im_, re_acc, im_acc 

 

 

def evalf_ceiling(expr, prec, options): 

return get_integer_part(expr.args[0], 1, options) 

 

 

def evalf_floor(expr, prec, options): 

return get_integer_part(expr.args[0], -1, options) 

 

#----------------------------------------------------------------------------# 

# # 

# Arithmetic operations # 

# # 

#----------------------------------------------------------------------------# 

 

 

def add_terms(terms, prec, target_prec): 

""" 

Helper for evalf_add. Adds a list of (mpfval, accuracy) terms. 

 

Returns 

------- 

 

- None, None if there are no non-zero terms; 

- terms[0] if there is only 1 term; 

- scaled_zero if the sum of the terms produces a zero by cancellation 

e.g. mpfs representing 1 and -1 would produce a scaled zero which need 

special handling since they are not actually zero and they are purposely 

malformed to ensure that they can't be used in anything but accuracy 

calculations; 

- a tuple that is scaled to target_prec that corresponds to the 

sum of the terms. 

 

The returned mpf tuple will be normalized to target_prec; the input 

prec is used to define the working precision. 

 

XXX explain why this is needed and why one can't just loop using mpf_add 

""" 

 

terms = [t for t in terms if not iszero(t)] 

if not terms: 

return None, None 

elif len(terms) == 1: 

return terms[0] 

 

# see if any argument is NaN or oo and thus warrants a special return 

special = [] 

from sympy.core.numbers import Float 

for t in terms: 

arg = Float._new(t[0], 1) 

if arg is S.NaN or arg.is_infinite: 

special.append(arg) 

if special: 

from sympy.core.add import Add 

rv = evalf(Add(*special), prec + 4, {}) 

return rv[0], rv[2] 

 

working_prec = 2*prec 

sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF 

 

for x, accuracy in terms: 

sign, man, exp, bc = x 

if sign: 

man = -man 

absolute_error = max(absolute_error, bc + exp - accuracy) 

delta = exp - sum_exp 

if exp >= sum_exp: 

# x much larger than existing sum? 

# first: quick test 

if ((delta > working_prec) and 

((not sum_man) or 

delta - bitcount(abs(sum_man)) > working_prec)): 

sum_man = man 

sum_exp = exp 

else: 

sum_man += (man << delta) 

else: 

delta = -delta 

# x much smaller than existing sum? 

if delta - bc > working_prec: 

if not sum_man: 

sum_man, sum_exp = man, exp 

else: 

sum_man = (sum_man << delta) + man 

sum_exp = exp 

if not sum_man: 

return scaled_zero(absolute_error) 

if sum_man < 0: 

sum_sign = 1 

sum_man = -sum_man 

else: 

sum_sign = 0 

sum_bc = bitcount(sum_man) 

sum_accuracy = sum_exp + sum_bc - absolute_error 

r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec, 

rnd), sum_accuracy 

return r 

 

 

def evalf_add(v, prec, options): 

res = pure_complex(v) 

if res: 

h, c = res 

re, _, re_acc, _ = evalf(h, prec, options) 

im, _, im_acc, _ = evalf(c, prec, options) 

return re, im, re_acc, im_acc 

 

oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) 

 

i = 0 

target_prec = prec 

while 1: 

options['maxprec'] = min(oldmaxprec, 2*prec) 

 

terms = [evalf(arg, prec + 10, options) for arg in v.args] 

re, re_acc = add_terms( 

[a[0::2] for a in terms if a[0]], prec, target_prec) 

im, im_acc = add_terms( 

[a[1::2] for a in terms if a[1]], prec, target_prec) 

acc = complex_accuracy((re, im, re_acc, im_acc)) 

if acc >= target_prec: 

if options.get('verbose'): 

print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc) 

break 

else: 

if (prec - target_prec) > options['maxprec']: 

break 

 

prec = prec + max(10 + 2**i, target_prec - acc) 

i += 1 

if options.get('verbose'): 

print("ADD: restarting with prec", prec) 

 

options['maxprec'] = oldmaxprec 

if iszero(re, scaled=True): 

re = scaled_zero(re) 

if iszero(im, scaled=True): 

im = scaled_zero(im) 

return re, im, re_acc, im_acc 

 

 

def evalf_mul(v, prec, options): 

res = pure_complex(v) 

if res: 

# the only pure complex that is a mul is h*I 

_, h = res 

im, _, im_acc, _ = evalf(h, prec, options) 

return None, im, None, im_acc 

args = list(v.args) 

 

# see if any argument is NaN or oo and thus warrants a special return 

special = [] 

from sympy.core.numbers import Float 

for arg in args: 

arg = evalf(arg, prec, options) 

if arg[0] is None: 

continue 

arg = Float._new(arg[0], 1) 

if arg is S.NaN or arg.is_infinite: 

special.append(arg) 

if special: 

from sympy.core.mul import Mul 

special = Mul(*special) 

return evalf(special, prec + 4, {}) 

 

# With guard digits, multiplication in the real case does not destroy 

# accuracy. This is also true in the complex case when considering the 

# total accuracy; however accuracy for the real or imaginary parts 

# separately may be lower. 

acc = prec 

 

# XXX: big overestimate 

working_prec = prec + len(args) + 5 

 

# Empty product is 1 

start = man, exp, bc = MPZ(1), 0, 1 

 

# First, we multiply all pure real or pure imaginary numbers. 

# direction tells us that the result should be multiplied by 

# I**direction; all other numbers get put into complex_factors 

# to be multiplied out after the first phase. 

last = len(args) 

direction = 0 

args.append(S.One) 

complex_factors = [] 

 

for i, arg in enumerate(args): 

if i != last and pure_complex(arg): 

args[-1] = (args[-1]*arg).expand() 

continue 

elif i == last and arg is S.One: 

continue 

re, im, re_acc, im_acc = evalf(arg, working_prec, options) 

if re and im: 

complex_factors.append((re, im, re_acc, im_acc)) 

continue 

elif re: 

(s, m, e, b), w_acc = re, re_acc 

elif im: 

(s, m, e, b), w_acc = im, im_acc 

direction += 1 

else: 

return None, None, None, None 

direction += 2*s 

man *= m 

exp += e 

bc += b 

if bc > 3*working_prec: 

man >>= working_prec 

exp += working_prec 

acc = min(acc, w_acc) 

sign = (direction & 2) >> 1 

if not complex_factors: 

v = normalize(sign, man, exp, bitcount(man), prec, rnd) 

# multiply by i 

if direction & 1: 

return None, v, None, acc 

else: 

return v, None, acc, None 

else: 

# initialize with the first term 

if (man, exp, bc) != start: 

# there was a real part; give it an imaginary part 

re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0) 

i0 = 0 

else: 

# there is no real part to start (other than the starting 1) 

wre, wim, wre_acc, wim_acc = complex_factors[0] 

acc = min(acc, 

complex_accuracy((wre, wim, wre_acc, wim_acc))) 

re = wre 

im = wim 

i0 = 1 

 

for wre, wim, wre_acc, wim_acc in complex_factors[i0:]: 

# acc is the overall accuracy of the product; we aren't 

# computing exact accuracies of the product. 

acc = min(acc, 

complex_accuracy((wre, wim, wre_acc, wim_acc))) 

 

use_prec = working_prec 

A = mpf_mul(re, wre, use_prec) 

B = mpf_mul(mpf_neg(im), wim, use_prec) 

C = mpf_mul(re, wim, use_prec) 

D = mpf_mul(im, wre, use_prec) 

re = mpf_add(A, B, use_prec) 

im = mpf_add(C, D, use_prec) 

if options.get('verbose'): 

print("MUL: wanted", prec, "accurate bits, got", acc) 

# multiply by I 

if direction & 1: 

re, im = mpf_neg(im), re 

return re, im, acc, acc 

 

 

def evalf_pow(v, prec, options): 

 

target_prec = prec 

base, exp = v.args 

 

# We handle x**n separately. This has two purposes: 1) it is much 

# faster, because we avoid calling evalf on the exponent, and 2) it 

# allows better handling of real/imaginary parts that are exactly zero 

if exp.is_Integer: 

p = exp.p 

# Exact 

if not p: 

return fone, None, prec, None 

# Exponentiation by p magnifies relative error by |p|, so the 

# base must be evaluated with increased precision if p is large 

prec += int(math.log(abs(p), 2)) 

re, im, re_acc, im_acc = evalf(base, prec + 5, options) 

# Real to integer power 

if re and not im: 

return mpf_pow_int(re, p, target_prec), None, target_prec, None 

# (x*I)**n = I**n * x**n 

if im and not re: 

z = mpf_pow_int(im, p, target_prec) 

case = p % 4 

if case == 0: 

return z, None, target_prec, None 

if case == 1: 

return None, z, None, target_prec 

if case == 2: 

return mpf_neg(z), None, target_prec, None 

if case == 3: 

return None, mpf_neg(z), None, target_prec 

# Zero raised to an integer power 

if not re: 

return None, None, None, None 

# General complex number to arbitrary integer power 

re, im = libmp.mpc_pow_int((re, im), p, prec) 

# Assumes full accuracy in input 

return finalize_complex(re, im, target_prec) 

 

# Pure square root 

if exp is S.Half: 

xre, xim, _, _ = evalf(base, prec + 5, options) 

# General complex square root 

if xim: 

re, im = libmp.mpc_sqrt((xre or fzero, xim), prec) 

return finalize_complex(re, im, prec) 

if not xre: 

return None, None, None, None 

# Square root of a negative real number 

if mpf_lt(xre, fzero): 

return None, mpf_sqrt(mpf_neg(xre), prec), None, prec 

# Positive square root 

return mpf_sqrt(xre, prec), None, prec, None 

 

# We first evaluate the exponent to find its magnitude 

# This determines the working precision that must be used 

prec += 10 

yre, yim, _, _ = evalf(exp, prec, options) 

# Special cases: x**0 

if not (yre or yim): 

return fone, None, prec, None 

 

ysize = fastlog(yre) 

# Restart if too big 

# XXX: prec + ysize might exceed maxprec 

if ysize > 5: 

prec += ysize 

yre, yim, _, _ = evalf(exp, prec, options) 

 

# Pure exponential function; no need to evalf the base 

if base is S.Exp1: 

if yim: 

re, im = libmp.mpc_exp((yre or fzero, yim), prec) 

return finalize_complex(re, im, target_prec) 

return mpf_exp(yre, target_prec), None, target_prec, None 

 

xre, xim, _, _ = evalf(base, prec + 5, options) 

# 0**y 

if not (xre or xim): 

return None, None, None, None 

 

# (real ** complex) or (complex ** complex) 

if yim: 

re, im = libmp.mpc_pow( 

(xre or fzero, xim or fzero), (yre or fzero, yim), 

target_prec) 

return finalize_complex(re, im, target_prec) 

# complex ** real 

if xim: 

re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec) 

return finalize_complex(re, im, target_prec) 

# negative ** real 

elif mpf_lt(xre, fzero): 

re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec) 

return finalize_complex(re, im, target_prec) 

# positive ** real 

else: 

return mpf_pow(xre, yre, target_prec), None, target_prec, None 

 

 

#----------------------------------------------------------------------------# 

# # 

# Special functions # 

# # 

#----------------------------------------------------------------------------# 

def evalf_trig(v, prec, options): 

""" 

This function handles sin and cos of complex arguments. 

 

TODO: should also handle tan of complex arguments. 

""" 

from sympy import cos, sin 

if v.func is cos: 

func = mpf_cos 

elif v.func is sin: 

func = mpf_sin 

else: 

raise NotImplementedError 

arg = v.args[0] 

# 20 extra bits is possibly overkill. It does make the need 

# to restart very unlikely 

xprec = prec + 20 

re, im, re_acc, im_acc = evalf(arg, xprec, options) 

if im: 

if 'subs' in options: 

v = v.subs(options['subs']) 

return evalf(v._eval_evalf(prec), prec, options) 

if not re: 

if v.func is cos: 

return fone, None, prec, None 

elif v.func is sin: 

return None, None, None, None 

else: 

raise NotImplementedError 

# For trigonometric functions, we are interested in the 

# fixed-point (absolute) accuracy of the argument. 

xsize = fastlog(re) 

# Magnitude <= 1.0. OK to compute directly, because there is no 

# danger of hitting the first root of cos (with sin, magnitude 

# <= 2.0 would actually be ok) 

if xsize < 1: 

return func(re, prec, rnd), None, prec, None 

# Very large 

if xsize >= 10: 

xprec = prec + xsize 

re, im, re_acc, im_acc = evalf(arg, xprec, options) 

# Need to repeat in case the argument is very close to a 

# multiple of pi (or pi/2), hitting close to a root 

while 1: 

y = func(re, prec, rnd) 

ysize = fastlog(y) 

gap = -ysize 

accuracy = (xprec - xsize) - gap 

if accuracy < prec: 

if options.get('verbose'): 

print("SIN/COS", accuracy, "wanted", prec, "gap", gap) 

print(to_str(y, 10)) 

if xprec > options.get('maxprec', DEFAULT_MAXPREC): 

return y, None, accuracy, None 

xprec += gap 

re, im, re_acc, im_acc = evalf(arg, xprec, options) 

continue 

else: 

return y, None, prec, None 

 

 

def evalf_log(expr, prec, options): 

from sympy import Abs, Add, log 

if len(expr.args)>1: 

expr = expr.doit() 

return evalf(expr, prec, options) 

arg = expr.args[0] 

workprec = prec + 10 

xre, xim, xacc, _ = evalf(arg, workprec, options) 

 

if xim: 

# XXX: use get_abs etc instead 

re = evalf_log( 

log(Abs(arg, evaluate=False), evaluate=False), prec, options) 

im = mpf_atan2(xim, xre or fzero, prec) 

return re[0], im, re[2], prec 

 

imaginary_term = (mpf_cmp(xre, fzero) < 0) 

 

re = mpf_log(mpf_abs(xre), prec, rnd) 

size = fastlog(re) 

if prec - size > workprec: 

# We actually need to compute 1+x accurately, not x 

arg = Add(S.NegativeOne, arg, evaluate=False) 

xre, xim, _, _ = evalf_add(arg, prec, options) 

prec2 = workprec - fastlog(xre) 

# xre is now x - 1 so we add 1 back here to calculate x 

re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd) 

 

re_acc = prec 

 

if imaginary_term: 

return re, mpf_pi(prec), re_acc, prec 

else: 

return re, None, re_acc, None 

 

 

def evalf_atan(v, prec, options): 

arg = v.args[0] 

xre, xim, reacc, imacc = evalf(arg, prec + 5, options) 

if xre is xim is None: 

return (None,)*4 

if xim: 

raise NotImplementedError 

return mpf_atan(xre, prec, rnd), None, prec, None 

 

 

def evalf_subs(prec, subs): 

""" Change all Float entries in `subs` to have precision prec. """ 

newsubs = {} 

for a, b in subs.items(): 

b = S(b) 

if b.is_Float: 

b = b._eval_evalf(prec) 

newsubs[a] = b 

return newsubs 

 

 

def evalf_piecewise(expr, prec, options): 

from sympy import Float, Integer 

if 'subs' in options: 

expr = expr.subs(evalf_subs(prec, options['subs'])) 

newopts = options.copy() 

del newopts['subs'] 

if hasattr(expr, 'func'): 

return evalf(expr, prec, newopts) 

if type(expr) == float: 

return evalf(Float(expr), prec, newopts) 

if type(expr) == int: 

return evalf(Integer(expr), prec, newopts) 

 

# We still have undefined symbols 

raise NotImplementedError 

 

 

def evalf_bernoulli(expr, prec, options): 

arg = expr.args[0] 

if not arg.is_Integer: 

raise ValueError("Bernoulli number index must be an integer") 

n = int(arg) 

b = mpf_bernoulli(n, prec, rnd) 

if b == fzero: 

return None, None, None, None 

return b, None, prec, None 

 

#----------------------------------------------------------------------------# 

# # 

# High-level operations # 

# # 

#----------------------------------------------------------------------------# 

 

 

def as_mpmath(x, prec, options): 

from sympy.core.numbers import Infinity, NegativeInfinity, Zero 

x = sympify(x) 

if isinstance(x, Zero) or x == 0: 

return mpf(0) 

if isinstance(x, Infinity): 

return mpf('inf') 

if isinstance(x, NegativeInfinity): 

return mpf('-inf') 

# XXX 

re, im, _, _ = evalf(x, prec, options) 

if im: 

return mpc(re or fzero, im) 

return mpf(re) 

 

 

def do_integral(expr, prec, options): 

func = expr.args[0] 

x, xlow, xhigh = expr.args[1] 

if xlow == xhigh: 

xlow = xhigh = 0 

elif x not in func.free_symbols: 

# only the difference in limits matters in this case 

# so if there is a symbol in common that will cancel 

# out when taking the difference, then use that 

# difference 

if xhigh.free_symbols & xlow.free_symbols: 

diff = xhigh - xlow 

if not diff.free_symbols: 

xlow, xhigh = 0, diff 

 

oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) 

options['maxprec'] = min(oldmaxprec, 2*prec) 

 

with workprec(prec + 5): 

xlow = as_mpmath(xlow, prec + 15, options) 

xhigh = as_mpmath(xhigh, prec + 15, options) 

 

# Integration is like summation, and we can phone home from 

# the integrand function to update accuracy summation style 

# Note that this accuracy is inaccurate, since it fails 

# to account for the variable quadrature weights, 

# but it is better than nothing 

 

from sympy import cos, sin, Wild 

 

have_part = [False, False] 

max_real_term = [MINUS_INF] 

max_imag_term = [MINUS_INF] 

 

def f(t): 

re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}}) 

 

have_part[0] = re or have_part[0] 

have_part[1] = im or have_part[1] 

 

max_real_term[0] = max(max_real_term[0], fastlog(re)) 

max_imag_term[0] = max(max_imag_term[0], fastlog(im)) 

 

if im: 

return mpc(re or fzero, im) 

return mpf(re or fzero) 

 

if options.get('quad') == 'osc': 

A = Wild('A', exclude=[x]) 

B = Wild('B', exclude=[x]) 

D = Wild('D') 

m = func.match(cos(A*x + B)*D) 

if not m: 

m = func.match(sin(A*x + B)*D) 

if not m: 

raise ValueError("An integrand of the form sin(A*x+B)*f(x) " 

"or cos(A*x+B)*f(x) is required for oscillatory quadrature") 

period = as_mpmath(2*S.Pi/m[A], prec + 15, options) 

result = quadosc(f, [xlow, xhigh], period=period) 

# XXX: quadosc does not do error detection yet 

quadrature_error = MINUS_INF 

else: 

result, quadrature_error = quadts(f, [xlow, xhigh], error=1) 

quadrature_error = fastlog(quadrature_error._mpf_) 

 

options['maxprec'] = oldmaxprec 

 

if have_part[0]: 

re = result.real._mpf_ 

if re == fzero: 

re, re_acc = scaled_zero( 

min(-prec, -max_real_term[0], -quadrature_error)) 

re = scaled_zero(re) # handled ok in evalf_integral 

else: 

re_acc = -max(max_real_term[0] - fastlog(re) - 

prec, quadrature_error) 

else: 

re, re_acc = None, None 

 

if have_part[1]: 

im = result.imag._mpf_ 

if im == fzero: 

im, im_acc = scaled_zero( 

min(-prec, -max_imag_term[0], -quadrature_error)) 

im = scaled_zero(im) # handled ok in evalf_integral 

else: 

im_acc = -max(max_imag_term[0] - fastlog(im) - 

prec, quadrature_error) 

else: 

im, im_acc = None, None 

 

result = re, im, re_acc, im_acc 

return result 

 

 

def evalf_integral(expr, prec, options): 

limits = expr.limits 

if len(limits) != 1 or len(limits[0]) != 3: 

raise NotImplementedError 

workprec = prec 

i = 0 

maxprec = options.get('maxprec', INF) 

while 1: 

result = do_integral(expr, workprec, options) 

accuracy = complex_accuracy(result) 

if accuracy >= prec: # achieved desired precision 

break 

if workprec >= maxprec: # can't increase accuracy any more 

break 

if accuracy == -1: 

# maybe the answer really is zero and maybe we just haven't increased 

# the precision enough. So increase by doubling to not take too long 

# to get to maxprec. 

workprec *= 2 

else: 

workprec += max(prec, 2**i) 

workprec = min(workprec, maxprec) 

i += 1 

return result 

 

 

def check_convergence(numer, denom, n): 

""" 

Returns (h, g, p) where 

-- h is: 

> 0 for convergence of rate 1/factorial(n)**h 

< 0 for divergence of rate factorial(n)**(-h) 

= 0 for geometric or polynomial convergence or divergence 

 

-- abs(g) is: 

> 1 for geometric convergence of rate 1/h**n 

< 1 for geometric divergence of rate h**n 

= 1 for polynomial convergence or divergence 

 

(g < 0 indicates an alternating series) 

 

-- p is: 

> 1 for polynomial convergence of rate 1/n**h 

<= 1 for polynomial divergence of rate n**(-h) 

 

""" 

from sympy import Poly 

npol = Poly(numer, n) 

dpol = Poly(denom, n) 

p = npol.degree() 

q = dpol.degree() 

rate = q - p 

if rate: 

return rate, None, None 

constant = dpol.LC() / npol.LC() 

if abs(constant) != 1: 

return rate, constant, None 

if npol.degree() == dpol.degree() == 0: 

return rate, constant, 0 

pc = npol.all_coeffs()[1] 

qc = dpol.all_coeffs()[1] 

return rate, constant, (qc - pc)/dpol.LC() 

 

 

def hypsum(expr, n, start, prec): 

""" 

Sum a rapidly convergent infinite hypergeometric series with 

given general term, e.g. e = hypsum(1/factorial(n), n). The 

quotient between successive terms must be a quotient of integer 

polynomials. 

""" 

from sympy import Float, hypersimp, lambdify 

 

if prec == float('inf'): 

raise NotImplementedError('does not support inf prec') 

 

if start: 

expr = expr.subs(n, n + start) 

hs = hypersimp(expr, n) 

if hs is None: 

raise NotImplementedError("a hypergeometric series is required") 

num, den = hs.as_numer_denom() 

 

func1 = lambdify(n, num) 

func2 = lambdify(n, den) 

 

h, g, p = check_convergence(num, den, n) 

 

if h < 0: 

raise ValueError("Sum diverges like (n!)^%i" % (-h)) 

 

term = expr.subs(n, 0) 

if not term.is_Rational: 

raise NotImplementedError("Non rational term functionality is not implemented.") 

 

# Direct summation if geometric or faster 

if h > 0 or (h == 0 and abs(g) > 1): 

term = (MPZ(term.p) << prec) // term.q 

s = term 

k = 1 

while abs(term) > 5: 

term *= MPZ(func1(k - 1)) 

term //= MPZ(func2(k - 1)) 

s += term 

k += 1 

return from_man_exp(s, -prec) 

else: 

alt = g < 0 

if abs(g) < 1: 

raise ValueError("Sum diverges like (%i)^n" % abs(1/g)) 

if p < 1 or (p == 1 and not alt): 

raise ValueError("Sum diverges like n^%i" % (-p)) 

# We have polynomial convergence: use Richardson extrapolation 

vold = None 

ndig = prec_to_dps(prec) 

while True: 

# Need to use at least quad precision because a lot of cancellation 

# might occur in the extrapolation process; we check the answer to 

# make sure that the desired precision has been reached, too. 

prec2 = 4*prec 

term0 = (MPZ(term.p) << prec2) // term.q 

 

def summand(k, _term=[term0]): 

if k: 

k = int(k) 

_term[0] *= MPZ(func1(k - 1)) 

_term[0] //= MPZ(func2(k - 1)) 

return make_mpf(from_man_exp(_term[0], -prec2)) 

 

with workprec(prec): 

v = nsum(summand, [0, mpmath_inf], method='richardson') 

vf = Float(v, ndig) 

if vold is not None and vold == vf: 

break 

prec += prec # double precision each time 

vold = vf 

 

return v._mpf_ 

 

 

def evalf_prod(expr, prec, options): 

from sympy import Sum 

if all((l[1] - l[2]).is_Integer for l in expr.limits): 

re, im, re_acc, im_acc = evalf(expr.doit(), prec=prec, options=options) 

else: 

re, im, re_acc, im_acc = evalf(expr.rewrite(Sum), prec=prec, options=options) 

return re, im, re_acc, im_acc 

 

 

def evalf_sum(expr, prec, options): 

from sympy import Float 

if 'subs' in options: 

expr = expr.subs(options['subs']) 

func = expr.function 

limits = expr.limits 

if len(limits) != 1 or len(limits[0]) != 3: 

raise NotImplementedError 

if func is S.Zero: 

return mpf(0), None, None, None 

prec2 = prec + 10 

try: 

n, a, b = limits[0] 

if b != S.Infinity or a != int(a): 

raise NotImplementedError 

# Use fast hypergeometric summation if possible 

v = hypsum(func, n, int(a), prec2) 

delta = prec - fastlog(v) 

if fastlog(v) < -10: 

v = hypsum(func, n, int(a), delta) 

return v, None, min(prec, delta), None 

except NotImplementedError: 

# Euler-Maclaurin summation for general series 

eps = Float(2.0)**(-prec) 

for i in range(1, 5): 

m = n = 2**i * prec 

s, err = expr.euler_maclaurin(m=m, n=n, eps=eps, 

eval_integral=False) 

err = err.evalf() 

if err <= eps: 

break 

err = fastlog(evalf(abs(err), 20, options)[0]) 

re, im, re_acc, im_acc = evalf(s, prec2, options) 

if re_acc is None: 

re_acc = -err 

if im_acc is None: 

im_acc = -err 

return re, im, re_acc, im_acc 

 

 

#----------------------------------------------------------------------------# 

# # 

# Symbolic interface # 

# # 

#----------------------------------------------------------------------------# 

 

def evalf_symbol(x, prec, options): 

val = options['subs'][x] 

if isinstance(val, mpf): 

if not val: 

return None, None, None, None 

return val._mpf_, None, prec, None 

else: 

if not '_cache' in options: 

options['_cache'] = {} 

cache = options['_cache'] 

cached, cached_prec = cache.get(x, (None, MINUS_INF)) 

if cached_prec >= prec: 

return cached 

v = evalf(sympify(val), prec, options) 

cache[x] = (v, prec) 

return v 

 

evalf_table = None 

 

 

def _create_evalf_table(): 

global evalf_table 

from sympy.functions.combinatorial.numbers import bernoulli 

from sympy.concrete.products import Product 

from sympy.concrete.summations import Sum 

from sympy.core.add import Add 

from sympy.core.mul import Mul 

from sympy.core.numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, Zero 

from sympy.core.power import Pow 

from sympy.core.symbol import Dummy, Symbol 

from sympy.functions.elementary.complexes import Abs, im, re 

from sympy.functions.elementary.exponential import exp, log 

from sympy.functions.elementary.integers import ceiling, floor 

from sympy.functions.elementary.piecewise import Piecewise 

from sympy.functions.elementary.trigonometric import atan, cos, sin 

from sympy.integrals.integrals import Integral 

evalf_table = { 

Symbol: evalf_symbol, 

Dummy: evalf_symbol, 

Float: lambda x, prec, options: (x._mpf_, None, prec, None), 

Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None), 

Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None), 

Zero: lambda x, prec, options: (None, None, prec, None), 

One: lambda x, prec, options: (fone, None, prec, None), 

Half: lambda x, prec, options: (fhalf, None, prec, None), 

Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None), 

Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None), 

ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec), 

NegativeOne: lambda x, prec, options: (fnone, None, prec, None), 

NaN: lambda x, prec, options: (fnan, None, prec, None), 

 

exp: lambda x, prec, options: evalf_pow( 

Pow(S.Exp1, x.args[0], evaluate=False), prec, options), 

 

cos: evalf_trig, 

sin: evalf_trig, 

 

Add: evalf_add, 

Mul: evalf_mul, 

Pow: evalf_pow, 

 

log: evalf_log, 

atan: evalf_atan, 

Abs: evalf_abs, 

 

re: evalf_re, 

im: evalf_im, 

floor: evalf_floor, 

ceiling: evalf_ceiling, 

 

Integral: evalf_integral, 

Sum: evalf_sum, 

Product: evalf_prod, 

Piecewise: evalf_piecewise, 

 

bernoulli: evalf_bernoulli, 

} 

 

 

def evalf(x, prec, options): 

from sympy import re as re_, im as im_ 

try: 

rf = evalf_table[x.func] 

r = rf(x, prec, options) 

except KeyError: 

try: 

# Fall back to ordinary evalf if possible 

if 'subs' in options: 

x = x.subs(evalf_subs(prec, options['subs'])) 

xe = x._eval_evalf(prec) 

re, im = xe.as_real_imag() 

if re.has(re_) or im.has(im_): 

raise NotImplementedError 

if re == 0: 

re = None 

reprec = None 

elif re.is_number: 

re = re._to_mpmath(prec, allow_ints=False)._mpf_ 

reprec = prec 

if im == 0: 

im = None 

imprec = None 

elif im.is_number: 

im = im._to_mpmath(prec, allow_ints=False)._mpf_ 

imprec = prec 

r = re, im, reprec, imprec 

except AttributeError: 

raise NotImplementedError 

if options.get("verbose"): 

print("### input", x) 

print("### output", to_str(r[0] or fzero, 50)) 

print("### raw", r) # r[0], r[2] 

print() 

chop = options.get('chop', False) 

if chop: 

if chop is True: 

chop_prec = prec 

else: 

# convert (approximately) from given tolerance; 

# the formula here will will make 1e-i rounds to 0 for 

# i in the range +/-27 while 2e-i will not be chopped 

chop_prec = int(round(-3.321*math.log10(chop) + 2.5)) 

if chop_prec == 3: 

chop_prec -= 1 

r = chop_parts(r, chop_prec) 

if options.get("strict"): 

check_target(x, r, prec) 

return r 

 

 

class EvalfMixin(object): 

"""Mixin class adding evalf capabililty.""" 

 

__slots__ = [] 

 

def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): 

""" 

Evaluate the given formula to an accuracy of n digits. 

Optional keyword arguments: 

 

subs=<dict> 

Substitute numerical values for symbols, e.g. 

subs={x:3, y:1+pi}. The substitutions must be given as a 

dictionary. 

 

maxn=<integer> 

Allow a maximum temporary working precision of maxn digits 

(default=100) 

 

chop=<bool> 

Replace tiny real or imaginary parts in subresults 

by exact zeros (default=False) 

 

strict=<bool> 

Raise PrecisionExhausted if any subresult fails to evaluate 

to full accuracy, given the available maxprec 

(default=False) 

 

quad=<str> 

Choose algorithm for numerical quadrature. By default, 

tanh-sinh quadrature is used. For oscillatory 

integrals on an infinite interval, try quad='osc'. 

 

verbose=<bool> 

Print debug information (default=False) 

 

""" 

from sympy import Float, Number 

n = n if n is not None else 15 

 

if subs and is_sequence(subs): 

raise TypeError('subs must be given as a dictionary') 

 

# for sake of sage that doesn't like evalf(1) 

if n == 1 and isinstance(self, Number): 

from sympy.core.expr import _mag 

rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose) 

m = _mag(rv) 

rv = rv.round(1 - m) 

return rv 

 

if not evalf_table: 

_create_evalf_table() 

prec = dps_to_prec(n) 

options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop, 

'strict': strict, 'verbose': verbose} 

if subs is not None: 

options['subs'] = subs 

if quad is not None: 

options['quad'] = quad 

try: 

result = evalf(self, prec + 4, options) 

except NotImplementedError: 

# Fall back to the ordinary evalf 

v = self._eval_evalf(prec) 

if v is None: 

return self 

try: 

# If the result is numerical, normalize it 

result = evalf(v, prec, options) 

except NotImplementedError: 

# Probably contains symbols or unknown functions 

return v 

re, im, re_acc, im_acc = result 

if re: 

p = max(min(prec, re_acc), 1) 

re = Float._new(re, p) 

else: 

re = S.Zero 

if im: 

p = max(min(prec, im_acc), 1) 

im = Float._new(im, p) 

return re + im*S.ImaginaryUnit 

else: 

return re 

 

n = evalf 

 

def _evalf(self, prec): 

"""Helper for evalf. Does the same thing but takes binary precision""" 

r = self._eval_evalf(prec) 

if r is None: 

r = self 

return r 

 

def _eval_evalf(self, prec): 

return 

 

def _to_mpmath(self, prec, allow_ints=True): 

# mpmath functions accept ints as input 

errmsg = "cannot convert to mpmath number" 

if allow_ints and self.is_Integer: 

return self.p 

if hasattr(self, '_as_mpf_val'): 

return make_mpf(self._as_mpf_val(prec)) 

try: 

re, im, _, _ = evalf(self, prec, {}) 

if im: 

if not re: 

re = fzero 

return make_mpc((re, im)) 

elif re: 

return make_mpf(re) 

else: 

return make_mpf(fzero) 

except NotImplementedError: 

v = self._eval_evalf(prec) 

if v is None: 

raise ValueError(errmsg) 

if v.is_Float: 

return make_mpf(v._mpf_) 

# Number + Number*I is also fine 

re, im = v.as_real_imag() 

if allow_ints and re.is_Integer: 

re = from_int(re.p) 

elif re.is_Float: 

re = re._mpf_ 

else: 

raise ValueError(errmsg) 

if allow_ints and im.is_Integer: 

im = from_int(im.p) 

elif im.is_Float: 

im = im._mpf_ 

else: 

raise ValueError(errmsg) 

return make_mpc((re, im)) 

 

 

def N(x, n=15, **options): 

""" 

Calls x.evalf(n, \*\*options). 

 

Both .n() and N() are equivalent to .evalf(); use the one that you like better. 

See also the docstring of .evalf() for information on the options. 

 

Examples 

======== 

 

>>> from sympy import Sum, oo, N 

>>> from sympy.abc import k 

>>> Sum(1/k**k, (k, 1, oo)) 

Sum(k**(-k), (k, 1, oo)) 

>>> N(_, 4) 

1.291 

 

""" 

return sympify(x).evalf(n, **options)