Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

from __future__ import print_function, division 

 

from .sympify import sympify, _sympify, SympifyError 

from .basic import Basic, Atom 

from .singleton import S 

from .evalf import EvalfMixin, pure_complex 

from .decorators import _sympifyit, call_highest_priority 

from .cache import cacheit 

from .compatibility import reduce, as_int, default_sort_key, range 

from mpmath.libmp import mpf_log, prec_to_dps 

 

from collections import defaultdict 

 

 

class Expr(Basic, EvalfMixin): 

""" 

Base class for algebraic expressions. 

 

Everything that requires arithmetic operations to be defined 

should subclass this class, instead of Basic (which should be 

used only for argument storage and expression manipulation, i.e. 

pattern matching, substitutions, etc). 

 

See Also 

======== 

 

sympy.core.basic.Basic 

""" 

 

__slots__ = [] 

 

@property 

def _diff_wrt(self): 

"""Is it allowed to take derivative wrt to this instance. 

 

This determines if it is allowed to take derivatives wrt this object. 

Subclasses such as Symbol, Function and Derivative should return True 

to enable derivatives wrt them. The implementation in Derivative 

separates the Symbol and non-Symbol _diff_wrt=True variables and 

temporarily converts the non-Symbol vars in Symbols when performing 

the differentiation. 

 

Note, see the docstring of Derivative for how this should work 

mathematically. In particular, note that expr.subs(yourclass, Symbol) 

should be well-defined on a structural level, or this will lead to 

inconsistent results. 

 

Examples 

======== 

 

>>> from sympy import Expr 

>>> e = Expr() 

>>> e._diff_wrt 

False 

>>> class MyClass(Expr): 

... _diff_wrt = True 

... 

>>> (2*MyClass()).diff(MyClass()) 

2 

""" 

return False 

 

@cacheit 

def sort_key(self, order=None): 

 

coeff, expr = self.as_coeff_Mul() 

 

if expr.is_Pow: 

expr, exp = expr.args 

else: 

expr, exp = expr, S.One 

 

if expr.is_Dummy: 

args = (expr.sort_key(),) 

elif expr.is_Atom: 

args = (str(expr),) 

else: 

if expr.is_Add: 

args = expr.as_ordered_terms(order=order) 

elif expr.is_Mul: 

args = expr.as_ordered_factors(order=order) 

else: 

args = expr.args 

 

args = tuple( 

[ default_sort_key(arg, order=order) for arg in args ]) 

 

args = (len(args), tuple(args)) 

exp = exp.sort_key(order=order) 

 

return expr.class_key(), args, exp, coeff 

 

# *************** 

# * Arithmetics * 

# *************** 

# Expr and its sublcasses use _op_priority to determine which object 

# passed to a binary special method (__mul__, etc.) will handle the 

# operation. In general, the 'call_highest_priority' decorator will choose 

# the object with the highest _op_priority to handle the call. 

# Custom subclasses that want to define their own binary special methods 

# should set an _op_priority value that is higher than the default. 

# 

# **NOTE**: 

# This is a temporary fix, and will eventually be replaced with 

# something better and more powerful. See issue 5510. 

_op_priority = 10.0 

 

def __pos__(self): 

return self 

 

def __neg__(self): 

return Mul(S.NegativeOne, self) 

 

def __abs__(self): 

from sympy import Abs 

return Abs(self) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__radd__') 

def __add__(self, other): 

return Add(self, other) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__add__') 

def __radd__(self, other): 

return Add(other, self) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__rsub__') 

def __sub__(self, other): 

return Add(self, -other) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__sub__') 

def __rsub__(self, other): 

return Add(other, -self) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__rmul__') 

def __mul__(self, other): 

return Mul(self, other) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__mul__') 

def __rmul__(self, other): 

return Mul(other, self) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__rpow__') 

def __pow__(self, other): 

return Pow(self, other) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__pow__') 

def __rpow__(self, other): 

return Pow(other, self) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__rdiv__') 

def __div__(self, other): 

return Mul(self, Pow(other, S.NegativeOne)) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__div__') 

def __rdiv__(self, other): 

return Mul(other, Pow(self, S.NegativeOne)) 

 

__truediv__ = __div__ 

__rtruediv__ = __rdiv__ 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__rmod__') 

def __mod__(self, other): 

return Mod(self, other) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__mod__') 

def __rmod__(self, other): 

return Mod(other, self) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__rfloordiv__') 

def __floordiv__(self, other): 

from sympy.functions.elementary.integers import floor 

return floor(self / other) 

 

@_sympifyit('other', NotImplemented) 

@call_highest_priority('__floordiv__') 

def __rfloordiv__(self, other): 

from sympy.functions.elementary.integers import floor 

return floor(self / other) 

 

def __int__(self): 

# Although we only need to round to the units position, we'll 

# get one more digit so the extra testing below can be avoided 

# unless the rounded value rounded to an integer, e.g. if an 

# expression were equal to 1.9 and we rounded to the unit position 

# we would get a 2 and would not know if this rounded up or not 

# without doing a test (as done below). But if we keep an extra 

# digit we know that 1.9 is not the same as 1 and there is no 

# need for further testing: our int value is correct. If the value 

# were 1.99, however, this would round to 2.0 and our int value is 

# off by one. So...if our round value is the same as the int value 

# (regardless of how much extra work we do to calculate extra decimal 

# places) we need to test whether we are off by one. 

from sympy import Dummy 

if not self.is_number: 

raise TypeError("can't convert symbols to int") 

r = self.round(2) 

if not r.is_Number: 

raise TypeError("can't convert complex to int") 

if r in (S.NaN, S.Infinity, S.NegativeInfinity): 

raise TypeError("can't convert %s to int" % r) 

i = int(r) 

if not i: 

return 0 

# off-by-one check 

if i == r and not (self - i).equals(0): 

isign = 1 if i > 0 else -1 

x = Dummy() 

# in the following (self - i).evalf(2) will not always work while 

# (self - r).evalf(2) and the use of subs does; if the test that 

# was added when this comment was added passes, it might be safe 

# to simply use sign to compute this rather than doing this by hand: 

diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1 

if diff_sign != isign: 

i -= isign 

return i 

__long__ = __int__ 

 

def __float__(self): 

# Don't bother testing if it's a number; if it's not this is going 

# to fail, and if it is we still need to check that it evalf'ed to 

# a number. 

result = self.evalf() 

if result.is_Number: 

return float(result) 

if result.is_number and result.as_real_imag()[1]: 

raise TypeError("can't convert complex to float") 

raise TypeError("can't convert expression to float") 

 

def __complex__(self): 

result = self.evalf() 

re, im = result.as_real_imag() 

return complex(float(re), float(im)) 

 

def __ge__(self, other): 

from sympy import GreaterThan 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s >= %s" % (self, other)) 

for me in (self, other): 

if (me.is_complex and me.is_real is False) or \ 

me.has(S.ComplexInfinity): 

raise TypeError("Invalid comparison of complex %s" % me) 

if me is S.NaN: 

raise TypeError("Invalid NaN comparison") 

if self.is_real or other.is_real: 

dif = self - other 

if dif.is_nonnegative is not None and \ 

dif.is_nonnegative is not dif.is_negative: 

return sympify(dif.is_nonnegative) 

return GreaterThan(self, other, evaluate=False) 

 

def __le__(self, other): 

from sympy import LessThan 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s <= %s" % (self, other)) 

for me in (self, other): 

if (me.is_complex and me.is_real is False) or \ 

me.has(S.ComplexInfinity): 

raise TypeError("Invalid comparison of complex %s" % me) 

if me is S.NaN: 

raise TypeError("Invalid NaN comparison") 

if self.is_real or other.is_real: 

dif = self - other 

if dif.is_nonpositive is not None and \ 

dif.is_nonpositive is not dif.is_positive: 

return sympify(dif.is_nonpositive) 

return LessThan(self, other, evaluate=False) 

 

def __gt__(self, other): 

from sympy import StrictGreaterThan 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s > %s" % (self, other)) 

for me in (self, other): 

if (me.is_complex and me.is_real is False) or \ 

me.has(S.ComplexInfinity): 

raise TypeError("Invalid comparison of complex %s" % me) 

if me is S.NaN: 

raise TypeError("Invalid NaN comparison") 

if self.is_real or other.is_real: 

dif = self - other 

if dif.is_positive is not None and \ 

dif.is_positive is not dif.is_nonpositive: 

return sympify(dif.is_positive) 

return StrictGreaterThan(self, other, evaluate=False) 

 

def __lt__(self, other): 

from sympy import StrictLessThan 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s < %s" % (self, other)) 

for me in (self, other): 

if (me.is_complex and me.is_real is False) or \ 

me.has(S.ComplexInfinity): 

raise TypeError("Invalid comparison of complex %s" % me) 

if me is S.NaN: 

raise TypeError("Invalid NaN comparison") 

if self.is_real or other.is_real: 

dif = self - other 

if dif.is_negative is not None and \ 

dif.is_negative is not dif.is_nonnegative: 

return sympify(dif.is_negative) 

return StrictLessThan(self, other, evaluate=False) 

 

@staticmethod 

def _from_mpmath(x, prec): 

from sympy import Float 

if hasattr(x, "_mpf_"): 

return Float._new(x._mpf_, prec) 

elif hasattr(x, "_mpc_"): 

re, im = x._mpc_ 

re = Float._new(re, prec) 

im = Float._new(im, prec)*S.ImaginaryUnit 

return re + im 

else: 

raise TypeError("expected mpmath number (mpf or mpc)") 

 

@property 

def is_number(self): 

"""Returns True if 'self' has no free symbols. 

It will be faster than `if not self.free_symbols`, however, since 

`is_number` will fail as soon as it hits a free symbol. 

 

Examples 

======== 

 

>>> from sympy import log, Integral 

>>> from sympy.abc import x 

 

>>> x.is_number 

False 

>>> (2*x).is_number 

False 

>>> (2 + log(2)).is_number 

True 

>>> (2 + Integral(2, x)).is_number 

False 

>>> (2 + Integral(2, (x, 1, 2))).is_number 

True 

 

""" 

return all(obj.is_number for obj in self.args) 

 

def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1): 

"""Return self evaluated, if possible, replacing free symbols with 

random complex values, if necessary. 

 

The random complex value for each free symbol is generated 

by the random_complex_number routine giving real and imaginary 

parts in the range given by the re_min, re_max, im_min, and im_max 

values. The returned value is evaluated to a precision of n 

(if given) else the maximum of 15 and the precision needed 

to get more than 1 digit of precision. If the expression 

could not be evaluated to a number, or could not be evaluated 

to more than 1 digit of precision, then None is returned. 

 

Examples 

======== 

 

>>> from sympy import sqrt 

>>> from sympy.abc import x, y 

>>> x._random() # doctest: +SKIP 

0.0392918155679172 + 0.916050214307199*I 

>>> x._random(2) # doctest: +SKIP 

-0.77 - 0.87*I 

>>> (x + y/2)._random(2) # doctest: +SKIP 

-0.57 + 0.16*I 

>>> sqrt(2)._random(2) 

1.4 

 

See Also 

======== 

 

sympy.utilities.randtest.random_complex_number 

""" 

 

free = self.free_symbols 

prec = 1 

if free: 

from sympy.utilities.randtest import random_complex_number 

a, c, b, d = re_min, re_max, im_min, im_max 

reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True) 

for zi in free]))) 

try: 

nmag = abs(self.evalf(2, subs=reps)) 

except (ValueError, TypeError): 

# if an out of range value resulted in evalf problems 

# then return None -- XXX is there a way to know how to 

# select a good random number for a given expression? 

# e.g. when calculating n! negative values for n should not 

# be used 

return None 

else: 

reps = {} 

nmag = abs(self.evalf(2)) 

 

if not hasattr(nmag, '_prec'): 

# e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True 

return None 

 

if nmag._prec == 1: 

# increase the precision up to the default maximum 

# precision to see if we can get any significance 

 

from mpmath.libmp.libintmath import giant_steps 

from sympy.core.evalf import DEFAULT_MAXPREC as target 

 

# evaluate 

for prec in giant_steps(2, target): 

nmag = abs(self.evalf(prec, subs=reps)) 

if nmag._prec != 1: 

break 

 

if nmag._prec != 1: 

if n is None: 

n = max(prec, 15) 

return self.evalf(n, subs=reps) 

 

# never got any significance 

return None 

 

def is_constant(self, *wrt, **flags): 

"""Return True if self is constant, False if not, or None if 

the constancy could not be determined conclusively. 

 

If an expression has no free symbols then it is a constant. If 

there are free symbols it is possible that the expression is a 

constant, perhaps (but not necessarily) zero. To test such 

expressions, two strategies are tried: 

 

1) numerical evaluation at two random points. If two such evaluations 

give two different values and the values have a precision greater than 

1 then self is not constant. If the evaluations agree or could not be 

obtained with any precision, no decision is made. The numerical testing 

is done only if ``wrt`` is different than the free symbols. 

 

2) differentiation with respect to variables in 'wrt' (or all free 

symbols if omitted) to see if the expression is constant or not. This 

will not always lead to an expression that is zero even though an 

expression is constant (see added test in test_expr.py). If 

all derivatives are zero then self is constant with respect to the 

given symbols. 

 

If neither evaluation nor differentiation can prove the expression is 

constant, None is returned unless two numerical values happened to be 

the same and the flag ``failing_number`` is True -- in that case the 

numerical value will be returned. 

 

If flag simplify=False is passed, self will not be simplified; 

the default is True since self should be simplified before testing. 

 

Examples 

======== 

 

>>> from sympy import cos, sin, Sum, S, pi 

>>> from sympy.abc import a, n, x, y 

>>> x.is_constant() 

False 

>>> S(2).is_constant() 

True 

>>> Sum(x, (x, 1, 10)).is_constant() 

True 

>>> Sum(x, (x, 1, n)).is_constant() 

False 

>>> Sum(x, (x, 1, n)).is_constant(y) 

True 

>>> Sum(x, (x, 1, n)).is_constant(n) 

False 

>>> Sum(x, (x, 1, n)).is_constant(x) 

True 

>>> eq = a*cos(x)**2 + a*sin(x)**2 - a 

>>> eq.is_constant() 

True 

>>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 

True 

 

>>> (0**x).is_constant() 

False 

>>> x.is_constant() 

False 

>>> (x**x).is_constant() 

False 

>>> one = cos(x)**2 + sin(x)**2 

>>> one.is_constant() 

True 

>>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1 

True 

""" 

 

simplify = flags.get('simplify', True) 

 

# Except for expressions that contain units, only one of these should 

# be necessary since if something is 

# known to be a number it should also know that there are no 

# free symbols. But is_number quits as soon as it hits a non-number 

# whereas free_symbols goes until all free symbols have been collected, 

# thus is_number should be faster. But a double check on free symbols 

# is made just in case there is a discrepancy between the two. 

free = self.free_symbols 

if self.is_number or not free: 

# if the following assertion fails then that object's free_symbols 

# method needs attention: if an expression is a number it cannot 

# have free symbols 

assert not free 

return True 

 

# if we are only interested in some symbols and they are not in the 

# free symbols then this expression is constant wrt those symbols 

wrt = set(wrt) 

if wrt and not wrt & free: 

return True 

wrt = wrt or free 

 

# simplify unless this has already been done 

expr = self 

if simplify: 

expr = expr.simplify() 

 

# is_zero should be a quick assumptions check; it can be wrong for 

# numbers (see test_is_not_constant test), giving False when it 

# shouldn't, but hopefully it will never give True unless it is sure. 

if expr.is_zero: 

return True 

 

# try numerical evaluation to see if we get two different values 

failing_number = None 

if wrt == free: 

# try 0 (for a) and 1 (for b) 

try: 

a = expr.subs(list(zip(free, [0]*len(free))), 

simultaneous=True) 

if a is S.NaN: 

# evaluation may succeed when substitution fails 

a = expr._random(None, 0, 0, 0, 0) 

except ZeroDivisionError: 

a = None 

if a is not None and a is not S.NaN: 

try: 

b = expr.subs(list(zip(free, [1]*len(free))), 

simultaneous=True) 

if b is S.NaN: 

# evaluation may succeed when substitution fails 

b = expr._random(None, 1, 0, 1, 0) 

except ZeroDivisionError: 

b = None 

if b is not None and b is not S.NaN and b.equals(a) is False: 

return False 

# try random real 

b = expr._random(None, -1, 0, 1, 0) 

if b is not None and b is not S.NaN and b.equals(a) is False: 

return False 

# try random complex 

b = expr._random() 

if b is not None and b is not S.NaN: 

if b.equals(a) is False: 

return False 

failing_number = a if a.is_number else b 

 

# now we will test each wrt symbol (or all free symbols) to see if the 

# expression depends on them or not using differentiation. This is 

# not sufficient for all expressions, however, so we don't return 

# False if we get a derivative other than 0 with free symbols. 

for w in wrt: 

deriv = expr.diff(w) 

if simplify: 

deriv = deriv.simplify() 

if deriv != 0: 

if not (pure_complex(deriv, or_real=True)): 

if flags.get('failing_number', False): 

return failing_number 

elif deriv.free_symbols: 

# dead line provided _random returns None in such cases 

return None 

return False 

return True 

 

def equals(self, other, failing_expression=False): 

"""Return True if self == other, False if it doesn't, or None. If 

failing_expression is True then the expression which did not simplify 

to a 0 will be returned instead of None. 

 

If ``self`` is a Number (or complex number) that is not zero, then 

the result is False. 

 

If ``self`` is a number and has not evaluated to zero, evalf will be 

used to test whether the expression evaluates to zero. If it does so 

and the result has significance (i.e. the precision is either -1, for 

a Rational result, or is greater than 1) then the evalf value will be 

used to return True or False. 

 

""" 

from sympy.simplify.simplify import nsimplify, simplify 

from sympy.solvers.solveset import solveset 

from sympy.polys.polyerrors import NotAlgebraic 

from sympy.polys.numberfields import minimal_polynomial 

 

other = sympify(other) 

if self == other: 

return True 

 

# they aren't the same so see if we can make the difference 0; 

# don't worry about doing simplification steps one at a time 

# because if the expression ever goes to 0 then the subsequent 

# simplification steps that are done will be very fast. 

diff = factor_terms(simplify(self - other), radical=True) 

 

if not diff: 

return True 

 

if not diff.has(Add, Mod): 

# if there is no expanding to be done after simplifying 

# then this can't be a zero 

return False 

 

constant = diff.is_constant(simplify=False, failing_number=True) 

 

if constant is False: 

return False 

 

if constant is None and (diff.free_symbols or not diff.is_number): 

# e.g. unless the right simplification is done, a symbolic 

# zero is possible (see expression of issue 6829: without 

# simplification constant will be None). 

return 

 

if constant is True: 

ndiff = diff._random() 

if ndiff: 

return False 

 

# sometimes we can use a simplified result to give a clue as to 

# what the expression should be; if the expression is *not* zero 

# then we should have been able to compute that and so now 

# we can just consider the cases where the approximation appears 

# to be zero -- we try to prove it via minimal_polynomial. 

if diff.is_number: 

approx = diff.nsimplify() 

if not approx: 

# try to prove via self-consistency 

surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer] 

# it seems to work better to try big ones first 

surds.sort(key=lambda x: -x.args[0]) 

for s in surds: 

try: 

# simplify is False here -- this expression has already 

# been identified as being hard to identify as zero; 

# we will handle the checking ourselves using nsimplify 

# to see if we are in the right ballpark or not and if so 

# *then* the simplification will be attempted. 

if s.is_Symbol: 

sol = list(solveset(diff, s)) 

else: 

sol = [s] 

if sol: 

if s in sol: 

return True 

if s.is_real: 

if any(nsimplify(si, [s]) == s and simplify(si) == s 

for si in sol): 

return True 

except NotImplementedError: 

pass 

 

# try to prove with minimal_polynomial but know when 

# *not* to use this or else it can take a long time. e.g. issue 8354 

if True: # change True to condition that assures non-hang 

try: 

mp = minimal_polynomial(diff) 

if mp.is_Symbol: 

return True 

return False 

except (NotAlgebraic, NotImplementedError): 

pass 

 

# diff has not simplified to zero; constant is either None, True 

# or the number with significance (prec != 1) that was randomly 

# calculated twice as the same value. 

if constant not in (True, None) and constant != 0: 

return False 

 

if failing_expression: 

return diff 

return None 

 

def _eval_is_positive(self): 

from sympy.polys.numberfields import minimal_polynomial 

from sympy.polys.polyerrors import NotAlgebraic 

if self.is_number: 

if self.is_real is False: 

return False 

try: 

# check to see that we can get a value 

n2 = self._eval_evalf(2) 

if n2 is None: 

raise AttributeError 

if n2._prec == 1: # no significance 

raise AttributeError 

if n2 == S.NaN: 

raise AttributeError 

except (AttributeError, ValueError): 

return None 

n, i = self.evalf(2).as_real_imag() 

if not i.is_Number or not n.is_Number: 

return False 

if n._prec != 1 and i._prec != 1: 

return bool(not i and n > 0) 

elif n._prec == 1 and (not i or i._prec == 1) and \ 

self.is_algebraic and not self.has(Function): 

try: 

if minimal_polynomial(self).is_Symbol: 

return False 

except (NotAlgebraic, NotImplementedError): 

pass 

 

def _eval_is_negative(self): 

from sympy.polys.numberfields import minimal_polynomial 

from sympy.polys.polyerrors import NotAlgebraic 

if self.is_number: 

if self.is_real is False: 

return False 

try: 

# check to see that we can get a value 

n2 = self._eval_evalf(2) 

if n2 is None: 

raise AttributeError 

if n2._prec == 1: # no significance 

raise AttributeError 

if n2 == S.NaN: 

raise AttributeError 

except (AttributeError, ValueError): 

return None 

n, i = self.evalf(2).as_real_imag() 

if not i.is_Number or not n.is_Number: 

return False 

if n._prec != 1 and i._prec != 1: 

return bool(not i and n < 0) 

elif n._prec == 1 and (not i or i._prec == 1) and \ 

self.is_algebraic and not self.has(Function): 

try: 

if minimal_polynomial(self).is_Symbol: 

return False 

except (NotAlgebraic, NotImplementedError): 

pass 

 

def _eval_interval(self, x, a, b): 

""" 

Returns evaluation over an interval. For most functions this is: 

 

self.subs(x, b) - self.subs(x, a), 

 

possibly using limit() if NaN is returned from subs. 

 

If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x), 

respectively. 

 

""" 

from sympy.series import limit, Limit 

if (a is None and b is None): 

raise ValueError('Both interval ends cannot be None.') 

 

if a is None: 

A = 0 

else: 

A = self.subs(x, a) 

if A.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): 

A = limit(self, x, a) 

if A is S.NaN: 

return A 

if isinstance(A, Limit): 

raise NotImplementedError("Could not compute limit") 

 

if b is None: 

B = 0 

else: 

B = self.subs(x, b) 

if B.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): 

B = limit(self, x, b) 

if isinstance(B, Limit): 

raise NotImplementedError("Could not compute limit") 

 

return B - A 

 

def _eval_power(self, other): 

# subclass to compute self**other for cases when 

# other is not NaN, 0, or 1 

return None 

 

def _eval_conjugate(self): 

if self.is_real: 

return self 

elif self.is_imaginary: 

return -self 

 

def conjugate(self): 

from sympy.functions.elementary.complexes import conjugate as c 

return c(self) 

 

def _eval_transpose(self): 

from sympy.functions.elementary.complexes import conjugate 

if self.is_complex: 

return self 

elif self.is_hermitian: 

return conjugate(self) 

elif self.is_antihermitian: 

return -conjugate(self) 

 

def transpose(self): 

from sympy.functions.elementary.complexes import transpose 

return transpose(self) 

 

def _eval_adjoint(self): 

from sympy.functions.elementary.complexes import conjugate, transpose 

if self.is_hermitian: 

return self 

elif self.is_antihermitian: 

return -self 

obj = self._eval_conjugate() 

if obj is not None: 

return transpose(obj) 

obj = self._eval_transpose() 

if obj is not None: 

return conjugate(obj) 

 

def adjoint(self): 

from sympy.functions.elementary.complexes import adjoint 

return adjoint(self) 

 

@classmethod 

def _parse_order(cls, order): 

"""Parse and configure the ordering of terms. """ 

from sympy.polys.orderings import monomial_key 

 

try: 

reverse = order.startswith('rev-') 

except AttributeError: 

reverse = False 

else: 

if reverse: 

order = order[4:] 

 

monom_key = monomial_key(order) 

 

def neg(monom): 

result = [] 

 

for m in monom: 

if isinstance(m, tuple): 

result.append(neg(m)) 

else: 

result.append(-m) 

 

return tuple(result) 

 

def key(term): 

_, ((re, im), monom, ncpart) = term 

 

monom = neg(monom_key(monom)) 

ncpart = tuple([e.sort_key(order=order) for e in ncpart]) 

coeff = ((bool(im), im), (re, im)) 

 

return monom, ncpart, coeff 

 

return key, reverse 

 

def as_ordered_factors(self, order=None): 

"""Return list of ordered factors (if Mul) else [self].""" 

return [self] 

 

def as_ordered_terms(self, order=None, data=False): 

""" 

Transform an expression to an ordered list of terms. 

 

Examples 

======== 

 

>>> from sympy import sin, cos 

>>> from sympy.abc import x 

 

>>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms() 

[sin(x)**2*cos(x), sin(x)**2, 1] 

 

""" 

key, reverse = self._parse_order(order) 

terms, gens = self.as_terms() 

 

if not any(term.is_Order for term, _ in terms): 

ordered = sorted(terms, key=key, reverse=reverse) 

else: 

_terms, _order = [], [] 

 

for term, repr in terms: 

if not term.is_Order: 

_terms.append((term, repr)) 

else: 

_order.append((term, repr)) 

 

ordered = sorted(_terms, key=key, reverse=True) \ 

+ sorted(_order, key=key, reverse=True) 

 

if data: 

return ordered, gens 

else: 

return [term for term, _ in ordered] 

 

def as_terms(self): 

"""Transform an expression to a list of terms. """ 

from .add import Add 

from .mul import Mul 

from .exprtools import decompose_power 

 

gens, terms = set([]), [] 

 

for term in Add.make_args(self): 

coeff, _term = term.as_coeff_Mul() 

 

coeff = complex(coeff) 

cpart, ncpart = {}, [] 

 

if _term is not S.One: 

for factor in Mul.make_args(_term): 

if factor.is_number: 

try: 

coeff *= complex(factor) 

except TypeError: 

pass 

else: 

continue 

 

if factor.is_commutative: 

base, exp = decompose_power(factor) 

 

cpart[base] = exp 

gens.add(base) 

else: 

ncpart.append(factor) 

 

coeff = coeff.real, coeff.imag 

ncpart = tuple(ncpart) 

 

terms.append((term, (coeff, cpart, ncpart))) 

 

gens = sorted(gens, key=default_sort_key) 

 

k, indices = len(gens), {} 

 

for i, g in enumerate(gens): 

indices[g] = i 

 

result = [] 

 

for term, (coeff, cpart, ncpart) in terms: 

monom = [0]*k 

 

for base, exp in cpart.items(): 

monom[indices[base]] = exp 

 

result.append((term, (coeff, tuple(monom), ncpart))) 

 

return result, gens 

 

def removeO(self): 

"""Removes the additive O(..) symbol if there is one""" 

return self 

 

def getO(self): 

"""Returns the additive O(..) symbol if there is one, else None.""" 

return None 

 

def getn(self): 

""" 

Returns the order of the expression. 

 

The order is determined either from the O(...) term. If there 

is no O(...) term, it returns None. 

 

Examples 

======== 

 

>>> from sympy import O 

>>> from sympy.abc import x 

>>> (1 + x + O(x**2)).getn() 

2 

>>> (1 + x).getn() 

 

""" 

from sympy import Dummy, Symbol 

o = self.getO() 

if o is None: 

return None 

elif o.is_Order: 

o = o.expr 

if o is S.One: 

return S.Zero 

if o.is_Symbol: 

return S.One 

if o.is_Pow: 

return o.args[1] 

if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n 

for oi in o.args: 

if oi.is_Symbol: 

return S.One 

if oi.is_Pow: 

syms = oi.atoms(Symbol) 

if len(syms) == 1: 

x = syms.pop() 

oi = oi.subs(x, Dummy('x', positive=True)) 

if oi.base.is_Symbol and oi.exp.is_Rational: 

return abs(oi.exp) 

 

raise NotImplementedError('not sure of order of %s' % o) 

 

def count_ops(self, visual=None): 

"""wrapper for count_ops that returns the operation count.""" 

from .function import count_ops 

return count_ops(self, visual) 

 

def args_cnc(self, cset=False, warn=True, split_1=True): 

"""Return [commutative factors, non-commutative factors] of self. 

 

self is treated as a Mul and the ordering of the factors is maintained. 

If ``cset`` is True the commutative factors will be returned in a set. 

If there were repeated factors (as may happen with an unevaluated Mul) 

then an error will be raised unless it is explicitly supressed by 

setting ``warn`` to False. 

 

Note: -1 is always separated from a Number unless split_1 is False. 

 

>>> from sympy import symbols, oo 

>>> A, B = symbols('A B', commutative=0) 

>>> x, y = symbols('x y') 

>>> (-2*x*y).args_cnc() 

[[-1, 2, x, y], []] 

>>> (-2.5*x).args_cnc() 

[[-1, 2.5, x], []] 

>>> (-2*x*A*B*y).args_cnc() 

[[-1, 2, x, y], [A, B]] 

>>> (-2*x*A*B*y).args_cnc(split_1=False) 

[[-2, x, y], [A, B]] 

>>> (-2*x*y).args_cnc(cset=True) 

[set([-1, 2, x, y]), []] 

 

The arg is always treated as a Mul: 

 

>>> (-2 + x + A).args_cnc() 

[[], [x - 2 + A]] 

>>> (-oo).args_cnc() # -oo is a singleton 

[[-1, oo], []] 

""" 

 

if self.is_Mul: 

args = list(self.args) 

else: 

args = [self] 

for i, mi in enumerate(args): 

if not mi.is_commutative: 

c = args[:i] 

nc = args[i:] 

break 

else: 

c = args 

nc = [] 

 

if c and split_1 and ( 

c[0].is_Number and 

c[0].is_negative and 

c[0] is not S.NegativeOne): 

c[:1] = [S.NegativeOne, -c[0]] 

 

if cset: 

clen = len(c) 

c = set(c) 

if clen and warn and len(c) != clen: 

raise ValueError('repeated commutative arguments: %s' % 

[ci for ci in c if list(self.args).count(ci) > 1]) 

return [c, nc] 

 

def coeff(self, x, n=1, right=False): 

""" 

Returns the coefficient from the term(s) containing ``x**n`` or None. If ``n`` 

is zero then all terms independent of ``x`` will be returned. 

 

When x is noncommutative, the coeff to the left (default) or right of x 

can be returned. The keyword 'right' is ignored when x is commutative. 

 

See Also 

======== 

 

as_coefficient: separate the expression into a coefficient and factor 

as_coeff_Add: separate the additive constant from an expression 

as_coeff_Mul: separate the multiplicative constant from an expression 

as_independent: separate x-dependent terms/factors from others 

sympy.polys.polytools.coeff_monomial: efficiently find the single coefficient of a monomial in Poly 

sympy.polys.polytools.nth: like coeff_monomial but powers of monomial terms are used 

 

Examples 

======== 

 

>>> from sympy import symbols 

>>> from sympy.abc import x, y, z 

 

You can select terms that have an explicit negative in front of them: 

 

>>> (-x + 2*y).coeff(-1) 

x 

>>> (x - 2*y).coeff(-1) 

2*y 

 

You can select terms with no Rational coefficient: 

 

>>> (x + 2*y).coeff(1) 

x 

>>> (3 + 2*x + 4*x**2).coeff(1) 

0 

 

You can select terms independent of x by making n=0; in this case 

expr.as_independent(x)[0] is returned (and 0 will be returned instead 

of None): 

 

>>> (3 + 2*x + 4*x**2).coeff(x, 0) 

3 

>>> eq = ((x + 1)**3).expand() + 1 

>>> eq 

x**3 + 3*x**2 + 3*x + 2 

>>> [eq.coeff(x, i) for i in reversed(range(4))] 

[1, 3, 3, 2] 

>>> eq -= 2 

>>> [eq.coeff(x, i) for i in reversed(range(4))] 

[1, 3, 3, 0] 

 

You can select terms that have a numerical term in front of them: 

 

>>> (-x - 2*y).coeff(2) 

-y 

>>> from sympy import sqrt 

>>> (x + sqrt(2)*x).coeff(sqrt(2)) 

x 

 

The matching is exact: 

 

>>> (3 + 2*x + 4*x**2).coeff(x) 

2 

>>> (3 + 2*x + 4*x**2).coeff(x**2) 

4 

>>> (3 + 2*x + 4*x**2).coeff(x**3) 

0 

>>> (z*(x + y)**2).coeff((x + y)**2) 

z 

>>> (z*(x + y)**2).coeff(x + y) 

0 

 

In addition, no factoring is done, so 1 + z*(1 + y) is not obtained 

from the following: 

 

>>> (x + z*(x + x*y)).coeff(x) 

1 

 

If such factoring is desired, factor_terms can be used first: 

 

>>> from sympy import factor_terms 

>>> factor_terms(x + z*(x + x*y)).coeff(x) 

z*(y + 1) + 1 

 

>>> n, m, o = symbols('n m o', commutative=False) 

>>> n.coeff(n) 

1 

>>> (3*n).coeff(n) 

3 

>>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m 

1 + m 

>>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m 

m 

 

If there is more than one possible coefficient 0 is returned: 

 

>>> (n*m + m*n).coeff(n) 

0 

 

If there is only one possible coefficient, it is returned: 

 

>>> (n*m + x*m*n).coeff(m*n) 

x 

>>> (n*m + x*m*n).coeff(m*n, right=1) 

1 

 

""" 

x = sympify(x) 

if not isinstance(x, Basic): 

return S.Zero 

 

n = as_int(n) 

 

if not x: 

return S.Zero 

 

if x == self: 

if n == 1: 

return S.One 

return S.Zero 

 

if x is S.One: 

co = [a for a in Add.make_args(self) 

if a.as_coeff_Mul()[0] is S.One] 

if not co: 

return S.Zero 

return Add(*co) 

 

if n == 0: 

if x.is_Add and self.is_Add: 

c = self.coeff(x, right=right) 

if not c: 

return S.Zero 

if not right: 

return self - Add(*[a*x for a in Add.make_args(c)]) 

return self - Add(*[x*a for a in Add.make_args(c)]) 

return self.as_independent(x, as_Add=True)[0] 

 

# continue with the full method, looking for this power of x: 

x = x**n 

 

def incommon(l1, l2): 

if not l1 or not l2: 

return [] 

n = min(len(l1), len(l2)) 

for i in range(n): 

if l1[i] != l2[i]: 

return l1[:i] 

return l1[:] 

 

def find(l, sub, first=True): 

""" Find where list sub appears in list l. When ``first`` is True 

the first occurance from the left is returned, else the last 

occurance is returned. Return None if sub is not in l. 

 

>> l = range(5)*2 

>> find(l, [2, 3]) 

2 

>> find(l, [2, 3], first=0) 

7 

>> find(l, [2, 4]) 

None 

 

""" 

if not sub or not l or len(sub) > len(l): 

return None 

n = len(sub) 

if not first: 

l.reverse() 

sub.reverse() 

for i in range(0, len(l) - n + 1): 

if all(l[i + j] == sub[j] for j in range(n)): 

break 

else: 

i = None 

if not first: 

l.reverse() 

sub.reverse() 

if i is not None and not first: 

i = len(l) - (i + n) 

return i 

 

co = [] 

args = Add.make_args(self) 

self_c = self.is_commutative 

x_c = x.is_commutative 

if self_c and not x_c: 

return S.Zero 

 

if self_c: 

xargs = x.args_cnc(cset=True, warn=False)[0] 

for a in args: 

margs = a.args_cnc(cset=True, warn=False)[0] 

if len(xargs) > len(margs): 

continue 

resid = margs.difference(xargs) 

if len(resid) + len(xargs) == len(margs): 

co.append(Mul(*resid)) 

if co == []: 

return S.Zero 

elif co: 

return Add(*co) 

elif x_c: 

xargs = x.args_cnc(cset=True, warn=False)[0] 

for a in args: 

margs, nc = a.args_cnc(cset=True) 

if len(xargs) > len(margs): 

continue 

resid = margs.difference(xargs) 

if len(resid) + len(xargs) == len(margs): 

co.append(Mul(*(list(resid) + nc))) 

if co == []: 

return S.Zero 

elif co: 

return Add(*co) 

else: # both nc 

xargs, nx = x.args_cnc(cset=True) 

# find the parts that pass the commutative terms 

for a in args: 

margs, nc = a.args_cnc(cset=True) 

if len(xargs) > len(margs): 

continue 

resid = margs.difference(xargs) 

if len(resid) + len(xargs) == len(margs): 

co.append((resid, nc)) 

# now check the non-comm parts 

if not co: 

return S.Zero 

if all(n == co[0][1] for r, n in co): 

ii = find(co[0][1], nx, right) 

if ii is not None: 

if not right: 

return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii])) 

else: 

return Mul(*co[0][1][ii + len(nx):]) 

beg = reduce(incommon, (n[1] for n in co)) 

if beg: 

ii = find(beg, nx, right) 

if ii is not None: 

if not right: 

gcdc = co[0][0] 

for i in range(1, len(co)): 

gcdc = gcdc.intersection(co[i][0]) 

if not gcdc: 

break 

return Mul(*(list(gcdc) + beg[:ii])) 

else: 

m = ii + len(nx) 

return Add(*[Mul(*(list(r) + n[m:])) for r, n in co]) 

end = list(reversed( 

reduce(incommon, (list(reversed(n[1])) for n in co)))) 

if end: 

ii = find(end, nx, right) 

if ii is not None: 

if not right: 

return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co]) 

else: 

return Mul(*end[ii + len(nx):]) 

# look for single match 

hit = None 

for i, (r, n) in enumerate(co): 

ii = find(n, nx, right) 

if ii is not None: 

if not hit: 

hit = ii, r, n 

else: 

break 

else: 

if hit: 

ii, r, n = hit 

if not right: 

return Mul(*(list(r) + n[:ii])) 

else: 

return Mul(*n[ii + len(nx):]) 

 

return S.Zero 

 

def as_expr(self, *gens): 

""" 

Convert a polynomial to a SymPy expression. 

 

Examples 

======== 

 

>>> from sympy import sin 

>>> from sympy.abc import x, y 

 

>>> f = (x**2 + x*y).as_poly(x, y) 

>>> f.as_expr() 

x**2 + x*y 

 

>>> sin(x).as_expr() 

sin(x) 

 

""" 

return self 

 

def as_coefficient(self, expr): 

""" 

Extracts symbolic coefficient at the given expression. In 

other words, this functions separates 'self' into the product 

of 'expr' and 'expr'-free coefficient. If such separation 

is not possible it will return None. 

 

Examples 

======== 

 

>>> from sympy import E, pi, sin, I, Poly 

>>> from sympy.abc import x 

 

>>> E.as_coefficient(E) 

1 

>>> (2*E).as_coefficient(E) 

2 

>>> (2*sin(E)*E).as_coefficient(E) 

 

Two terms have E in them so a sum is returned. (If one were 

desiring the coefficient of the term exactly matching E then 

the constant from the returned expression could be selected. 

Or, for greater precision, a method of Poly can be used to 

indicate the desired term from which the coefficient is 

desired.) 

 

>>> (2*E + x*E).as_coefficient(E) 

x + 2 

>>> _.args[0] # just want the exact match 

2 

>>> p = Poly(2*E + x*E); p 

Poly(x*E + 2*E, x, E, domain='ZZ') 

>>> p.coeff_monomial(E) 

2 

>>> p.nth(0, 1) 

2 

 

Since the following cannot be written as a product containing 

E as a factor, None is returned. (If the coefficient ``2*x`` is 

desired then the ``coeff`` method should be used.) 

 

>>> (2*E*x + x).as_coefficient(E) 

>>> (2*E*x + x).coeff(E) 

2*x 

 

>>> (E*(x + 1) + x).as_coefficient(E) 

 

>>> (2*pi*I).as_coefficient(pi*I) 

2 

>>> (2*I).as_coefficient(pi*I) 

 

See Also 

======== 

 

coeff: return sum of terms have a given factor 

as_coeff_Add: separate the additive constant from an expression 

as_coeff_Mul: separate the multiplicative constant from an expression 

as_independent: separate x-dependent terms/factors from others 

sympy.polys.polytools.coeff_monomial: efficiently find the single coefficient of a monomial in Poly 

sympy.polys.polytools.nth: like coeff_monomial but powers of monomial terms are used 

 

 

""" 

 

r = self.extract_multiplicatively(expr) 

if r and not r.has(expr): 

return r 

 

def as_independent(self, *deps, **hint): 

""" 

A mostly naive separation of a Mul or Add into arguments that are not 

are dependent on deps. To obtain as complete a separation of variables 

as possible, use a separation method first, e.g.: 

 

* separatevars() to change Mul, Add and Pow (including exp) into Mul 

* .expand(mul=True) to change Add or Mul into Add 

* .expand(log=True) to change log expr into an Add 

 

The only non-naive thing that is done here is to respect noncommutative 

ordering of variables and to always return (0, 0) for `self` of zero 

regardless of hints. 

 

For nonzero `self`, the returned tuple (i, d) has the 

following interpretation: 

 

* i will has no variable that appears in deps 

* d will be 1 or else have terms that contain variables that are in deps 

* if self is an Add then self = i + d 

* if self is a Mul then self = i*d 

* otherwise (self, S.One) or (S.One, self) is returned. 

 

To force the expression to be treated as an Add, use the hint as_Add=True 

 

Examples 

======== 

 

-- self is an Add 

 

>>> from sympy import sin, cos, exp 

>>> from sympy.abc import x, y, z 

 

>>> (x + x*y).as_independent(x) 

(0, x*y + x) 

>>> (x + x*y).as_independent(y) 

(x, x*y) 

>>> (2*x*sin(x) + y + x + z).as_independent(x) 

(y + z, 2*x*sin(x) + x) 

>>> (2*x*sin(x) + y + x + z).as_independent(x, y) 

(z, 2*x*sin(x) + x + y) 

 

-- self is a Mul 

 

>>> (x*sin(x)*cos(y)).as_independent(x) 

(cos(y), x*sin(x)) 

 

non-commutative terms cannot always be separated out when self is a Mul 

 

>>> from sympy import symbols 

>>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False) 

>>> (n1 + n1*n2).as_independent(n2) 

(n1, n1*n2) 

>>> (n2*n1 + n1*n2).as_independent(n2) 

(0, n1*n2 + n2*n1) 

>>> (n1*n2*n3).as_independent(n1) 

(1, n1*n2*n3) 

>>> (n1*n2*n3).as_independent(n2) 

(n1, n2*n3) 

>>> ((x-n1)*(x-y)).as_independent(x) 

(1, (x - y)*(x - n1)) 

 

-- self is anything else: 

 

>>> (sin(x)).as_independent(x) 

(1, sin(x)) 

>>> (sin(x)).as_independent(y) 

(sin(x), 1) 

>>> exp(x+y).as_independent(x) 

(1, exp(x + y)) 

 

-- force self to be treated as an Add: 

 

>>> (3*x).as_independent(x, as_Add=True) 

(0, 3*x) 

 

-- force self to be treated as a Mul: 

 

>>> (3+x).as_independent(x, as_Add=False) 

(1, x + 3) 

>>> (-3+x).as_independent(x, as_Add=False) 

(1, x - 3) 

 

Note how the below differs from the above in making the 

constant on the dep term positive. 

 

>>> (y*(-3+x)).as_independent(x) 

(y, x - 3) 

 

-- use .as_independent() for true independence testing instead 

of .has(). The former considers only symbols in the free 

symbols while the latter considers all symbols 

 

>>> from sympy import Integral 

>>> I = Integral(x, (x, 1, 2)) 

>>> I.has(x) 

True 

>>> x in I.free_symbols 

False 

>>> I.as_independent(x) == (I, 1) 

True 

>>> (I + x).as_independent(x) == (I, x) 

True 

 

Note: when trying to get independent terms, a separation method 

might need to be used first. In this case, it is important to keep 

track of what you send to this routine so you know how to interpret 

the returned values 

 

>>> from sympy import separatevars, log 

>>> separatevars(exp(x+y)).as_independent(x) 

(exp(y), exp(x)) 

>>> (x + x*y).as_independent(y) 

(x, x*y) 

>>> separatevars(x + x*y).as_independent(y) 

(x, y + 1) 

>>> (x*(1 + y)).as_independent(y) 

(x, y + 1) 

>>> (x*(1 + y)).expand(mul=True).as_independent(y) 

(x, x*y) 

>>> a, b=symbols('a b', positive=True) 

>>> (log(a*b).expand(log=True)).as_independent(b) 

(log(a), log(b)) 

 

See Also 

======== 

.separatevars(), .expand(log=True), Add.as_two_terms(), 

Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul() 

""" 

from .symbol import Symbol 

from .add import _unevaluated_Add 

from .mul import _unevaluated_Mul 

from sympy.utilities.iterables import sift 

 

if self.is_zero: 

return S.Zero, S.Zero 

 

func = self.func 

if hint.get('as_Add', func is Add): 

want = Add 

else: 

want = Mul 

if func is not want and (func is Add or func is Mul): 

return (want.identity, self) 

 

# sift out deps into symbolic and other and ignore 

# all symbols but those that are in the free symbols 

sym = set() 

other = [] 

for d in deps: 

if isinstance(d, Symbol): # Symbol.is_Symbol is True 

sym.add(d) 

else: 

other.append(d) 

 

def has(e): 

"""return the standard has() if there are no literal symbols, else 

check to see that symbol-deps are in the free symbols.""" 

has_other = e.has(*other) 

if not sym: 

return has_other 

return has_other or e.has(*(e.free_symbols & sym)) 

 

if (want is not func or 

func is not Add and func is not Mul): 

if has(self): 

return (want.identity, self) 

else: 

return (self, want.identity) 

else: 

if func is Add: 

args = list(self.args) 

else: 

args, nc = self.args_cnc() 

 

d = sift(args, lambda x: has(x)) 

depend = d[True] 

indep = d[False] 

if func is Add: # all terms were treated as commutative 

return (Add(*indep), _unevaluated_Add(*depend)) 

else: # handle noncommutative by stopping at first dependent term 

for i, n in enumerate(nc): 

if has(n): 

depend.extend(nc[i:]) 

break 

indep.append(n) 

return Mul(*indep), ( 

Mul(*depend, evaluate=False) if nc else 

_unevaluated_Mul(*depend)) 

 

def as_real_imag(self, deep=True, **hints): 

"""Performs complex expansion on 'self' and returns a tuple 

containing collected both real and imaginary parts. This 

method can't be confused with re() and im() functions, 

which does not perform complex expansion at evaluation. 

 

However it is possible to expand both re() and im() 

functions and get exactly the same results as with 

a single call to this function. 

 

>>> from sympy import symbols, I 

 

>>> x, y = symbols('x,y', real=True) 

 

>>> (x + y*I).as_real_imag() 

(x, y) 

 

>>> from sympy.abc import z, w 

 

>>> (z + w*I).as_real_imag() 

(re(z) - im(w), re(w) + im(z)) 

 

""" 

from sympy import im, re 

if hints.get('ignore') == self: 

return None 

else: 

return (re(self), im(self)) 

 

def as_powers_dict(self): 

"""Return self as a dictionary of factors with each factor being 

treated as a power. The keys are the bases of the factors and the 

values, the corresponding exponents. The resulting dictionary should 

be used with caution if the expression is a Mul and contains non- 

commutative factors since the order that they appeared will be lost in 

the dictionary.""" 

d = defaultdict(int) 

d.update(dict([self.as_base_exp()])) 

return d 

 

def as_coefficients_dict(self): 

"""Return a dictionary mapping terms to their Rational coefficient. 

Since the dictionary is a defaultdict, inquiries about terms which 

were not present will return a coefficient of 0. If an expression is 

not an Add it is considered to have a single term. 

 

Examples 

======== 

 

>>> from sympy.abc import a, x 

>>> (3*x + a*x + 4).as_coefficients_dict() 

{1: 4, x: 3, a*x: 1} 

>>> _[a] 

0 

>>> (3*a*x).as_coefficients_dict() 

{a*x: 3} 

 

""" 

c, m = self.as_coeff_Mul() 

if not c.is_Rational: 

c = S.One 

m = self 

d = defaultdict(int) 

d.update({m: c}) 

return d 

 

def as_base_exp(self): 

# a -> b ** e 

return self, S.One 

 

def as_coeff_mul(self, *deps, **kwargs): 

"""Return the tuple (c, args) where self is written as a Mul, ``m``. 

 

c should be a Rational multiplied by any terms of the Mul that are 

independent of deps. 

 

args should be a tuple of all other terms of m; args is empty 

if self is a Number or if self is independent of deps (when given). 

 

This should be used when you don't know if self is a Mul or not but 

you want to treat self as a Mul or if you want to process the 

individual arguments of the tail of self as a Mul. 

 

- if you know self is a Mul and want only the head, use self.args[0]; 

- if you don't want to process the arguments of the tail but need the 

tail then use self.as_two_terms() which gives the head and tail; 

- if you want to split self into an independent and dependent parts 

use ``self.as_independent(*deps)`` 

 

>>> from sympy import S 

>>> from sympy.abc import x, y 

>>> (S(3)).as_coeff_mul() 

(3, ()) 

>>> (3*x*y).as_coeff_mul() 

(3, (x, y)) 

>>> (3*x*y).as_coeff_mul(x) 

(3*y, (x,)) 

>>> (3*y).as_coeff_mul(x) 

(3*y, ()) 

""" 

if deps: 

if not self.has(*deps): 

return self, tuple() 

return S.One, (self,) 

 

def as_coeff_add(self, *deps): 

"""Return the tuple (c, args) where self is written as an Add, ``a``. 

 

c should be a Rational added to any terms of the Add that are 

independent of deps. 

 

args should be a tuple of all other terms of ``a``; args is empty 

if self is a Number or if self is independent of deps (when given). 

 

This should be used when you don't know if self is an Add or not but 

you want to treat self as an Add or if you want to process the 

individual arguments of the tail of self as an Add. 

 

- if you know self is an Add and want only the head, use self.args[0]; 

- if you don't want to process the arguments of the tail but need the 

tail then use self.as_two_terms() which gives the head and tail. 

- if you want to split self into an independent and dependent parts 

use ``self.as_independent(*deps)`` 

 

>>> from sympy import S 

>>> from sympy.abc import x, y 

>>> (S(3)).as_coeff_add() 

(3, ()) 

>>> (3 + x).as_coeff_add() 

(3, (x,)) 

>>> (3 + x + y).as_coeff_add(x) 

(y + 3, (x,)) 

>>> (3 + y).as_coeff_add(x) 

(y + 3, ()) 

 

""" 

if deps: 

if not self.has(*deps): 

return self, tuple() 

return S.Zero, (self,) 

 

def primitive(self): 

"""Return the positive Rational that can be extracted non-recursively 

from every term of self (i.e., self is treated like an Add). This is 

like the as_coeff_Mul() method but primitive always extracts a positive 

Rational (never a negative or a Float). 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> (3*(x + 1)**2).primitive() 

(3, (x + 1)**2) 

>>> a = (6*x + 2); a.primitive() 

(2, 3*x + 1) 

>>> b = (x/2 + 3); b.primitive() 

(1/2, x + 6) 

>>> (a*b).primitive() == (1, a*b) 

True 

""" 

if not self: 

return S.One, S.Zero 

c, r = self.as_coeff_Mul(rational=True) 

if c.is_negative: 

c, r = -c, -r 

return c, r 

 

def as_content_primitive(self, radical=False, clear=True): 

"""This method should recursively remove a Rational from all arguments 

and return that (content) and the new self (primitive). The content 

should always be positive and ``Mul(*foo.as_content_primitive()) == foo``. 

The primitive need no be in canonical form and should try to preserve 

the underlying structure if possible (i.e. expand_mul should not be 

applied to self). 

 

Examples 

======== 

 

>>> from sympy import sqrt 

>>> from sympy.abc import x, y, z 

 

>>> eq = 2 + 2*x + 2*y*(3 + 3*y) 

 

The as_content_primitive function is recursive and retains structure: 

 

>>> eq.as_content_primitive() 

(2, x + 3*y*(y + 1) + 1) 

 

Integer powers will have Rationals extracted from the base: 

 

>>> ((2 + 6*x)**2).as_content_primitive() 

(4, (3*x + 1)**2) 

>>> ((2 + 6*x)**(2*y)).as_content_primitive() 

(1, (2*(3*x + 1))**(2*y)) 

 

Terms may end up joining once their as_content_primitives are added: 

 

>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() 

(11, x*(y + 1)) 

>>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() 

(9, x*(y + 1)) 

>>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive() 

(1, 6.0*x*(y + 1) + 3*z*(y + 1)) 

>>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() 

(121, x**2*(y + 1)**2) 

>>> ((5*(x*(1 + y)) + 2.0*x*(3 + 3*y))**2).as_content_primitive() 

(1, 121.0*x**2*(y + 1)**2) 

 

Radical content can also be factored out of the primitive: 

 

>>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) 

(2, sqrt(2)*(1 + 2*sqrt(5))) 

 

If clear=False (default is True) then content will not be removed 

from an Add if it can be distributed to leave one or more 

terms with integer coefficients. 

 

>>> (x/2 + y).as_content_primitive() 

(1/2, x + 2*y) 

>>> (x/2 + y).as_content_primitive(clear=False) 

(1, x/2 + y) 

""" 

return S.One, self 

 

def as_numer_denom(self): 

""" expression -> a/b -> a, b 

 

This is just a stub that should be defined by 

an object's class methods to get anything else. 

 

See Also 

======== 

normal: return a/b instead of a, b 

""" 

 

return self, S.One 

 

def normal(self): 

n, d = self.as_numer_denom() 

if d is S.One: 

return n 

return n/d 

 

def extract_multiplicatively(self, c): 

"""Return None if it's not possible to make self in the form 

c * something in a nice way, i.e. preserving the properties 

of arguments of self. 

 

>>> from sympy import symbols, Rational 

 

>>> x, y = symbols('x,y', real=True) 

 

>>> ((x*y)**3).extract_multiplicatively(x**2 * y) 

x*y**2 

 

>>> ((x*y)**3).extract_multiplicatively(x**4 * y) 

 

>>> (2*x).extract_multiplicatively(2) 

x 

 

>>> (2*x).extract_multiplicatively(3) 

 

>>> (Rational(1, 2)*x).extract_multiplicatively(3) 

x/6 

 

""" 

c = sympify(c) 

if self is S.NaN: 

return None 

if c is S.One: 

return self 

elif c == self: 

return S.One 

if c.is_Add: 

cc, pc = c.primitive() 

if cc is not S.One: 

c = Mul(cc, pc, evaluate=False) 

if c.is_Mul: 

a, b = c.as_two_terms() 

x = self.extract_multiplicatively(a) 

if x is not None: 

return x.extract_multiplicatively(b) 

quotient = self / c 

if self.is_Number: 

if self is S.Infinity: 

if c.is_positive: 

return S.Infinity 

elif self is S.NegativeInfinity: 

if c.is_negative: 

return S.Infinity 

elif c.is_positive: 

return S.NegativeInfinity 

elif self is S.ComplexInfinity: 

if not c.is_zero: 

return S.ComplexInfinity 

elif self.is_Integer: 

if not quotient.is_Integer: 

return None 

elif self.is_positive and quotient.is_negative: 

return None 

else: 

return quotient 

elif self.is_Rational: 

if not quotient.is_Rational: 

return None 

elif self.is_positive and quotient.is_negative: 

return None 

else: 

return quotient 

elif self.is_Float: 

if not quotient.is_Float: 

return None 

elif self.is_positive and quotient.is_negative: 

return None 

else: 

return quotient 

elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit: 

if quotient.is_Mul and len(quotient.args) == 2: 

if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self: 

return quotient 

elif quotient.is_Integer and c.is_Number: 

return quotient 

elif self.is_Add: 

cs, ps = self.primitive() 

if cs is not S.One: 

return Mul(cs, ps, evaluate=False).extract_multiplicatively(c) 

newargs = [] 

for arg in self.args: 

newarg = arg.extract_multiplicatively(c) 

if newarg is not None: 

newargs.append(newarg) 

else: 

return None 

return Add(*newargs) 

elif self.is_Mul: 

args = list(self.args) 

for i, arg in enumerate(args): 

newarg = arg.extract_multiplicatively(c) 

if newarg is not None: 

args[i] = newarg 

return Mul(*args) 

elif self.is_Pow: 

if c.is_Pow and c.base == self.base: 

new_exp = self.exp.extract_additively(c.exp) 

if new_exp is not None: 

return self.base ** (new_exp) 

elif c == self.base: 

new_exp = self.exp.extract_additively(1) 

if new_exp is not None: 

return self.base ** (new_exp) 

 

def extract_additively(self, c): 

"""Return self - c if it's possible to subtract c from self and 

make all matching coefficients move towards zero, else return None. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y 

>>> e = 2*x + 3 

>>> e.extract_additively(x + 1) 

x + 2 

>>> e.extract_additively(3*x) 

>>> e.extract_additively(4) 

>>> (y*(x + 1)).extract_additively(x + 1) 

>>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1) 

(x + 1)*(x + 2*y) + 3 

 

Sometimes auto-expansion will return a less simplified result 

than desired; gcd_terms might be used in such cases: 

 

>>> from sympy import gcd_terms 

>>> (4*x*(y + 1) + y).extract_additively(x) 

4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y 

>>> gcd_terms(_) 

x*(4*y + 3) + y 

 

See Also 

======== 

extract_multiplicatively 

coeff 

as_coefficient 

 

""" 

 

c = sympify(c) 

if self is S.NaN: 

return None 

if c is S.Zero: 

return self 

elif c == self: 

return S.Zero 

elif self is S.Zero: 

return None 

 

if self.is_Number: 

if not c.is_Number: 

return None 

co = self 

diff = co - c 

# XXX should we match types? i.e should 3 - .1 succeed? 

if (co > 0 and diff > 0 and diff < co or 

co < 0 and diff < 0 and diff > co): 

return diff 

return None 

 

if c.is_Number: 

co, t = self.as_coeff_Add() 

xa = co.extract_additively(c) 

if xa is None: 

return None 

return xa + t 

 

# handle the args[0].is_Number case separately 

# since we will have trouble looking for the coeff of 

# a number. 

if c.is_Add and c.args[0].is_Number: 

# whole term as a term factor 

co = self.coeff(c) 

xa0 = (co.extract_additively(1) or 0)*c 

if xa0: 

diff = self - co*c 

return (xa0 + (diff.extract_additively(c) or diff)) or None 

# term-wise 

h, t = c.as_coeff_Add() 

sh, st = self.as_coeff_Add() 

xa = sh.extract_additively(h) 

if xa is None: 

return None 

xa2 = st.extract_additively(t) 

if xa2 is None: 

return None 

return xa + xa2 

 

# whole term as a term factor 

co = self.coeff(c) 

xa0 = (co.extract_additively(1) or 0)*c 

if xa0: 

diff = self - co*c 

return (xa0 + (diff.extract_additively(c) or diff)) or None 

# term-wise 

coeffs = [] 

for a in Add.make_args(c): 

ac, at = a.as_coeff_Mul() 

co = self.coeff(at) 

if not co: 

return None 

coc, cot = co.as_coeff_Add() 

xa = coc.extract_additively(ac) 

if xa is None: 

return None 

self -= co*at 

coeffs.append((cot + xa)*at) 

coeffs.append(self) 

return Add(*coeffs) 

 

def could_extract_minus_sign(self): 

"""Canonical way to choose an element in the set {e, -e} where 

e is any expression. If the canonical element is e, we have 

e.could_extract_minus_sign() == True, else 

e.could_extract_minus_sign() == False. 

 

For any expression, the set ``{e.could_extract_minus_sign(), 

(-e).could_extract_minus_sign()}`` must be ``{True, False}``. 

 

>>> from sympy.abc import x, y 

>>> (x-y).could_extract_minus_sign() != (y-x).could_extract_minus_sign() 

True 

 

""" 

negative_self = -self 

self_has_minus = (self.extract_multiplicatively(-1) is not None) 

negative_self_has_minus = ( 

(negative_self).extract_multiplicatively(-1) is not None) 

if self_has_minus != negative_self_has_minus: 

return self_has_minus 

else: 

if self.is_Add: 

# We choose the one with less arguments with minus signs 

all_args = len(self.args) 

negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()]) 

positive_args = all_args - negative_args 

if positive_args > negative_args: 

return False 

elif positive_args < negative_args: 

return True 

elif self.is_Mul: 

# We choose the one with an odd number of minus signs 

num, den = self.as_numer_denom() 

args = Mul.make_args(num) + Mul.make_args(den) 

arg_signs = [arg.could_extract_minus_sign() for arg in args] 

negative_args = list(filter(None, arg_signs)) 

return len(negative_args) % 2 == 1 

 

# As a last resort, we choose the one with greater value of .sort_key() 

return bool(self.sort_key() < negative_self.sort_key()) 

 

def extract_branch_factor(self, allow_half=False): 

""" 

Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way. 

Return (z, n). 

 

>>> from sympy import exp_polar, I, pi 

>>> from sympy.abc import x, y 

>>> exp_polar(I*pi).extract_branch_factor() 

(exp_polar(I*pi), 0) 

>>> exp_polar(2*I*pi).extract_branch_factor() 

(1, 1) 

>>> exp_polar(-pi*I).extract_branch_factor() 

(exp_polar(I*pi), -1) 

>>> exp_polar(3*pi*I + x).extract_branch_factor() 

(exp_polar(x + I*pi), 1) 

>>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor() 

(y*exp_polar(2*pi*x), -1) 

>>> exp_polar(-I*pi/2).extract_branch_factor() 

(exp_polar(-I*pi/2), 0) 

 

If allow_half is True, also extract exp_polar(I*pi): 

 

>>> exp_polar(I*pi).extract_branch_factor(allow_half=True) 

(1, 1/2) 

>>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True) 

(1, 1) 

>>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True) 

(1, 3/2) 

>>> exp_polar(-I*pi).extract_branch_factor(allow_half=True) 

(1, -1/2) 

""" 

from sympy import exp_polar, pi, I, ceiling, Add 

n = S(0) 

res = S(1) 

args = Mul.make_args(self) 

exps = [] 

for arg in args: 

if arg.func is exp_polar: 

exps += [arg.exp] 

else: 

res *= arg 

piimult = S(0) 

extras = [] 

while exps: 

exp = exps.pop() 

if exp.is_Add: 

exps += exp.args 

continue 

if exp.is_Mul: 

coeff = exp.as_coefficient(pi*I) 

if coeff is not None: 

piimult += coeff 

continue 

extras += [exp] 

if not piimult.free_symbols: 

coeff = piimult 

tail = () 

else: 

coeff, tail = piimult.as_coeff_add(*piimult.free_symbols) 

# round down to nearest multiple of 2 

branchfact = ceiling(coeff/2 - S(1)/2)*2 

n += branchfact/2 

c = coeff - branchfact 

if allow_half: 

nc = c.extract_additively(1) 

if nc is not None: 

n += S(1)/2 

c = nc 

newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras) 

if newexp != 0: 

res *= exp_polar(newexp) 

return res, n 

 

def _eval_is_polynomial(self, syms): 

if self.free_symbols.intersection(syms) == set([]): 

return True 

return False 

 

def is_polynomial(self, *syms): 

""" 

Return True if self is a polynomial in syms and False otherwise. 

 

This checks if self is an exact polynomial in syms. This function 

returns False for expressions that are "polynomials" with symbolic 

exponents. Thus, you should be able to apply polynomial algorithms to 

expressions for which this returns True, and Poly(expr, \*syms) should 

work if and only if expr.is_polynomial(\*syms) returns True. The 

polynomial does not have to be in expanded form. If no symbols are 

given, all free symbols in the expression will be used. 

 

This is not part of the assumptions system. You cannot do 

Symbol('z', polynomial=True). 

 

Examples 

======== 

 

>>> from sympy import Symbol 

>>> x = Symbol('x') 

>>> ((x**2 + 1)**4).is_polynomial(x) 

True 

>>> ((x**2 + 1)**4).is_polynomial() 

True 

>>> (2**x + 1).is_polynomial(x) 

False 

 

 

>>> n = Symbol('n', nonnegative=True, integer=True) 

>>> (x**n + 1).is_polynomial(x) 

False 

 

This function does not attempt any nontrivial simplifications that may 

result in an expression that does not appear to be a polynomial to 

become one. 

 

>>> from sympy import sqrt, factor, cancel 

>>> y = Symbol('y', positive=True) 

>>> a = sqrt(y**2 + 2*y + 1) 

>>> a.is_polynomial(y) 

False 

>>> factor(a) 

y + 1 

>>> factor(a).is_polynomial(y) 

True 

 

>>> b = (y**2 + 2*y + 1)/(y + 1) 

>>> b.is_polynomial(y) 

False 

>>> cancel(b) 

y + 1 

>>> cancel(b).is_polynomial(y) 

True 

 

See also .is_rational_function() 

 

""" 

if syms: 

syms = set(map(sympify, syms)) 

else: 

syms = self.free_symbols 

 

if syms.intersection(self.free_symbols) == set([]): 

# constant polynomial 

return True 

else: 

return self._eval_is_polynomial(syms) 

 

def _eval_is_rational_function(self, syms): 

if self.free_symbols.intersection(syms) == set([]): 

return True 

return False 

 

def is_rational_function(self, *syms): 

""" 

Test whether function is a ratio of two polynomials in the given 

symbols, syms. When syms is not given, all free symbols will be used. 

The rational function does not have to be in expanded or in any kind of 

canonical form. 

 

This function returns False for expressions that are "rational 

functions" with symbolic exponents. Thus, you should be able to call 

.as_numer_denom() and apply polynomial algorithms to the result for 

expressions for which this returns True. 

 

This is not part of the assumptions system. You cannot do 

Symbol('z', rational_function=True). 

 

Examples 

======== 

 

>>> from sympy import Symbol, sin 

>>> from sympy.abc import x, y 

 

>>> (x/y).is_rational_function() 

True 

 

>>> (x**2).is_rational_function() 

True 

 

>>> (x/sin(y)).is_rational_function(y) 

False 

 

>>> n = Symbol('n', integer=True) 

>>> (x**n + 1).is_rational_function(x) 

False 

 

This function does not attempt any nontrivial simplifications that may 

result in an expression that does not appear to be a rational function 

to become one. 

 

>>> from sympy import sqrt, factor 

>>> y = Symbol('y', positive=True) 

>>> a = sqrt(y**2 + 2*y + 1)/y 

>>> a.is_rational_function(y) 

False 

>>> factor(a) 

(y + 1)/y 

>>> factor(a).is_rational_function(y) 

True 

 

See also is_algebraic_expr(). 

 

""" 

if self in [S.NaN, S.Infinity, -S.Infinity, S.ComplexInfinity]: 

return False 

 

if syms: 

syms = set(map(sympify, syms)) 

else: 

syms = self.free_symbols 

 

if syms.intersection(self.free_symbols) == set([]): 

# constant rational function 

return True 

else: 

return self._eval_is_rational_function(syms) 

 

def _eval_is_algebraic_expr(self, syms): 

if self.free_symbols.intersection(syms) == set([]): 

return True 

return False 

 

def is_algebraic_expr(self, *syms): 

""" 

This tests whether a given expression is algebraic or not, in the 

given symbols, syms. When syms is not given, all free symbols 

will be used. The rational function does not have to be in expanded 

or in any kind of canonical form. 

 

This function returns False for expressions that are "algebraic 

expressions" with symbolic exponents. This is a simple extension to the 

is_rational_function, including rational exponentiation. 

 

Examples 

======== 

 

>>> from sympy import Symbol, sqrt 

>>> x = Symbol('x', real=True) 

>>> sqrt(1 + x).is_rational_function() 

False 

>>> sqrt(1 + x).is_algebraic_expr() 

True 

 

This function does not attempt any nontrivial simplifications that may 

result in an expression that does not appear to be an algebraic 

expression to become one. 

 

>>> from sympy import exp, factor 

>>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1) 

>>> a.is_algebraic_expr(x) 

False 

>>> factor(a).is_algebraic_expr() 

True 

 

See Also 

======== 

is_rational_function() 

 

References 

========== 

 

- http://en.wikipedia.org/wiki/Algebraic_expression 

 

""" 

if syms: 

syms = set(map(sympify, syms)) 

else: 

syms = self.free_symbols 

 

if syms.intersection(self.free_symbols) == set([]): 

# constant algebraic expression 

return True 

else: 

return self._eval_is_algebraic_expr(syms) 

 

################################################################################### 

##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ################## 

################################################################################### 

 

def series(self, x=None, x0=0, n=6, dir="+", logx=None): 

""" 

Series expansion of "self" around ``x = x0`` yielding either terms of 

the series one by one (the lazy series given when n=None), else 

all the terms at once when n != None. 

 

Returns the series expansion of "self" around the point ``x = x0`` 

with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6). 

 

If ``x=None`` and ``self`` is univariate, the univariate symbol will 

be supplied, otherwise an error will be raised. 

 

>>> from sympy import cos, exp 

>>> from sympy.abc import x, y 

>>> cos(x).series() 

1 - x**2/2 + x**4/24 + O(x**6) 

>>> cos(x).series(n=4) 

1 - x**2/2 + O(x**4) 

>>> cos(x).series(x, x0=1, n=2) 

cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1)) 

>>> e = cos(x + exp(y)) 

>>> e.series(y, n=2) 

cos(x + 1) - y*sin(x + 1) + O(y**2) 

>>> e.series(x, n=2) 

cos(exp(y)) - x*sin(exp(y)) + O(x**2) 

 

If ``n=None`` then a generator of the series terms will be returned. 

 

>>> term=cos(x).series(n=None) 

>>> [next(term) for i in range(2)] 

[1, -x**2/2] 

 

For ``dir=+`` (default) the series is calculated from the right and 

for ``dir=-`` the series from the left. For smooth functions this 

flag will not alter the results. 

 

>>> abs(x).series(dir="+") 

x 

>>> abs(x).series(dir="-") 

-x 

 

""" 

from sympy import collect, Dummy, Order, Rational, Symbol 

if x is None: 

syms = self.atoms(Symbol) 

if not syms: 

return self 

elif len(syms) > 1: 

raise ValueError('x must be given for multivariate functions.') 

x = syms.pop() 

 

if not self.has(x): 

if n is None: 

return (s for s in [self]) 

else: 

return self 

 

if len(dir) != 1 or dir not in '+-': 

raise ValueError("Dir must be '+' or '-'") 

 

if x0 in [S.Infinity, S.NegativeInfinity]: 

dir = {S.Infinity: '+', S.NegativeInfinity: '-'}[x0] 

s = self.subs(x, 1/x).series(x, n=n, dir=dir) 

if n is None: 

return (si.subs(x, 1/x) for si in s) 

return s.subs(x, 1/x) 

 

# use rep to shift origin to x0 and change sign (if dir is negative) 

# and undo the process with rep2 

if x0 or dir == '-': 

if dir == '-': 

rep = -x + x0 

rep2 = -x 

rep2b = x0 

else: 

rep = x + x0 

rep2 = x 

rep2b = -x0 

s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx) 

if n is None: # lseries... 

return (si.subs(x, rep2 + rep2b) for si in s) 

return s.subs(x, rep2 + rep2b) 

 

# from here on it's x0=0 and dir='+' handling 

 

if x.is_positive is x.is_negative is None or x.is_Symbol is not True: 

# replace x with an x that has a positive assumption 

xpos = Dummy('x', positive=True, finite=True) 

rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx) 

if n is None: 

return (s.subs(xpos, x) for s in rv) 

else: 

return rv.subs(xpos, x) 

 

if n is not None: # nseries handling 

s1 = self._eval_nseries(x, n=n, logx=logx) 

o = s1.getO() or S.Zero 

if o: 

# make sure the requested order is returned 

ngot = o.getn() 

if ngot > n: 

# leave o in its current form (e.g. with x*log(x)) so 

# it eats terms properly, then replace it below 

if n != 0: 

s1 += o.subs(x, x**Rational(n, ngot)) 

else: 

s1 += Order(1, x) 

elif ngot < n: 

# increase the requested number of terms to get the desired 

# number keep increasing (up to 9) until the received order 

# is different than the original order and then predict how 

# many additional terms are needed 

for more in range(1, 9): 

s1 = self._eval_nseries(x, n=n + more, logx=logx) 

newn = s1.getn() 

if newn != ngot: 

ndo = n + (n - ngot)*more/(newn - ngot) 

s1 = self._eval_nseries(x, n=ndo, logx=logx) 

while s1.getn() < n: 

s1 = self._eval_nseries(x, n=ndo, logx=logx) 

ndo += 1 

break 

else: 

raise ValueError('Could not calculate %s terms for %s' 

% (str(n), self)) 

s1 += Order(x**n, x) 

o = s1.getO() 

s1 = s1.removeO() 

else: 

o = Order(x**n, x) 

s1done = s1.doit() 

if (s1done + o).removeO() == s1done: 

o = S.Zero 

 

try: 

return collect(s1, x) + o 

except NotImplementedError: 

return s1 + o 

 

else: # lseries handling 

def yield_lseries(s): 

"""Return terms of lseries one at a time.""" 

for si in s: 

if not si.is_Add: 

yield si 

continue 

# yield terms 1 at a time if possible 

# by increasing order until all the 

# terms have been returned 

yielded = 0 

o = Order(si, x)*x 

ndid = 0 

ndo = len(si.args) 

while 1: 

do = (si - yielded + o).removeO() 

o *= x 

if not do or do.is_Order: 

continue 

if do.is_Add: 

ndid += len(do.args) 

else: 

ndid += 1 

yield do 

if ndid == ndo: 

break 

yielded += do 

 

return yield_lseries(self.removeO()._eval_lseries(x, logx=logx)) 

 

def taylor_term(self, n, x, *previous_terms): 

"""General method for the taylor term. 

 

This method is slow, because it differentiates n-times. Subclasses can 

redefine it to make it faster by using the "previous_terms". 

""" 

from sympy import Dummy, factorial 

x = sympify(x) 

_x = Dummy('x') 

return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n) 

 

def lseries(self, x=None, x0=0, dir='+', logx=None): 

""" 

Wrapper for series yielding an iterator of the terms of the series. 

 

Note: an infinite series will yield an infinite iterator. The following, 

for exaxmple, will never terminate. It will just keep printing terms 

of the sin(x) series:: 

 

for term in sin(x).lseries(x): 

print term 

 

The advantage of lseries() over nseries() is that many times you are 

just interested in the next term in the series (i.e. the first term for 

example), but you don't know how many you should ask for in nseries() 

using the "n" parameter. 

 

See also nseries(). 

""" 

return self.series(x, x0, n=None, dir=dir, logx=logx) 

 

def _eval_lseries(self, x, logx=None): 

# default implementation of lseries is using nseries(), and adaptively 

# increasing the "n". As you can see, it is not very efficient, because 

# we are calculating the series over and over again. Subclasses should 

# override this method and implement much more efficient yielding of 

# terms. 

n = 0 

series = self._eval_nseries(x, n=n, logx=logx) 

if not series.is_Order: 

if series.is_Add: 

yield series.removeO() 

else: 

yield series 

return 

 

while series.is_Order: 

n += 1 

series = self._eval_nseries(x, n=n, logx=logx) 

e = series.removeO() 

yield e 

while 1: 

while 1: 

n += 1 

series = self._eval_nseries(x, n=n, logx=logx).removeO() 

if e != series: 

break 

yield series - e 

e = series 

 

def nseries(self, x=None, x0=0, n=6, dir='+', logx=None): 

""" 

Wrapper to _eval_nseries if assumptions allow, else to series. 

 

If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is 

called. This calculates "n" terms in the innermost expressions and 

then builds up the final series just by "cross-multiplying" everything 

out. 

 

The optional ``logx`` parameter can be used to replace any log(x) in the 

returned series with a symbolic value to avoid evaluating log(x) at 0. A 

symbol to use in place of log(x) should be provided. 

 

Advantage -- it's fast, because we don't have to determine how many 

terms we need to calculate in advance. 

 

Disadvantage -- you may end up with less terms than you may have 

expected, but the O(x**n) term appended will always be correct and 

so the result, though perhaps shorter, will also be correct. 

 

If any of those assumptions is not met, this is treated like a 

wrapper to series which will try harder to return the correct 

number of terms. 

 

See also lseries(). 

 

Examples 

======== 

 

>>> from sympy import sin, log, Symbol 

>>> from sympy.abc import x, y 

>>> sin(x).nseries(x, 0, 6) 

x - x**3/6 + x**5/120 + O(x**6) 

>>> log(x+1).nseries(x, 0, 5) 

x - x**2/2 + x**3/3 - x**4/4 + O(x**5) 

 

Handling of the ``logx`` parameter --- in the following example the 

expansion fails since ``sin`` does not have an asymptotic expansion 

at -oo (the limit of log(x) as x approaches 0): 

 

>>> e = sin(log(x)) 

>>> e.nseries(x, 0, 6) 

Traceback (most recent call last): 

... 

PoleError: ... 

... 

>>> logx = Symbol('logx') 

>>> e.nseries(x, 0, 6, logx=logx) 

sin(logx) 

 

In the following example, the expansion works but gives only an Order term 

unless the ``logx`` parameter is used: 

 

>>> e = x**y 

>>> e.nseries(x, 0, 2) 

O(log(x)**2) 

>>> e.nseries(x, 0, 2, logx=logx) 

exp(logx*y) 

 

""" 

if x and not x in self.free_symbols: 

return self 

if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): 

return self.series(x, x0, n, dir) 

else: 

return self._eval_nseries(x, n=n, logx=logx) 

 

def _eval_nseries(self, x, n, logx): 

""" 

Return terms of series for self up to O(x**n) at x=0 

from the positive direction. 

 

This is a method that should be overridden in subclasses. Users should 

never call this method directly (use .nseries() instead), so you don't 

have to write docstrings for _eval_nseries(). 

""" 

from sympy.utilities.misc import filldedent 

raise NotImplementedError(filldedent(""" 

The _eval_nseries method should be added to 

%s to give terms up to O(x**n) at x=0 

from the positive direction so it is available when 

nseries calls it.""" % self.func) 

) 

 

def limit(self, x, xlim, dir='+'): 

""" Compute limit x->xlim. 

""" 

from sympy.series.limits import limit 

return limit(self, x, xlim, dir) 

 

def compute_leading_term(self, x, logx=None): 

""" 

as_leading_term is only allowed for results of .series() 

This is a wrapper to compute a series first. 

""" 

from sympy import Dummy, log 

from sympy.series.gruntz import calculate_series 

 

if self.removeO() == 0: 

return self 

 

if logx is None: 

d = Dummy('logx') 

s = calculate_series(self, x, d).subs(d, log(x)) 

else: 

s = calculate_series(self, x, logx) 

 

return s.as_leading_term(x) 

 

@cacheit 

def as_leading_term(self, *symbols): 

""" 

Returns the leading (nonzero) term of the series expansion of self. 

 

The _eval_as_leading_term routines are used to do this, and they must 

always return a non-zero value. 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> (1 + x + x**2).as_leading_term(x) 

1 

>>> (1/x**2 + x + x**2).as_leading_term(x) 

x**(-2) 

 

""" 

from sympy import powsimp 

if len(symbols) > 1: 

c = self 

for x in symbols: 

c = c.as_leading_term(x) 

return c 

elif not symbols: 

return self 

x = sympify(symbols[0]) 

if not x.is_Symbol: 

raise ValueError('expecting a Symbol but got %s' % x) 

if x not in self.free_symbols: 

return self 

obj = self._eval_as_leading_term(x) 

if obj is not None: 

return powsimp(obj, deep=True, combine='exp') 

raise NotImplementedError('as_leading_term(%s, %s)' % (self, x)) 

 

def _eval_as_leading_term(self, x): 

return self 

 

def as_coeff_exponent(self, x): 

""" ``c*x**e -> c,e`` where x can be any symbolic expression. 

""" 

from sympy import collect 

s = collect(self, x) 

c, p = s.as_coeff_mul(x) 

if len(p) == 1: 

b, e = p[0].as_base_exp() 

if b == x: 

return c, e 

return s, S.Zero 

 

def leadterm(self, x): 

""" 

Returns the leading term a*x**b as a tuple (a, b). 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> (1+x+x**2).leadterm(x) 

(1, 0) 

>>> (1/x**2+x+x**2).leadterm(x) 

(1, -2) 

 

""" 

from sympy import Dummy, log 

l = self.as_leading_term(x) 

d = Dummy('logx') 

if l.has(log(x)): 

l = l.subs(log(x), d) 

c, e = l.as_coeff_exponent(x) 

if x in c.free_symbols: 

from sympy.utilities.misc import filldedent 

raise ValueError(filldedent(""" 

cannot compute leadterm(%s, %s). The coefficient 

should have been free of x but got %s""" % (self, x, c))) 

c = c.subs(d, log(x)) 

return c, e 

 

def as_coeff_Mul(self, rational=False): 

"""Efficiently extract the coefficient of a product. """ 

return S.One, self 

 

def as_coeff_Add(self, rational=False): 

"""Efficiently extract the coefficient of a summation. """ 

return S.Zero, self 

 

def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, 

full=False): 

""" 

Compute formal power power series of self. 

 

See the docstring of the :func:`fps` function in sympy.series.formal for 

more information. 

""" 

from sympy.series.formal import fps 

 

return fps(self, x, x0, dir, hyper, order, rational, full) 

 

def fourier_series(self, limits=None): 

"""Compute fourier sine/cosine series of self. 

 

See the docstring of the :func:`fourier_series` in sympy.series.fourier 

for more information. 

""" 

from sympy.series.fourier import fourier_series 

 

return fourier_series(self, limits) 

 

################################################################################### 

##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS #################### 

################################################################################### 

 

def diff(self, *symbols, **assumptions): 

new_symbols = list(map(sympify, symbols)) # e.g. x, 2, y, z 

assumptions.setdefault("evaluate", True) 

return Derivative(self, *new_symbols, **assumptions) 

 

########################################################################### 

###################### EXPRESSION EXPANSION METHODS ####################### 

########################################################################### 

 

# Relevant subclasses should override _eval_expand_hint() methods. See 

# the docstring of expand() for more info. 

 

def _eval_expand_complex(self, **hints): 

real, imag = self.as_real_imag(**hints) 

return real + S.ImaginaryUnit*imag 

 

@staticmethod 

def _expand_hint(expr, hint, deep=True, **hints): 

""" 

Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``. 

 

Returns ``(expr, hit)``, where expr is the (possibly) expanded 

``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and 

``False`` otherwise. 

""" 

hit = False 

# XXX: Hack to support non-Basic args 

# | 

# V 

if deep and getattr(expr, 'args', ()) and not expr.is_Atom: 

sargs = [] 

for arg in expr.args: 

arg, arghit = Expr._expand_hint(arg, hint, **hints) 

hit |= arghit 

sargs.append(arg) 

 

if hit: 

expr = expr.func(*sargs) 

 

if hasattr(expr, hint): 

newexpr = getattr(expr, hint)(**hints) 

if newexpr != expr: 

return (newexpr, True) 

 

return (expr, hit) 

 

@cacheit 

def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, 

mul=True, log=True, multinomial=True, basic=True, **hints): 

""" 

Expand an expression using hints. 

 

See the docstring of the expand() function in sympy.core.function for 

more information. 

 

""" 

from sympy.simplify.radsimp import fraction 

 

hints.update(power_base=power_base, power_exp=power_exp, mul=mul, 

log=log, multinomial=multinomial, basic=basic) 

 

expr = self 

if hints.pop('frac', False): 

n, d = [a.expand(deep=deep, modulus=modulus, **hints) 

for a in fraction(self)] 

return n/d 

elif hints.pop('denom', False): 

n, d = fraction(self) 

return n/d.expand(deep=deep, modulus=modulus, **hints) 

elif hints.pop('numer', False): 

n, d = fraction(self) 

return n.expand(deep=deep, modulus=modulus, **hints)/d 

 

# Although the hints are sorted here, an earlier hint may get applied 

# at a given node in the expression tree before another because of how 

# the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y + 

# x*z) because while applying log at the top level, log and mul are 

# applied at the deeper level in the tree so that when the log at the 

# upper level gets applied, the mul has already been applied at the 

# lower level. 

 

# Additionally, because hints are only applied once, the expression 

# may not be expanded all the way. For example, if mul is applied 

# before multinomial, x*(x + 1)**2 won't be expanded all the way. For 

# now, we just use a special case to make multinomial run before mul, 

# so that at least polynomials will be expanded all the way. In the 

# future, smarter heuristics should be applied. 

# TODO: Smarter heuristics 

 

def _expand_hint_key(hint): 

"""Make multinomial come before mul""" 

if hint == 'mul': 

return 'mulz' 

return hint 

 

for hint in sorted(hints.keys(), key=_expand_hint_key): 

use_hint = hints[hint] 

if use_hint: 

hint = '_eval_expand_' + hint 

expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints) 

 

while True: 

was = expr 

if hints.get('multinomial', False): 

expr, _ = Expr._expand_hint( 

expr, '_eval_expand_multinomial', deep=deep, **hints) 

if hints.get('mul', False): 

expr, _ = Expr._expand_hint( 

expr, '_eval_expand_mul', deep=deep, **hints) 

if hints.get('log', False): 

expr, _ = Expr._expand_hint( 

expr, '_eval_expand_log', deep=deep, **hints) 

if expr == was: 

break 

 

if modulus is not None: 

modulus = sympify(modulus) 

 

if not modulus.is_Integer or modulus <= 0: 

raise ValueError( 

"modulus must be a positive integer, got %s" % modulus) 

 

terms = [] 

 

for term in Add.make_args(expr): 

coeff, tail = term.as_coeff_Mul(rational=True) 

 

coeff %= modulus 

 

if coeff: 

terms.append(coeff*tail) 

 

expr = Add(*terms) 

 

return expr 

 

########################################################################### 

################### GLOBAL ACTION VERB WRAPPER METHODS #################### 

########################################################################### 

 

def integrate(self, *args, **kwargs): 

"""See the integrate function in sympy.integrals""" 

from sympy.integrals import integrate 

return integrate(self, *args, **kwargs) 

 

def simplify(self, ratio=1.7, measure=None): 

"""See the simplify function in sympy.simplify""" 

from sympy.simplify import simplify 

from sympy.core.function import count_ops 

measure = measure or count_ops 

return simplify(self, ratio, measure) 

 

def nsimplify(self, constants=[], tolerance=None, full=False): 

"""See the nsimplify function in sympy.simplify""" 

from sympy.simplify import nsimplify 

return nsimplify(self, constants, tolerance, full) 

 

def separate(self, deep=False, force=False): 

"""See the separate function in sympy.simplify""" 

from sympy.core.function import expand_power_base 

return expand_power_base(self, deep=deep, force=force) 

 

def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True): 

"""See the collect function in sympy.simplify""" 

from sympy.simplify import collect 

return collect(self, syms, func, evaluate, exact, distribute_order_term) 

 

def together(self, *args, **kwargs): 

"""See the together function in sympy.polys""" 

from sympy.polys import together 

return together(self, *args, **kwargs) 

 

def apart(self, x=None, **args): 

"""See the apart function in sympy.polys""" 

from sympy.polys import apart 

return apart(self, x, **args) 

 

def ratsimp(self): 

"""See the ratsimp function in sympy.simplify""" 

from sympy.simplify import ratsimp 

return ratsimp(self) 

 

def trigsimp(self, **args): 

"""See the trigsimp function in sympy.simplify""" 

from sympy.simplify import trigsimp 

return trigsimp(self, **args) 

 

def radsimp(self, **kwargs): 

"""See the radsimp function in sympy.simplify""" 

from sympy.simplify import radsimp 

return radsimp(self, **kwargs) 

 

def powsimp(self, *args, **kwargs): 

"""See the powsimp function in sympy.simplify""" 

from sympy.simplify import powsimp 

return powsimp(self, *args, **kwargs) 

 

def combsimp(self): 

"""See the combsimp function in sympy.simplify""" 

from sympy.simplify import combsimp 

return combsimp(self) 

 

def factor(self, *gens, **args): 

"""See the factor() function in sympy.polys.polytools""" 

from sympy.polys import factor 

return factor(self, *gens, **args) 

 

def refine(self, assumption=True): 

"""See the refine function in sympy.assumptions""" 

from sympy.assumptions import refine 

return refine(self, assumption) 

 

def cancel(self, *gens, **args): 

"""See the cancel function in sympy.polys""" 

from sympy.polys import cancel 

return cancel(self, *gens, **args) 

 

def invert(self, g, *gens, **args): 

"""Return the multiplicative inverse of ``self`` mod ``g`` 

where ``self`` (and ``g``) may be symbolic expressions). 

 

See Also 

======== 

sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert 

""" 

from sympy.polys.polytools import invert 

from sympy.core.numbers import mod_inverse 

if self.is_number and getattr(g, 'is_number', True): 

return mod_inverse(self, g) 

return invert(self, g, *gens, **args) 

 

def round(self, p=0): 

"""Return x rounded to the given decimal place. 

 

If a complex number would results, apply round to the real 

and imaginary components of the number. 

 

Examples 

======== 

 

>>> from sympy import pi, E, I, S, Add, Mul, Number 

>>> S(10.5).round() 

11. 

>>> pi.round() 

3. 

>>> pi.round(2) 

3.14 

>>> (2*pi + E*I).round() 

6. + 3.*I 

 

The round method has a chopping effect: 

 

>>> (2*pi + I/10).round() 

6. 

>>> (pi/10 + 2*I).round() 

2.*I 

>>> (pi/10 + E*I).round(2) 

0.31 + 2.72*I 

 

Notes 

===== 

 

Do not confuse the Python builtin function, round, with the 

SymPy method of the same name. The former always returns a float 

(or raises an error if applied to a complex value) while the 

latter returns either a Number or a complex number: 

 

>>> isinstance(round(S(123), -2), Number) 

False 

>>> isinstance(S(123).round(-2), Number) 

True 

>>> isinstance((3*I).round(), Mul) 

True 

>>> isinstance((1 + 3*I).round(), Add) 

True 

 

""" 

from sympy import Float 

x = self 

if not x.is_number: 

raise TypeError("can't round symbolic expression") 

if not x.is_Atom: 

xn = x.n(2) 

if not pure_complex(xn, or_real=True): 

raise TypeError('Expected a number but got %s:' % 

getattr(getattr(x,'func', x), '__name__', type(x))) 

elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): 

return x 

if not x.is_real: 

i, r = x.as_real_imag() 

return i.round(p) + S.ImaginaryUnit*r.round(p) 

if not x: 

return x 

p = int(p) 

 

precs = [f._prec for f in x.atoms(Float)] 

dps = prec_to_dps(max(precs)) if precs else None 

 

mag_first_dig = _mag(x) 

allow = digits_needed = mag_first_dig + p 

if dps is not None and allow > dps: 

allow = dps 

mag = Pow(10, p) # magnitude needed to bring digit p to units place 

xwas = x 

x += 1/(2*mag) # add the half for rounding 

i10 = 10*mag*x.n((dps if dps is not None else digits_needed) + 1) 

if i10.is_negative: 

x = xwas - 1/(2*mag) # should have gone the other way 

i10 = 10*mag*x.n((dps if dps is not None else digits_needed) + 1) 

rv = -(Integer(-i10)//10) 

else: 

rv = Integer(i10)//10 

q = 1 

if p > 0: 

q = mag 

elif p < 0: 

rv /= mag 

rv = Rational(rv, q) 

if rv.is_Integer: 

# use str or else it won't be a float 

return Float(str(rv), digits_needed) 

else: 

if not allow and rv > self: 

allow += 1 

return Float(rv, allow) 

 

 

class AtomicExpr(Atom, Expr): 

""" 

A parent class for object which are both atoms and Exprs. 

 

For example: Symbol, Number, Rational, Integer, ... 

But not: Add, Mul, Pow, ... 

""" 

is_number = False 

is_Atom = True 

 

__slots__ = [] 

 

def _eval_derivative(self, s): 

if self == s: 

return S.One 

return S.Zero 

 

def _eval_is_polynomial(self, syms): 

return True 

 

def _eval_is_rational_function(self, syms): 

return True 

 

def _eval_is_algebraic_expr(self, syms): 

return True 

 

def _eval_nseries(self, x, n, logx): 

return self 

 

 

def _mag(x): 

"""Return integer ``i`` such that .1 <= x/10**i < 1 

 

Examples 

======== 

 

>>> from sympy.core.expr import _mag 

>>> from sympy import Float 

>>> _mag(Float(.1)) 

0 

>>> _mag(Float(.01)) 

-1 

>>> _mag(Float(1234)) 

4 

""" 

from math import log10, ceil, log 

from sympy import Float 

xpos = abs(x.n()) 

if not xpos: 

return S.Zero 

try: 

mag_first_dig = int(ceil(log10(xpos))) 

except (ValueError, OverflowError): 

mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10))) 

# check that we aren't off by 1 

if (xpos/10**mag_first_dig) >= 1: 

assert 1 <= (xpos/10**mag_first_dig) < 10 

mag_first_dig += 1 

return mag_first_dig 

 

from .mul import Mul 

from .add import Add 

from .power import Pow 

from .function import Derivative, Function 

from .mod import Mod 

from .exprtools import factor_terms 

from .numbers import Integer, Rational