Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

# -*- coding: utf-8 -*- 

 

"""This is rule-based deduction system for SymPy 

 

The whole thing is split into two parts 

 

- rules compilation and preparation of tables 

- runtime inference 

 

For rule-based inference engines, the classical work is RETE algorithm [1], 

[2] Although we are not implementing it in full (or even significantly) 

it's still still worth a read to understand the underlying ideas. 

 

In short, every rule in a system of rules is one of two forms: 

 

- atom -> ... (alpha rule) 

- And(atom1, atom2, ...) -> ... (beta rule) 

 

 

The major complexity is in efficient beta-rules processing and usually for an 

expert system a lot of effort goes into code that operates on beta-rules. 

 

 

Here we take minimalistic approach to get something usable first. 

 

- (preparation) of alpha- and beta- networks, everything except 

- (runtime) FactRules.deduce_all_facts 

 

_____________________________________ 

( Kirr: I've never thought that doing ) 

( logic stuff is that difficult... ) 

------------------------------------- 

o ^__^ 

o (oo)\_______ 

(__)\ )\/\ 

||----w | 

|| || 

 

 

Some references on the topic 

---------------------------- 

 

[1] http://en.wikipedia.org/wiki/Rete_algorithm 

[2] http://reports-archive.adm.cs.cmu.edu/anon/1995/CMU-CS-95-113.pdf 

 

http://en.wikipedia.org/wiki/Propositional_formula 

http://en.wikipedia.org/wiki/Inference_rule 

http://en.wikipedia.org/wiki/List_of_rules_of_inference 

""" 

from __future__ import print_function, division 

 

from collections import defaultdict 

 

from .logic import Logic, And, Or, Not 

from sympy.core.compatibility import string_types, range 

 

 

def _base_fact(atom): 

"""Return the literal fact of an atom. 

 

Effectively, this merely strips the Not around a fact. 

""" 

if isinstance(atom, Not): 

return atom.arg 

else: 

return atom 

 

 

def _as_pair(atom): 

if isinstance(atom, Not): 

return (atom.arg, False) 

else: 

return (atom, True) 

 

# XXX this prepares forward-chaining rules for alpha-network 

 

 

def transitive_closure(implications): 

""" 

Computes the transitive closure of a list of implications 

 

Uses Warshall's algorithm, as described at 

http://www.cs.hope.edu/~cusack/Notes/Notes/DiscreteMath/Warshall.pdf. 

""" 

full_implications = set(implications) 

literals = set().union(*map(set, full_implications)) 

 

for k in literals: 

for i in literals: 

if (i, k) in full_implications: 

for j in literals: 

if (k, j) in full_implications: 

full_implications.add((i, j)) 

 

return full_implications 

 

 

def deduce_alpha_implications(implications): 

"""deduce all implications 

 

Description by example 

---------------------- 

 

given set of logic rules: 

 

a -> b 

b -> c 

 

we deduce all possible rules: 

 

a -> b, c 

b -> c 

 

 

implications: [] of (a,b) 

return: {} of a -> set([b, c, ...]) 

""" 

implications = implications + [(Not(j), Not(i)) for (i, j) in implications] 

res = defaultdict(set) 

full_implications = transitive_closure(implications) 

for a, b in full_implications: 

if a == b: 

continue # skip a->a cyclic input 

 

res[a].add(b) 

 

# Clean up tautologies and check consistency 

for a, impl in res.items(): 

impl.discard(a) 

na = Not(a) 

if na in impl: 

raise ValueError( 

'implications are inconsistent: %s -> %s %s' % (a, na, impl)) 

 

return res 

 

 

def apply_beta_to_alpha_route(alpha_implications, beta_rules): 

"""apply additional beta-rules (And conditions) to already-built 

alpha implication tables 

 

TODO: write about 

 

- static extension of alpha-chains 

- attaching refs to beta-nodes to alpha chains 

 

 

e.g. 

 

alpha_implications: 

 

a -> [b, !c, d] 

b -> [d] 

... 

 

 

beta_rules: 

 

&(b,d) -> e 

 

 

then we'll extend a's rule to the following 

 

a -> [b, !c, d, e] 

""" 

x_impl = {} 

for x in alpha_implications.keys(): 

x_impl[x] = (set(alpha_implications[x]), []) 

for bcond, bimpl in beta_rules: 

for bk in bcond.args: 

if bk in x_impl: 

continue 

x_impl[bk] = (set(), []) 

 

# static extensions to alpha rules: 

# A: x -> a,b B: &(a,b) -> c ==> A: x -> a,b,c 

seen_static_extension = True 

while seen_static_extension: 

seen_static_extension = False 

 

for bcond, bimpl in beta_rules: 

if not isinstance(bcond, And): 

raise TypeError("Cond is not And") 

bargs = set(bcond.args) 

for x, (ximpls, bb) in x_impl.items(): 

x_all = ximpls | {x} 

# A: ... -> a B: &(...) -> a is non-informative 

if bimpl not in x_all and bargs.issubset(x_all): 

ximpls.add(bimpl) 

 

# we introduced new implication - now we have to restore 

# completeness of the whole set. 

bimpl_impl = x_impl.get(bimpl) 

if bimpl_impl is not None: 

ximpls |= bimpl_impl[0] 

seen_static_extension = True 

 

# attach beta-nodes which can be possibly triggered by an alpha-chain 

for bidx, (bcond, bimpl) in enumerate(beta_rules): 

bargs = set(bcond.args) 

for x, (ximpls, bb) in x_impl.items(): 

x_all = ximpls | {x} 

# A: ... -> a B: &(...) -> a (non-informative) 

if bimpl in x_all: 

continue 

# A: x -> a... B: &(!a,...) -> ... (will never trigger) 

# A: x -> a... B: &(...) -> !a (will never trigger) 

if any(Not(xi) in bargs or Not(xi) == bimpl for xi in x_all): 

continue 

 

if bargs & x_all: 

bb.append(bidx) 

 

return x_impl 

 

 

def rules_2prereq(rules): 

"""build prerequisites table from rules 

 

Description by example 

---------------------- 

 

given set of logic rules: 

 

a -> b, c 

b -> c 

 

we build prerequisites (from what points something can be deduced): 

 

b <- a 

c <- a, b 

 

rules: {} of a -> [b, c, ...] 

return: {} of c <- [a, b, ...] 

 

Note however, that this prerequisites may be *not* enough to prove a 

fact. An example is 'a -> b' rule, where prereq(a) is b, and prereq(b) 

is a. That's because a=T -> b=T, and b=F -> a=F, but a=F -> b=? 

""" 

prereq = defaultdict(set) 

for (a, _), impl in rules.items(): 

if isinstance(a, Not): 

a = a.args[0] 

for (i, _) in impl: 

if isinstance(i, Not): 

i = i.args[0] 

prereq[i].add(a) 

return prereq 

 

################ 

# RULES PROVER # 

################ 

 

 

class TautologyDetected(Exception): 

"""(internal) Prover uses it for reporting detected tautology""" 

pass 

 

 

class Prover(object): 

"""ai - prover of logic rules 

 

given a set of initial rules, Prover tries to prove all possible rules 

which follow from given premises. 

 

As a result proved_rules are always either in one of two forms: alpha or 

beta: 

 

Alpha rules 

----------- 

 

This are rules of the form:: 

 

a -> b & c & d & ... 

 

 

Beta rules 

---------- 

 

This are rules of the form:: 

 

&(a,b,...) -> c & d & ... 

 

 

i.e. beta rules are join conditions that say that something follows when 

*several* facts are true at the same time. 

""" 

 

def __init__(self): 

self.proved_rules = [] 

self._rules_seen = set() 

 

def split_alpha_beta(self): 

"""split proved rules into alpha and beta chains""" 

rules_alpha = [] # a -> b 

rules_beta = [] # &(...) -> b 

for a, b in self.proved_rules: 

if isinstance(a, And): 

rules_beta.append((a, b)) 

else: 

rules_alpha.append((a, b)) 

return rules_alpha, rules_beta 

 

@property 

def rules_alpha(self): 

return self.split_alpha_beta()[0] 

 

@property 

def rules_beta(self): 

return self.split_alpha_beta()[1] 

 

def process_rule(self, a, b): 

"""process a -> b rule""" # TODO write more? 

if (not a) or isinstance(b, bool): 

return 

if isinstance(a, bool): 

return 

if (a, b) in self._rules_seen: 

return 

else: 

self._rules_seen.add((a, b)) 

 

# this is the core of processing 

try: 

self._process_rule(a, b) 

except TautologyDetected: 

pass 

 

def _process_rule(self, a, b): 

# right part first 

 

# a -> b & c --> a -> b ; a -> c 

# (?) FIXME this is only correct when b & c != null ! 

if isinstance(b, And): 

for barg in b.args: 

self.process_rule(a, barg) 

 

# a -> b | c --> !b & !c -> !a 

# --> a & !b -> c 

# --> a & !c -> b 

elif isinstance(b, Or): 

# detect tautology first 

if not isinstance(a, Logic): # Atom 

# tautology: a -> a|c|... 

if a in b.args: 

raise TautologyDetected(a, b, 'a -> a|c|...') 

self.process_rule(And(*[Not(barg) for barg in b.args]), Not(a)) 

 

for bidx in range(len(b.args)): 

barg = b.args[bidx] 

brest = b.args[:bidx] + b.args[bidx + 1:] 

self.process_rule(And(a, Not(barg)), Or(*brest)) 

 

# left part 

 

# a & b -> c --> IRREDUCIBLE CASE -- WE STORE IT AS IS 

# (this will be the basis of beta-network) 

elif isinstance(a, And): 

if b in a.args: 

raise TautologyDetected(a, b, 'a & b -> a') 

self.proved_rules.append((a, b)) 

# XXX NOTE at present we ignore !c -> !a | !b 

 

elif isinstance(a, Or): 

if b in a.args: 

raise TautologyDetected(a, b, 'a | b -> a') 

for aarg in a.args: 

self.process_rule(aarg, b) 

 

else: 

# both `a` and `b` are atoms 

self.proved_rules.append((a, b)) # a -> b 

self.proved_rules.append((Not(b), Not(a))) # !b -> !a 

 

######################################## 

 

 

class FactRules(object): 

"""Rules that describe how to deduce facts in logic space 

 

When defined, these rules allow implications to quickly be determined 

for a set of facts. For this precomputed deduction tables are used. 

see `deduce_all_facts` (forward-chaining) 

 

Also it is possible to gather prerequisites for a fact, which is tried 

to be proven. (backward-chaining) 

 

 

Definition Syntax 

----------------- 

 

a -> b -- a=T -> b=T (and automatically b=F -> a=F) 

a -> !b -- a=T -> b=F 

a == b -- a -> b & b -> a 

a -> b & c -- a=T -> b=T & c=T 

# TODO b | c 

 

 

Internals 

--------- 

 

.full_implications[k, v]: all the implications of fact k=v 

.beta_triggers[k, v]: beta rules that might be triggered when k=v 

.prereq -- {} k <- [] of k's prerequisites 

 

.defined_facts -- set of defined fact names 

""" 

 

def __init__(self, rules): 

"""Compile rules into internal lookup tables""" 

 

if isinstance(rules, string_types): 

rules = rules.splitlines() 

 

# --- parse and process rules --- 

P = Prover() 

 

for rule in rules: 

# XXX `a` is hardcoded to be always atom 

a, op, b = rule.split(None, 2) 

 

a = Logic.fromstring(a) 

b = Logic.fromstring(b) 

 

if op == '->': 

P.process_rule(a, b) 

elif op == '==': 

P.process_rule(a, b) 

P.process_rule(b, a) 

else: 

raise ValueError('unknown op %r' % op) 

 

# --- build deduction networks --- 

self.beta_rules = [] 

for bcond, bimpl in P.rules_beta: 

self.beta_rules.append( 

(set(_as_pair(a) for a in bcond.args), _as_pair(bimpl))) 

 

# deduce alpha implications 

impl_a = deduce_alpha_implications(P.rules_alpha) 

 

# now: 

# - apply beta rules to alpha chains (static extension), and 

# - further associate beta rules to alpha chain (for inference 

# at runtime) 

impl_ab = apply_beta_to_alpha_route(impl_a, P.rules_beta) 

 

# extract defined fact names 

self.defined_facts = set(_base_fact(k) for k in impl_ab.keys()) 

 

# build rels (forward chains) 

full_implications = defaultdict(set) 

beta_triggers = defaultdict(set) 

for k, (impl, betaidxs) in impl_ab.items(): 

full_implications[_as_pair(k)] = set(_as_pair(i) for i in impl) 

beta_triggers[_as_pair(k)] = betaidxs 

 

self.full_implications = full_implications 

self.beta_triggers = beta_triggers 

 

# build prereq (backward chains) 

prereq = defaultdict(set) 

rel_prereq = rules_2prereq(full_implications) 

for k, pitems in rel_prereq.items(): 

prereq[k] |= pitems 

self.prereq = prereq 

 

 

class InconsistentAssumptions(ValueError): 

def __str__(self): 

kb, fact, value = self.args 

return "%s, %s=%s" % (kb, fact, value) 

 

 

class FactKB(dict): 

""" 

A simple propositional knowledge base relying on compiled inference rules. 

""" 

def __str__(self): 

return '{\n%s}' % ',\n'.join( 

["\t%s: %s" % i for i in sorted(self.items())]) 

 

def __init__(self, rules): 

self.rules = rules 

 

def _tell(self, k, v): 

"""Add fact k=v to the knowledge base. 

 

Returns True if the KB has actually been updated, False otherwise. 

""" 

if k in self and self[k] is not None: 

if self[k] == v: 

return False 

else: 

raise InconsistentAssumptions(self, k, v) 

else: 

self[k] = v 

return True 

 

# ********************************************* 

# * This is the workhorse, so keep it *fast*. * 

# ********************************************* 

def deduce_all_facts(self, facts): 

""" 

Update the KB with all the implications of a list of facts. 

 

Facts can be specified as a dictionary or as a list of (key, value) 

pairs. 

""" 

# keep frequently used attributes locally, so we'll avoid extra 

# attribute access overhead 

full_implications = self.rules.full_implications 

beta_triggers = self.rules.beta_triggers 

beta_rules = self.rules.beta_rules 

 

if isinstance(facts, dict): 

facts = facts.items() 

 

while facts: 

beta_maytrigger = set() 

 

# --- alpha chains --- 

for k, v in facts: 

if not self._tell(k, v) or v is None: 

continue 

 

# lookup routing tables 

for key, value in full_implications[k, v]: 

self._tell(key, value) 

 

beta_maytrigger.update(beta_triggers[k, v]) 

 

# --- beta chains --- 

facts = [] 

for bidx in beta_maytrigger: 

bcond, bimpl = beta_rules[bidx] 

if all(self.get(k) is v for k, v in bcond): 

facts.append(bimpl)