Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

from __future__ import print_function, division 

 

from collections import defaultdict 

from functools import cmp_to_key 

import operator 

 

from .sympify import sympify 

from .basic import Basic 

from .singleton import S 

from .operations import AssocOp 

from .cache import cacheit 

from .logic import fuzzy_not, _fuzzy_group 

from .compatibility import reduce, range 

from .expr import Expr 

 

# internal marker to indicate: 

# "there are still non-commutative objects -- don't forget to process them" 

 

 

class NC_Marker: 

is_Order = False 

is_Mul = False 

is_Number = False 

is_Poly = False 

 

is_commutative = False 

 

 

# Key for sorting commutative args in canonical order 

_args_sortkey = cmp_to_key(Basic.compare) 

def _mulsort(args): 

# in-place sorting of args 

args.sort(key=_args_sortkey) 

 

 

def _unevaluated_Mul(*args): 

"""Return a well-formed unevaluated Mul: Numbers are collected and 

put in slot 0, any arguments that are Muls will be flattened, and args 

are sorted. Use this when args have changed but you still want to return 

an unevaluated Mul. 

 

Examples 

======== 

 

>>> from sympy.core.mul import _unevaluated_Mul as uMul 

>>> from sympy import S, sqrt, Mul 

>>> from sympy.abc import x 

>>> a = uMul(*[S(3.0), x, S(2)]) 

>>> a.args[0] 

6.00000000000000 

>>> a.args[1] 

x 

 

Two unevaluated Muls with the same arguments will 

always compare as equal during testing: 

 

>>> m = uMul(sqrt(2), sqrt(3)) 

>>> m == uMul(sqrt(3), sqrt(2)) 

True 

>>> u = Mul(sqrt(3), sqrt(2), evaluate=False) 

>>> m == uMul(u) 

True 

>>> m == Mul(*m.args) 

False 

 

""" 

args = list(args) 

newargs = [] 

ncargs = [] 

co = S.One 

while args: 

a = args.pop() 

if a.is_Mul: 

c, nc = a.args_cnc() 

args.extend(c) 

if nc: 

ncargs.append(Mul._from_args(nc)) 

elif a.is_Number: 

co *= a 

else: 

newargs.append(a) 

_mulsort(newargs) 

if co is not S.One: 

newargs.insert(0, co) 

if ncargs: 

newargs.append(Mul._from_args(ncargs)) 

return Mul._from_args(newargs) 

 

 

class Mul(Expr, AssocOp): 

 

__slots__ = [] 

 

is_Mul = True 

 

@classmethod 

def flatten(cls, seq): 

"""Return commutative, noncommutative and order arguments by 

combining related terms. 

 

Notes 

===== 

* In an expression like ``a*b*c``, python process this through sympy 

as ``Mul(Mul(a, b), c)``. This can have undesirable consequences. 

 

- Sometimes terms are not combined as one would like: 

{c.f. https://github.com/sympy/sympy/issues/4596} 

 

>>> from sympy import Mul, sqrt 

>>> from sympy.abc import x, y, z 

>>> 2*(x + 1) # this is the 2-arg Mul behavior 

2*x + 2 

>>> y*(x + 1)*2 

2*y*(x + 1) 

>>> 2*(x + 1)*y # 2-arg result will be obtained first 

y*(2*x + 2) 

>>> Mul(2, x + 1, y) # all 3 args simultaneously processed 

2*y*(x + 1) 

>>> 2*((x + 1)*y) # parentheses can control this behavior 

2*y*(x + 1) 

 

Powers with compound bases may not find a single base to 

combine with unless all arguments are processed at once. 

Post-processing may be necessary in such cases. 

{c.f. https://github.com/sympy/sympy/issues/5728} 

 

>>> a = sqrt(x*sqrt(y)) 

>>> a**3 

(x*sqrt(y))**(3/2) 

>>> Mul(a,a,a) 

(x*sqrt(y))**(3/2) 

>>> a*a*a 

x*sqrt(y)*sqrt(x*sqrt(y)) 

>>> _.subs(a.base, z).subs(z, a.base) 

(x*sqrt(y))**(3/2) 

 

- If more than two terms are being multiplied then all the 

previous terms will be re-processed for each new argument. 

So if each of ``a``, ``b`` and ``c`` were :class:`Mul` 

expression, then ``a*b*c`` (or building up the product 

with ``*=``) will process all the arguments of ``a`` and 

``b`` twice: once when ``a*b`` is computed and again when 

``c`` is multiplied. 

 

Using ``Mul(a, b, c)`` will process all arguments once. 

 

* The results of Mul are cached according to arguments, so flatten 

will only be called once for ``Mul(a, b, c)``. If you can 

structure a calculation so the arguments are most likely to be 

repeats then this can save time in computing the answer. For 

example, say you had a Mul, M, that you wished to divide by ``d[i]`` 

and multiply by ``n[i]`` and you suspect there are many repeats 

in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather 

than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the 

product, ``M*n[i]`` will be returned without flattening -- the 

cached value will be returned. If you divide by the ``d[i]`` 

first (and those are more unique than the ``n[i]``) then that will 

create a new Mul, ``M/d[i]`` the args of which will be traversed 

again when it is multiplied by ``n[i]``. 

 

{c.f. https://github.com/sympy/sympy/issues/5706} 

 

This consideration is moot if the cache is turned off. 

 

NB 

-- 

The validity of the above notes depends on the implementation 

details of Mul and flatten which may change at any time. Therefore, 

you should only consider them when your code is highly performance 

sensitive. 

 

Removal of 1 from the sequence is already handled by AssocOp.__new__. 

""" 

 

from sympy.calculus.util import AccumBounds 

rv = None 

if len(seq) == 2: 

a, b = seq 

if b.is_Rational: 

a, b = b, a 

assert not a is S.One 

if not a.is_zero and a.is_Rational: 

r, b = b.as_coeff_Mul() 

if b.is_Add: 

if r is not S.One: # 2-arg hack 

# leave the Mul as a Mul 

rv = [cls(a*r, b, evaluate=False)], [], None 

elif b.is_commutative: 

if a is S.One: 

rv = [b], [], None 

else: 

r, b = b.as_coeff_Add() 

bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)] 

_addsort(bargs) 

ar = a*r 

if ar: 

bargs.insert(0, ar) 

bargs = [Add._from_args(bargs)] 

rv = bargs, [], None 

if rv: 

return rv 

 

# apply associativity, separate commutative part of seq 

c_part = [] # out: commutative factors 

nc_part = [] # out: non-commutative factors 

 

nc_seq = [] 

 

coeff = S.One # standalone term 

# e.g. 3 * ... 

 

c_powers = [] # (base,exp) n 

# e.g. (x,n) for x 

 

num_exp = [] # (num-base, exp) y 

# e.g. (3, y) for ... * 3 * ... 

 

neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I 

 

pnum_rat = {} # (num-base, Rat-exp) 1/2 

# e.g. (3, 1/2) for ... * 3 * ... 

 

order_symbols = None 

 

# --- PART 1 --- 

# 

# "collect powers and coeff": 

# 

# o coeff 

# o c_powers 

# o num_exp 

# o neg1e 

# o pnum_rat 

# 

# NOTE: this is optimized for all-objects-are-commutative case 

for o in seq: 

# O(x) 

if o.is_Order: 

o, order_symbols = o.as_expr_variables(order_symbols) 

 

# Mul([...]) 

if o.is_Mul: 

if o.is_commutative: 

seq.extend(o.args) # XXX zerocopy? 

 

else: 

# NCMul can have commutative parts as well 

for q in o.args: 

if q.is_commutative: 

seq.append(q) 

else: 

nc_seq.append(q) 

 

# append non-commutative marker, so we don't forget to 

# process scheduled non-commutative objects 

seq.append(NC_Marker) 

 

continue 

 

# 3 

elif o.is_Number: 

if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero: 

# we know for sure the result will be nan 

return [S.NaN], [], None 

elif coeff.is_Number: # it could be zoo 

coeff *= o 

if coeff is S.NaN: 

# we know for sure the result will be nan 

return [S.NaN], [], None 

continue 

 

elif isinstance(o, AccumBounds): 

coeff = o.__mul__(coeff) 

continue 

 

elif o is S.ComplexInfinity: 

if not coeff: 

# 0 * zoo = NaN 

return [S.NaN], [], None 

if coeff is S.ComplexInfinity: 

# zoo * zoo = zoo 

return [S.ComplexInfinity], [], None 

coeff = S.ComplexInfinity 

continue 

 

elif o is S.ImaginaryUnit: 

neg1e += S.Half 

continue 

 

elif o.is_commutative: 

# e 

# o = b 

b, e = o.as_base_exp() 

 

# y 

# 3 

if o.is_Pow: 

if b.is_Number: 

 

# get all the factors with numeric base so they can be 

# combined below, but don't combine negatives unless 

# the exponent is an integer 

if e.is_Rational: 

if e.is_Integer: 

coeff *= Pow(b, e) # it is an unevaluated power 

continue 

elif e.is_negative: # also a sign of an unevaluated power 

seq.append(Pow(b, e)) 

continue 

elif b.is_negative: 

neg1e += e 

b = -b 

if b is not S.One: 

pnum_rat.setdefault(b, []).append(e) 

continue 

elif b.is_positive or e.is_integer: 

num_exp.append((b, e)) 

continue 

 

elif b is S.ImaginaryUnit and e.is_Rational: 

neg1e += e/2 

continue 

 

c_powers.append((b, e)) 

 

# NON-COMMUTATIVE 

# TODO: Make non-commutative exponents not combine automatically 

else: 

if o is not NC_Marker: 

nc_seq.append(o) 

 

# process nc_seq (if any) 

while nc_seq: 

o = nc_seq.pop(0) 

if not nc_part: 

nc_part.append(o) 

continue 

 

# b c b+c 

# try to combine last terms: a * a -> a 

o1 = nc_part.pop() 

b1, e1 = o1.as_base_exp() 

b2, e2 = o.as_base_exp() 

new_exp = e1 + e2 

# Only allow powers to combine if the new exponent is 

# not an Add. This allow things like a**2*b**3 == a**5 

# if a.is_commutative == False, but prohibits 

# a**x*a**y and x**a*x**b from combining (x,y commute). 

if b1 == b2 and (not new_exp.is_Add): 

o12 = b1 ** new_exp 

 

# now o12 could be a commutative object 

if o12.is_commutative: 

seq.append(o12) 

continue 

else: 

nc_seq.insert(0, o12) 

 

else: 

nc_part.append(o1) 

nc_part.append(o) 

 

# We do want a combined exponent if it would not be an Add, such as 

# y 2y 3y 

# x * x -> x 

# We determine if two exponents have the same term by using 

# as_coeff_Mul. 

# 

# Unfortunately, this isn't smart enough to consider combining into 

# exponents that might already be adds, so things like: 

# z - y y 

# x * x will be left alone. This is because checking every possible 

# combination can slow things down. 

 

# gather exponents of common bases... 

def _gather(c_powers): 

common_b = {} # b:e 

for b, e in c_powers: 

co = e.as_coeff_Mul() 

common_b.setdefault(b, {}).setdefault( 

co[1], []).append(co[0]) 

for b, d in common_b.items(): 

for di, li in d.items(): 

d[di] = Add(*li) 

new_c_powers = [] 

for b, e in common_b.items(): 

new_c_powers.extend([(b, c*t) for t, c in e.items()]) 

return new_c_powers 

 

# in c_powers 

c_powers = _gather(c_powers) 

 

# and in num_exp 

num_exp = _gather(num_exp) 

 

# --- PART 2 --- 

# 

# o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow) 

# o combine collected powers (2**x * 3**x -> 6**x) 

# with numeric base 

 

# ................................ 

# now we have: 

# - coeff: 

# - c_powers: (b, e) 

# - num_exp: (2, e) 

# - pnum_rat: {(1/3, [1/3, 2/3, 1/4])} 

 

# 0 1 

# x -> 1 x -> x 

 

# this should only need to run twice; if it fails because 

# it needs to be run more times, perhaps this should be 

# changed to a "while True" loop -- the only reason it 

# isn't such now is to allow a less-than-perfect result to 

# be obtained rather than raising an error or entering an 

# infinite loop 

for i in range(2): 

new_c_powers = [] 

changed = False 

for b, e in c_powers: 

if e.is_zero: 

continue 

if e is S.One: 

if b.is_Number: 

coeff *= b 

continue 

p = b 

if e is not S.One: 

p = Pow(b, e) 

# check to make sure that the base doesn't change 

# after exponentiation; to allow for unevaluated 

# Pow, we only do so if b is not already a Pow 

if p.is_Pow and not b.is_Pow: 

bi = b 

b, e = p.as_base_exp() 

if b != bi: 

changed = True 

c_part.append(p) 

new_c_powers.append((b, e)) 

# there might have been a change, but unless the base 

# matches some other base, there is nothing to do 

if changed and len(set( 

b for b, e in new_c_powers)) != len(new_c_powers): 

# start over again 

c_part = [] 

c_powers = _gather(new_c_powers) 

else: 

break 

 

# x x x 

# 2 * 3 -> 6 

inv_exp_dict = {} # exp:Mul(num-bases) x x 

# e.g. x:6 for ... * 2 * 3 * ... 

for b, e in num_exp: 

inv_exp_dict.setdefault(e, []).append(b) 

for e, b in inv_exp_dict.items(): 

inv_exp_dict[e] = cls(*b) 

c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e]) 

 

# b, e -> e' = sum(e), b 

# {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])} 

comb_e = {} 

for b, e in pnum_rat.items(): 

comb_e.setdefault(Add(*e), []).append(b) 

del pnum_rat 

# process them, reducing exponents to values less than 1 

# and updating coeff if necessary else adding them to 

# num_rat for further processing 

num_rat = [] 

for e, b in comb_e.items(): 

b = cls(*b) 

if e.q == 1: 

coeff *= Pow(b, e) 

continue 

if e.p > e.q: 

e_i, ep = divmod(e.p, e.q) 

coeff *= Pow(b, e_i) 

e = Rational(ep, e.q) 

num_rat.append((b, e)) 

del comb_e 

 

# extract gcd of bases in num_rat 

# 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4) 

pnew = defaultdict(list) 

i = 0 # steps through num_rat which may grow 

while i < len(num_rat): 

bi, ei = num_rat[i] 

grow = [] 

for j in range(i + 1, len(num_rat)): 

bj, ej = num_rat[j] 

g = bi.gcd(bj) 

if g is not S.One: 

# 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2 

# this might have a gcd with something else 

e = ei + ej 

if e.q == 1: 

coeff *= Pow(g, e) 

else: 

if e.p > e.q: 

e_i, ep = divmod(e.p, e.q) # change e in place 

coeff *= Pow(g, e_i) 

e = Rational(ep, e.q) 

grow.append((g, e)) 

# update the jth item 

num_rat[j] = (bj/g, ej) 

# update bi that we are checking with 

bi = bi/g 

if bi is S.One: 

break 

if bi is not S.One: 

obj = Pow(bi, ei) 

if obj.is_Number: 

coeff *= obj 

else: 

# changes like sqrt(12) -> 2*sqrt(3) 

for obj in Mul.make_args(obj): 

if obj.is_Number: 

coeff *= obj 

else: 

assert obj.is_Pow 

bi, ei = obj.args 

pnew[ei].append(bi) 

 

num_rat.extend(grow) 

i += 1 

 

# combine bases of the new powers 

for e, b in pnew.items(): 

pnew[e] = cls(*b) 

 

# handle -1 and I 

if neg1e: 

# treat I as (-1)**(1/2) and compute -1's total exponent 

p, q = neg1e.as_numer_denom() 

# if the integer part is odd, extract -1 

n, p = divmod(p, q) 

if n % 2: 

coeff = -coeff 

# if it's a multiple of 1/2 extract I 

if q == 2: 

c_part.append(S.ImaginaryUnit) 

elif p: 

# see if there is any positive base this power of 

# -1 can join 

neg1e = Rational(p, q) 

for e, b in pnew.items(): 

if e == neg1e and b.is_positive: 

pnew[e] = -b 

break 

else: 

# keep it separate; we've already evaluated it as 

# much as possible so evaluate=False 

c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False)) 

 

# add all the pnew powers 

c_part.extend([Pow(b, e) for e, b in pnew.items()]) 

 

# oo, -oo 

if (coeff is S.Infinity) or (coeff is S.NegativeInfinity): 

def _handle_for_oo(c_part, coeff_sign): 

new_c_part = [] 

for t in c_part: 

if t.is_positive: 

continue 

if t.is_negative: 

coeff_sign *= -1 

continue 

new_c_part.append(t) 

return new_c_part, coeff_sign 

c_part, coeff_sign = _handle_for_oo(c_part, 1) 

nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign) 

coeff *= coeff_sign 

 

# zoo 

if coeff is S.ComplexInfinity: 

# zoo might be 

# infinite_real + bounded_im 

# bounded_real + infinite_im 

# infinite_real + infinite_im 

# and non-zero real or imaginary will not change that status. 

c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and 

c.is_real is not None)] 

nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and 

c.is_real is not None)] 

 

# 0 

elif coeff is S.Zero: 

# we know for sure the result will be 0 except the multiplicand 

# is infinity 

if any(c.is_finite == False for c in c_part): 

return [S.NaN], [], order_symbols 

return [coeff], [], order_symbols 

 

# check for straggling Numbers that were produced 

_new = [] 

for i in c_part: 

if i.is_Number: 

coeff *= i 

else: 

_new.append(i) 

c_part = _new 

 

# order commutative part canonically 

_mulsort(c_part) 

 

# current code expects coeff to be always in slot-0 

if coeff is not S.One: 

c_part.insert(0, coeff) 

 

# we are done 

if (not nc_part and len(c_part) == 2 and c_part[0].is_Number and 

c_part[1].is_Add): 

# 2*(1+a) -> 2 + 2 * a 

coeff = c_part[0] 

c_part = [Add(*[coeff*f for f in c_part[1].args])] 

 

return c_part, nc_part, order_symbols 

 

def _eval_power(b, e): 

 

# don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B 

cargs, nc = b.args_cnc(split_1=False) 

 

if e.is_Integer: 

return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \ 

Pow(Mul._from_args(nc), e, evaluate=False) 

 

p = Pow(b, e, evaluate=False) 

 

if e.is_Rational or e.is_Float: 

return p._eval_expand_power_base() 

 

return p 

 

@classmethod 

def class_key(cls): 

return 3, 0, cls.__name__ 

 

def _eval_evalf(self, prec): 

c, m = self.as_coeff_Mul() 

if c is S.NegativeOne: 

if m.is_Mul: 

rv = -AssocOp._eval_evalf(m, prec) 

else: 

mnew = m._eval_evalf(prec) 

if mnew is not None: 

m = mnew 

rv = -m 

else: 

rv = AssocOp._eval_evalf(self, prec) 

if rv.is_number: 

return rv.expand() 

return rv 

 

@cacheit 

def as_two_terms(self): 

"""Return head and tail of self. 

 

This is the most efficient way to get the head and tail of an 

expression. 

 

- if you want only the head, use self.args[0]; 

- if you want to process the arguments of the tail then use 

self.as_coef_mul() which gives the head and a tuple containing 

the arguments of the tail when treated as a Mul. 

- if you want the coefficient when self is treated as an Add 

then use self.as_coeff_add()[0] 

 

>>> from sympy.abc import x, y 

>>> (3*x*y).as_two_terms() 

(3, x*y) 

""" 

args = self.args 

 

if len(args) == 1: 

return S.One, self 

elif len(args) == 2: 

return args 

 

else: 

return args[0], self._new_rawargs(*args[1:]) 

 

@cacheit 

def as_coefficients_dict(self): 

"""Return a dictionary mapping terms to their coefficient. 

Since the dictionary is a defaultdict, inquiries about terms which 

were not present will return a coefficient of 0. The dictionary 

is considered to have a single term. 

 

Examples 

======== 

 

>>> from sympy.abc import a, x 

>>> (3*a*x).as_coefficients_dict() 

{a*x: 3} 

>>> _[a] 

0 

""" 

 

d = defaultdict(int) 

args = self.args 

 

if len(args) == 1 or not args[0].is_Number: 

d[self] = S.One 

else: 

d[self._new_rawargs(*args[1:])] = args[0] 

 

return d 

 

@cacheit 

def as_coeff_mul(self, *deps, **kwargs): 

rational = kwargs.pop('rational', True) 

if deps: 

l1 = [] 

l2 = [] 

for f in self.args: 

if f.has(*deps): 

l2.append(f) 

else: 

l1.append(f) 

return self._new_rawargs(*l1), tuple(l2) 

args = self.args 

if args[0].is_Number: 

if not rational or args[0].is_Rational: 

return args[0], args[1:] 

elif args[0].is_negative: 

return S.NegativeOne, (-args[0],) + args[1:] 

return S.One, args 

 

def as_coeff_Mul(self, rational=False): 

"""Efficiently extract the coefficient of a product. """ 

coeff, args = self.args[0], self.args[1:] 

 

if coeff.is_Number: 

if not rational or coeff.is_Rational: 

if len(args) == 1: 

return coeff, args[0] 

else: 

return coeff, self._new_rawargs(*args) 

elif coeff.is_negative: 

return S.NegativeOne, self._new_rawargs(*((-coeff,) + args)) 

return S.One, self 

 

def as_real_imag(self, deep=True, **hints): 

from sympy import Abs, expand_mul, im, re 

other = [] 

coeffr = [] 

coeffi = [] 

addterms = S.One 

for a in self.args: 

if a.is_real: 

coeffr.append(a) 

elif a.is_imaginary: 

coeffi.append(a) 

elif a.is_commutative: 

# search for complex conjugate pairs: 

for i, x in enumerate(other): 

if x == a.conjugate(): 

coeffr.append(Abs(x)**2) 

del other[i] 

break 

else: 

if a.is_Add: 

addterms *= a 

else: 

other.append(a) 

else: 

other.append(a) 

m = self.func(*other) 

if hints.get('ignore') == m: 

return 

if len(coeffi) % 2: 

imco = im(coeffi.pop(0)) 

# all other pairs make a real factor; they will be 

# put into reco below 

else: 

imco = S.Zero 

reco = self.func(*(coeffr + coeffi)) 

r, i = (reco*re(m), reco*im(m)) 

if addterms == 1: 

if m == 1: 

if imco is S.Zero: 

return (reco, S.Zero) 

else: 

return (S.Zero, reco*imco) 

if imco is S.Zero: 

return (r, i) 

return (-imco*i, imco*r) 

addre, addim = expand_mul(addterms, deep=False).as_real_imag() 

if imco is S.Zero: 

return (r*addre - i*addim, i*addre + r*addim) 

else: 

r, i = -imco*i, imco*r 

return (r*addre - i*addim, r*addim + i*addre) 

 

@staticmethod 

def _expandsums(sums): 

""" 

Helper function for _eval_expand_mul. 

 

sums must be a list of instances of Basic. 

""" 

 

L = len(sums) 

if L == 1: 

return sums[0].args 

terms = [] 

left = Mul._expandsums(sums[:L//2]) 

right = Mul._expandsums(sums[L//2:]) 

 

terms = [Mul(a, b) for a in left for b in right] 

added = Add(*terms) 

return Add.make_args(added) # it may have collapsed down to one term 

 

def _eval_expand_mul(self, **hints): 

from sympy import fraction 

 

# Handle things like 1/(x*(x + 1)), which are automatically converted 

# to 1/x*1/(x + 1) 

expr = self 

n, d = fraction(expr) 

if d.is_Mul: 

n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i 

for i in (n, d)] 

expr = n/d 

if not expr.is_Mul: 

return expr 

 

plain, sums, rewrite = [], [], False 

for factor in expr.args: 

if factor.is_Add: 

sums.append(factor) 

rewrite = True 

else: 

if factor.is_commutative: 

plain.append(factor) 

else: 

sums.append(Basic(factor)) # Wrapper 

 

if not rewrite: 

return expr 

else: 

plain = self.func(*plain) 

if sums: 

terms = self.func._expandsums(sums) 

args = [] 

for term in terms: 

t = self.func(plain, term) 

if t.is_Mul and any(a.is_Add for a in t.args): 

t = t._eval_expand_mul() 

args.append(t) 

return Add(*args) 

else: 

return plain 

 

@cacheit 

def _eval_derivative(self, s): 

args = list(self.args) 

terms = [] 

for i in range(len(args)): 

d = args[i].diff(s) 

if d: 

terms.append(self.func(*(args[:i] + [d] + args[i + 1:]))) 

return Add(*terms) 

 

def _eval_difference_delta(self, n, step): 

from sympy.series.limitseq import difference_delta as dd 

arg0 = self.args[0] 

rest = Mul(*self.args[1:]) 

return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) * 

rest) 

 

def _matches_simple(self, expr, repl_dict): 

# handle (w*3).matches('x*5') -> {w: x*5/3} 

coeff, terms = self.as_coeff_Mul() 

terms = Mul.make_args(terms) 

if len(terms) == 1: 

newexpr = self.__class__._combine_inverse(expr, coeff) 

return terms[0].matches(newexpr, repl_dict) 

return 

 

def matches(self, expr, repl_dict={}, old=False): 

expr = sympify(expr) 

if self.is_commutative and expr.is_commutative: 

return AssocOp._matches_commutative(self, expr, repl_dict, old) 

elif self.is_commutative is not expr.is_commutative: 

return None 

c1, nc1 = self.args_cnc() 

c2, nc2 = expr.args_cnc() 

repl_dict = repl_dict.copy() 

if c1: 

if not c2: 

c2 = [1] 

a = self.func(*c1) 

if isinstance(a, AssocOp): 

repl_dict = a._matches_commutative(self.func(*c2), repl_dict, old) 

else: 

repl_dict = a.matches(self.func(*c2), repl_dict) 

if repl_dict: 

a = self.func(*nc1) 

if isinstance(a, self.func): 

repl_dict = a._matches(self.func(*nc2), repl_dict) 

else: 

repl_dict = a.matches(self.func(*nc2), repl_dict) 

return repl_dict or None 

 

def _matches(self, expr, repl_dict={}): 

# weed out negative one prefixes# 

from sympy import Wild 

sign = 1 

a, b = self.as_two_terms() 

if a is S.NegativeOne: 

if b.is_Mul: 

sign = -sign 

else: 

# the remainder, b, is not a Mul anymore 

return b.matches(-expr, repl_dict) 

expr = sympify(expr) 

if expr.is_Mul and expr.args[0] is S.NegativeOne: 

expr = -expr 

sign = -sign 

 

if not expr.is_Mul: 

# expr can only match if it matches b and a matches +/- 1 

if len(self.args) == 2: 

# quickly test for equality 

if b == expr: 

return a.matches(Rational(sign), repl_dict) 

# do more expensive match 

dd = b.matches(expr, repl_dict) 

if dd is None: 

return None 

dd = a.matches(Rational(sign), dd) 

return dd 

return None 

 

d = repl_dict.copy() 

 

# weed out identical terms 

pp = list(self.args) 

ee = list(expr.args) 

for p in self.args: 

if p in expr.args: 

ee.remove(p) 

pp.remove(p) 

 

# only one symbol left in pattern -> match the remaining expression 

if len(pp) == 1 and isinstance(pp[0], Wild): 

if len(ee) == 1: 

d[pp[0]] = sign * ee[0] 

else: 

d[pp[0]] = sign * expr.func(*ee) 

return d 

 

if len(ee) != len(pp): 

return None 

 

for p, e in zip(pp, ee): 

d = p.xreplace(d).matches(e, d) 

if d is None: 

return None 

return d 

 

@staticmethod 

def _combine_inverse(lhs, rhs): 

""" 

Returns lhs/rhs, but treats arguments like symbols, so things like 

oo/oo return 1, instead of a nan. 

""" 

if lhs == rhs: 

return S.One 

 

def check(l, r): 

if l.is_Float and r.is_comparable: 

# if both objects are added to 0 they will share the same "normalization" 

# and are more likely to compare the same. Since Add(foo, 0) will not allow 

# the 0 to pass, we use __add__ directly. 

return l.__add__(0) == r.evalf().__add__(0) 

return False 

if check(lhs, rhs) or check(rhs, lhs): 

return S.One 

if lhs.is_Mul and rhs.is_Mul: 

a = list(lhs.args) 

b = [1] 

for x in rhs.args: 

if x in a: 

a.remove(x) 

elif -x in a: 

a.remove(-x) 

b.append(-1) 

else: 

b.append(x) 

return lhs.func(*a)/rhs.func(*b) 

return lhs/rhs 

 

def as_powers_dict(self): 

d = defaultdict(int) 

for term in self.args: 

b, e = term.as_base_exp() 

d[b] += e 

return d 

 

def as_numer_denom(self): 

# don't use _from_args to rebuild the numerators and denominators 

# as the order is not guaranteed to be the same once they have 

# been separated from each other 

numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args])) 

return self.func(*numers), self.func(*denoms) 

 

def as_base_exp(self): 

e1 = None 

bases = [] 

nc = 0 

for m in self.args: 

b, e = m.as_base_exp() 

if not b.is_commutative: 

nc += 1 

if e1 is None: 

e1 = e 

elif e != e1 or nc > 1: 

return self, S.One 

bases.append(b) 

return self.func(*bases), e1 

 

def _eval_is_polynomial(self, syms): 

return all(term._eval_is_polynomial(syms) for term in self.args) 

 

def _eval_is_rational_function(self, syms): 

return all(term._eval_is_rational_function(syms) for term in self.args) 

 

def _eval_is_algebraic_expr(self, syms): 

return all(term._eval_is_algebraic_expr(syms) for term in self.args) 

 

_eval_is_finite = lambda self: _fuzzy_group( 

a.is_finite for a in self.args) 

_eval_is_commutative = lambda self: _fuzzy_group( 

a.is_commutative for a in self.args) 

_eval_is_complex = lambda self: _fuzzy_group( 

(a.is_complex for a in self.args), quick_exit=True) 

 

def _eval_is_infinite(self): 

if any(a.is_infinite for a in self.args): 

if any(a.is_zero for a in self.args): 

return S.NaN.is_infinite 

if any(a.is_zero is None for a in self.args): 

return None 

return True 

 

def _eval_is_rational(self): 

r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True) 

if r: 

return r 

elif r is False: 

return self.is_zero 

 

def _eval_is_algebraic(self): 

r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True) 

if r: 

return r 

elif r is False: 

return self.is_zero 

 

def _eval_is_zero(self): 

zero = infinite = False 

for a in self.args: 

z = a.is_zero 

if z: 

if infinite: 

return # 0*oo is nan and nan.is_zero is None 

zero = True 

else: 

if not a.is_finite: 

if zero: 

return # 0*oo is nan and nan.is_zero is None 

infinite = True 

if zero is False and z is None: # trap None 

zero = None 

return zero 

 

def _eval_is_integer(self): 

is_rational = self.is_rational 

 

if is_rational: 

n, d = self.as_numer_denom() 

if d is S.One: 

return True 

elif d is S(2): 

return n.is_even 

elif is_rational is False: 

return False 

 

def _eval_is_polar(self): 

has_polar = any(arg.is_polar for arg in self.args) 

return has_polar and \ 

all(arg.is_polar or arg.is_positive for arg in self.args) 

 

def _eval_is_real(self): 

return self._eval_real_imag(True) 

 

def _eval_real_imag(self, real): 

zero = one_neither = False 

 

for t in self.args: 

if not t.is_complex: 

return t.is_complex 

elif t.is_imaginary: 

real = not real 

elif t.is_real: 

if not zero: 

z = t.is_zero 

if not z and zero is False: 

zero = z 

elif z: 

if all(a.is_finite for a in self.args): 

return True 

return 

elif t.is_real is False: 

if one_neither: 

return # complex terms might cancel 

one_neither = True 

else: 

return 

 

if one_neither: # self is a+I*b or I*b 

if real: 

return zero # real*self is like self: neither is real 

elif zero is False: 

return real # can't be trumped by 0 

elif real: 

return real # doesn't matter what zero is 

 

def _eval_is_imaginary(self): 

z = self.is_zero 

if z: 

return False 

elif z is False: 

return self._eval_real_imag(False) 

 

def _eval_is_hermitian(self): 

return self._eval_herm_antiherm(True) 

 

def _eval_herm_antiherm(self, real): 

one_nc = zero = one_neither = False 

 

for t in self.args: 

if not t.is_commutative: 

if one_nc: 

return 

one_nc = True 

 

if t.is_antihermitian: 

real = not real 

elif t.is_hermitian: 

if not zero: 

z = t.is_zero 

if not z and zero is False: 

zero = z 

elif z: 

if all(a.is_finite for a in self.args): 

return True 

return 

elif t.is_hermitian is False: 

if one_neither: 

return 

one_neither = True 

else: 

return 

 

if one_neither: 

if real: 

return zero 

elif zero is False or real: 

return real 

 

def _eval_is_antihermitian(self): 

z = self.is_zero 

if z: 

return False 

elif z is False: 

return self._eval_herm_antiherm(False) 

 

def _eval_is_irrational(self): 

for t in self.args: 

a = t.is_irrational 

if a: 

others = list(self.args) 

others.remove(t) 

if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others): 

return True 

return 

if a is None: 

return 

return False 

 

def _eval_is_positive(self): 

"""Return True if self is positive, False if not, and None if it 

cannot be determined. 

 

This algorithm is non-recursive and works by keeping track of the 

sign which changes when a negative or nonpositive is encountered. 

Whether a nonpositive or nonnegative is seen is also tracked since 

the presence of these makes it impossible to return True, but 

possible to return False if the end result is nonpositive. e.g. 

 

pos * neg * nonpositive -> pos or zero -> None is returned 

pos * neg * nonnegative -> neg or zero -> False is returned 

""" 

return self._eval_pos_neg(1) 

 

def _eval_pos_neg(self, sign): 

saw_NON = saw_NOT = False 

for t in self.args: 

if t.is_positive: 

continue 

elif t.is_negative: 

sign = -sign 

elif t.is_zero: 

if all(a.is_finite for a in self.args): 

return False 

return 

elif t.is_nonpositive: 

sign = -sign 

saw_NON = True 

elif t.is_nonnegative: 

saw_NON = True 

elif t.is_positive is False: 

sign = -sign 

if saw_NOT: 

return 

saw_NOT = True 

elif t.is_negative is False: 

if saw_NOT: 

return 

saw_NOT = True 

else: 

return 

if sign == 1 and saw_NON is False and saw_NOT is False: 

return True 

if sign < 0: 

return False 

 

def _eval_is_negative(self): 

if self.args[0] == -1: 

return (-self).is_positive # remove -1 

return self._eval_pos_neg(-1) 

 

def _eval_is_odd(self): 

is_integer = self.is_integer 

 

if is_integer: 

r, acc = True, 1 

for t in self.args: 

if not t.is_integer: 

return None 

elif t.is_even: 

r = False 

elif t.is_integer: 

if r is False: 

pass 

elif acc != 1 and (acc + t).is_odd: 

r = False 

elif t.is_odd is None: 

r = None 

acc = t 

return r 

 

# !integer -> !odd 

elif is_integer is False: 

return False 

 

def _eval_is_even(self): 

is_integer = self.is_integer 

 

if is_integer: 

return fuzzy_not(self.is_odd) 

 

elif is_integer is False: 

return False 

 

def _eval_is_prime(self): 

""" 

If product is a positive integer, multiplication 

will never result in a prime number. 

""" 

if self.is_number: 

""" 

If input is a number that is not completely simplified. 

e.g. Mul(sqrt(3), sqrt(3), evaluate=False) 

So we manually evaluate it and return whether that is prime or not. 

""" 

# Note: `doit()` was not used due to test failing (Infinite Recursion) 

r = S.One 

for arg in self.args: 

r *= arg 

return r.is_prime 

 

if self.is_integer and self.is_positive: 

""" 

Here we count the number of arguments that have a minimum value 

greater than two. 

If there are more than one of such a symbol then the result is not prime. 

Else, the result cannot be determined. 

""" 

number_of_args = 0 # count of symbols with minimum value greater than one 

for arg in self.args: 

if (arg-1).is_positive: 

number_of_args += 1 

 

if number_of_args > 1: 

return False 

 

def _eval_subs(self, old, new): 

from sympy.functions.elementary.complexes import sign 

from sympy.ntheory.factor_ import multiplicity 

from sympy.simplify.powsimp import powdenest 

from sympy.simplify.radsimp import fraction 

 

if not old.is_Mul: 

return None 

 

# try keep replacement literal so -2*x doesn't replace 4*x 

if old.args[0].is_Number and old.args[0] < 0: 

if self.args[0].is_Number: 

if self.args[0] < 0: 

return self._subs(-old, -new) 

return None 

 

def base_exp(a): 

# if I and -1 are in a Mul, they get both end up with 

# a -1 base (see issue 6421); all we want here are the 

# true Pow or exp separated into base and exponent 

from sympy import exp 

if a.is_Pow or a.func is exp: 

return a.as_base_exp() 

return a, S.One 

 

def breakup(eq): 

"""break up powers of eq when treated as a Mul: 

b**(Rational*e) -> b**e, Rational 

commutatives come back as a dictionary {b**e: Rational} 

noncommutatives come back as a list [(b**e, Rational)] 

""" 

 

(c, nc) = (defaultdict(int), list()) 

for a in Mul.make_args(eq): 

a = powdenest(a) 

(b, e) = base_exp(a) 

if e is not S.One: 

(co, _) = e.as_coeff_mul() 

b = Pow(b, e/co) 

e = co 

if a.is_commutative: 

c[b] += e 

else: 

nc.append([b, e]) 

return (c, nc) 

 

def rejoin(b, co): 

""" 

Put rational back with exponent; in general this is not ok, but 

since we took it from the exponent for analysis, it's ok to put 

it back. 

""" 

 

(b, e) = base_exp(b) 

return Pow(b, e*co) 

 

def ndiv(a, b): 

"""if b divides a in an extractive way (like 1/4 divides 1/2 

but not vice versa, and 2/5 does not divide 1/3) then return 

the integer number of times it divides, else return 0. 

""" 

if not b.q % a.q or not a.q % b.q: 

return int(a/b) 

return 0 

 

# give Muls in the denominator a chance to be changed (see issue 5651) 

# rv will be the default return value 

rv = None 

n, d = fraction(self) 

self2 = self 

if d is not S.One: 

self2 = n._subs(old, new)/d._subs(old, new) 

if not self2.is_Mul: 

return self2._subs(old, new) 

if self2 != self: 

rv = self2 

 

# Now continue with regular substitution. 

 

# handle the leading coefficient and use it to decide if anything 

# should even be started; we always know where to find the Rational 

# so it's a quick test 

 

co_self = self2.args[0] 

co_old = old.args[0] 

co_xmul = None 

if co_old.is_Rational and co_self.is_Rational: 

# if coeffs are the same there will be no updating to do 

# below after breakup() step; so skip (and keep co_xmul=None) 

if co_old != co_self: 

co_xmul = co_self.extract_multiplicatively(co_old) 

elif co_old.is_Rational: 

return rv 

 

# break self and old into factors 

 

(c, nc) = breakup(self2) 

(old_c, old_nc) = breakup(old) 

 

# update the coefficients if we had an extraction 

# e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5 

# then co_self in c is replaced by (3/5)**2 and co_residual 

# is 2*(1/7)**2 

 

if co_xmul and co_xmul.is_Rational and abs(co_old) != 1: 

mult = S(multiplicity(abs(co_old), co_self)) 

c.pop(co_self) 

if co_old in c: 

c[co_old] += mult 

else: 

c[co_old] = mult 

co_residual = co_self/co_old**mult 

else: 

co_residual = 1 

 

# do quick tests to see if we can't succeed 

 

ok = True 

if len(old_nc) > len(nc): 

# more non-commutative terms 

ok = False 

elif len(old_c) > len(c): 

# more commutative terms 

ok = False 

elif set(i[0] for i in old_nc).difference(set(i[0] for i in nc)): 

# unmatched non-commutative bases 

ok = False 

elif set(old_c).difference(set(c)): 

# unmatched commutative terms 

ok = False 

elif any(sign(c[b]) != sign(old_c[b]) for b in old_c): 

# differences in sign 

ok = False 

if not ok: 

return rv 

 

if not old_c: 

cdid = None 

else: 

rat = [] 

for (b, old_e) in old_c.items(): 

c_e = c[b] 

rat.append(ndiv(c_e, old_e)) 

if not rat[-1]: 

return rv 

cdid = min(rat) 

 

if not old_nc: 

ncdid = None 

for i in range(len(nc)): 

nc[i] = rejoin(*nc[i]) 

else: 

ncdid = 0 # number of nc replacements we did 

take = len(old_nc) # how much to look at each time 

limit = cdid or S.Infinity # max number that we can take 

failed = [] # failed terms will need subs if other terms pass 

i = 0 

while limit and i + take <= len(nc): 

hit = False 

 

# the bases must be equivalent in succession, and 

# the powers must be extractively compatible on the 

# first and last factor but equal inbetween. 

 

rat = [] 

for j in range(take): 

if nc[i + j][0] != old_nc[j][0]: 

break 

elif j == 0: 

rat.append(ndiv(nc[i + j][1], old_nc[j][1])) 

elif j == take - 1: 

rat.append(ndiv(nc[i + j][1], old_nc[j][1])) 

elif nc[i + j][1] != old_nc[j][1]: 

break 

else: 

rat.append(1) 

j += 1 

else: 

ndo = min(rat) 

if ndo: 

if take == 1: 

if cdid: 

ndo = min(cdid, ndo) 

nc[i] = Pow(new, ndo)*rejoin(nc[i][0], 

nc[i][1] - ndo*old_nc[0][1]) 

else: 

ndo = 1 

 

# the left residual 

 

l = rejoin(nc[i][0], nc[i][1] - ndo* 

old_nc[0][1]) 

 

# eliminate all middle terms 

 

mid = new 

 

# the right residual (which may be the same as the middle if take == 2) 

 

ir = i + take - 1 

r = (nc[ir][0], nc[ir][1] - ndo* 

old_nc[-1][1]) 

if r[1]: 

if i + take < len(nc): 

nc[i:i + take] = [l*mid, r] 

else: 

r = rejoin(*r) 

nc[i:i + take] = [l*mid*r] 

else: 

 

# there was nothing left on the right 

 

nc[i:i + take] = [l*mid] 

 

limit -= ndo 

ncdid += ndo 

hit = True 

if not hit: 

 

# do the subs on this failing factor 

 

failed.append(i) 

i += 1 

else: 

 

if not ncdid: 

return rv 

 

# although we didn't fail, certain nc terms may have 

# failed so we rebuild them after attempting a partial 

# subs on them 

 

failed.extend(range(i, len(nc))) 

for i in failed: 

nc[i] = rejoin(*nc[i]).subs(old, new) 

 

# rebuild the expression 

 

if cdid is None: 

do = ncdid 

elif ncdid is None: 

do = cdid 

else: 

do = min(ncdid, cdid) 

 

margs = [] 

for b in c: 

if b in old_c: 

 

# calculate the new exponent 

 

e = c[b] - old_c[b]*do 

margs.append(rejoin(b, e)) 

else: 

margs.append(rejoin(b.subs(old, new), c[b])) 

if cdid and not ncdid: 

 

# in case we are replacing commutative with non-commutative, 

# we want the new term to come at the front just like the 

# rest of this routine 

 

margs = [Pow(new, cdid)] + margs 

return co_residual*self2.func(*margs)*self2.func(*nc) 

 

def _eval_nseries(self, x, n, logx): 

from sympy import Order, powsimp 

terms = [t.nseries(x, n=n, logx=logx) for t in self.args] 

res = powsimp(self.func(*terms).expand(), combine='exp', deep=True) 

if res.has(Order): 

res += Order(x**n, x) 

return res 

 

def _eval_as_leading_term(self, x): 

return self.func(*[t.as_leading_term(x) for t in self.args]) 

 

def _eval_conjugate(self): 

return self.func(*[t.conjugate() for t in self.args]) 

 

def _eval_transpose(self): 

return self.func(*[t.transpose() for t in self.args[::-1]]) 

 

def _eval_adjoint(self): 

return self.func(*[t.adjoint() for t in self.args[::-1]]) 

 

def _sage_(self): 

s = 1 

for x in self.args: 

s *= x._sage_() 

return s 

 

def as_content_primitive(self, radical=False, clear=True): 

"""Return the tuple (R, self/R) where R is the positive Rational 

extracted from self. 

 

Examples 

======== 

 

>>> from sympy import sqrt 

>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive() 

(6, -sqrt(2)*(-sqrt(2) + 1)) 

 

See docstring of Expr.as_content_primitive for more examples. 

""" 

 

coef = S.One 

args = [] 

for i, a in enumerate(self.args): 

c, p = a.as_content_primitive(radical=radical, clear=clear) 

coef *= c 

if p is not S.One: 

args.append(p) 

# don't use self._from_args here to reconstruct args 

# since there may be identical args now that should be combined 

# e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x)) 

return coef, self.func(*args) 

 

def as_ordered_factors(self, order=None): 

"""Transform an expression into an ordered list of factors. 

 

Examples 

======== 

 

>>> from sympy import sin, cos 

>>> from sympy.abc import x, y 

 

>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors() 

[2, x, y, sin(x), cos(x)] 

 

""" 

cpart, ncpart = self.args_cnc() 

cpart.sort(key=lambda expr: expr.sort_key(order=order)) 

return cpart + ncpart 

 

@property 

def _sorted_args(self): 

return tuple(self.as_ordered_factors()) 

 

 

def prod(a, start=1): 

"""Return product of elements of a. Start with int 1 so if only 

ints are included then an int result is returned. 

 

Examples 

======== 

 

>>> from sympy import prod, S 

>>> prod(range(3)) 

0 

>>> type(_) is int 

True 

>>> prod([S(2), 3]) 

6 

>>> _.is_Integer 

True 

 

You can start the product at something other than 1: 

 

>>> prod([1, 2], 3) 

6 

 

""" 

return reduce(operator.mul, a, start) 

 

 

def _keep_coeff(coeff, factors, clear=True, sign=False): 

"""Return ``coeff*factors`` unevaluated if necessary. 

 

If ``clear`` is False, do not keep the coefficient as a factor 

if it can be distributed on a single factor such that one or 

more terms will still have integer coefficients. 

 

If ``sign`` is True, allow a coefficient of -1 to remain factored out. 

 

Examples 

======== 

 

>>> from sympy.core.mul import _keep_coeff 

>>> from sympy.abc import x, y 

>>> from sympy import S 

 

>>> _keep_coeff(S.Half, x + 2) 

(x + 2)/2 

>>> _keep_coeff(S.Half, x + 2, clear=False) 

x/2 + 1 

>>> _keep_coeff(S.Half, (x + 2)*y, clear=False) 

y*(x + 2)/2 

>>> _keep_coeff(S(-1), x + y) 

-x - y 

>>> _keep_coeff(S(-1), x + y, sign=True) 

-(x + y) 

""" 

 

if not coeff.is_Number: 

if factors.is_Number: 

factors, coeff = coeff, factors 

else: 

return coeff*factors 

if coeff is S.One: 

return factors 

elif coeff is S.NegativeOne and not sign: 

return -factors 

elif factors.is_Add: 

if not clear and coeff.is_Rational and coeff.q != 1: 

q = S(coeff.q) 

for i in factors.args: 

c, t = i.as_coeff_Mul() 

r = c/q 

if r == int(r): 

return coeff*factors 

return Mul._from_args((coeff, factors)) 

elif factors.is_Mul: 

margs = list(factors.args) 

if margs[0].is_Number: 

margs[0] *= coeff 

if margs[0] == 1: 

margs.pop(0) 

else: 

margs.insert(0, coeff) 

return Mul._from_args(margs) 

else: 

return coeff*factors 

 

 

def expand_2arg(e): 

from sympy.simplify.simplify import bottom_up 

def do(e): 

if e.is_Mul: 

c, r = e.as_coeff_Mul() 

if c.is_Number and r.is_Add: 

return _unevaluated_Add(*[c*ri for ri in r.args]) 

return e 

return bottom_up(e, do) 

 

 

from .numbers import Rational 

from .power import Pow 

from .add import Add, _addsort, _unevaluated_Add