Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

from __future__ import print_function, division 

 

import decimal 

import fractions 

import math 

import re as regex 

from collections import defaultdict 

 

from .containers import Tuple 

from .sympify import converter, sympify, _sympify, SympifyError 

from .singleton import S, Singleton 

from .expr import Expr, AtomicExpr 

from .decorators import _sympifyit 

from .cache import cacheit, clear_cache 

from .logic import fuzzy_not 

from sympy.core.compatibility import ( 

as_int, integer_types, long, string_types, with_metaclass, HAS_GMPY, 

SYMPY_INTS) 

import mpmath 

import mpmath.libmp as mlib 

from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed 

from mpmath.ctx_mp import mpnumeric 

from mpmath.libmp.libmpf import ( 

finf as _mpf_inf, fninf as _mpf_ninf, 

fnan as _mpf_nan, fzero as _mpf_zero, _normalize as mpf_normalize, 

prec_to_dps) 

from sympy.utilities.misc import debug, filldedent 

 

rnd = mlib.round_nearest 

 

_LOG2 = math.log(2) 

 

 

def comp(z1, z2, tol=None): 

"""Return a bool indicating whether the error between z1 and z2 is <= tol. 

 

If ``tol`` is None then True will be returned if there is a significant 

difference between the numbers: ``abs(z1 - z2)*10**p <= 1/2`` where ``p`` 

is the lower of the precisions of the values. A comparison of strings will 

be made if ``z1`` is a Number and a) ``z2`` is a string or b) ``tol`` is '' 

and ``z2`` is a Number. 

 

When ``tol`` is a nonzero value, if z2 is non-zero and ``|z1| > 1`` 

the error is normalized by ``|z1|``, so if you want to see if the 

absolute error between ``z1`` and ``z2`` is <= ``tol`` then call this 

as ``comp(z1 - z2, 0, tol)``. 

""" 

if type(z2) is str: 

if not isinstance(z1, Number): 

raise ValueError('when z2 is a str z1 must be a Number') 

return str(z1) == z2 

if not z1: 

z1, z2 = z2, z1 

if not z1: 

return True 

if not tol: 

if tol is None: 

if type(z2) is str and getattr(z1, 'is_Number', False): 

return str(z1) == z2 

a, b = Float(z1), Float(z2) 

return int(abs(a - b)*10**prec_to_dps( 

min(a._prec, b._prec)))*2 <= 1 

elif all(getattr(i, 'is_Number', False) for i in (z1, z2)): 

return z1._prec == z2._prec and str(z1) == str(z2) 

raise ValueError('exact comparison requires two Numbers') 

diff = abs(z1 - z2) 

az1 = abs(z1) 

if z2 and az1 > 1: 

return diff/az1 <= tol 

else: 

return diff <= tol 

 

 

def mpf_norm(mpf, prec): 

"""Return the mpf tuple normalized appropriately for the indicated 

precision after doing a check to see if zero should be returned or 

not when the mantissa is 0. ``mpf_normlize`` always assumes that this 

is zero, but it may not be since the mantissa for mpf's values "+inf", 

"-inf" and "nan" have a mantissa of zero, too. 

 

Note: this is not intended to validate a given mpf tuple, so sending 

mpf tuples that were not created by mpmath may produce bad results. This 

is only a wrapper to ``mpf_normalize`` which provides the check for non- 

zero mpfs that have a 0 for the mantissa. 

""" 

sign, man, expt, bc = mpf 

if not man: 

# hack for mpf_normalize which does not do this; 

# it assumes that if man is zero the result is 0 

# (see issue 6639) 

if not bc: 

return _mpf_zero 

else: 

# don't change anything; this should already 

# be a well formed mpf tuple 

return mpf 

rv = mpf_normalize(sign, man, expt, bc, prec, rnd) 

return rv 

 

# TODO: we should use the warnings module 

_errdict = {"divide": False} 

 

 

def seterr(divide=False): 

""" 

Should sympy raise an exception on 0/0 or return a nan? 

 

divide == True .... raise an exception 

divide == False ... return nan 

""" 

if _errdict["divide"] != divide: 

clear_cache() 

_errdict["divide"] = divide 

 

 

def _decimal_to_Rational_prec(dec): 

"""Convert an ordinary decimal instance to a Rational.""" 

if not dec.is_finite(): 

raise TypeError("dec must be finite, got %s." % dec) 

s, d, e = dec.as_tuple() 

prec = len(d) 

if e >= 0: # it's an integer 

rv = Integer(int(dec)) 

else: 

s = (-1)**s 

d = sum([di*10**i for i, di in enumerate(reversed(d))]) 

rv = Rational(s*d, 10**-e) 

return rv, prec 

 

 

def _literal_float(f): 

"""Return True if n can be interpreted as a floating point number.""" 

pat = r"[-+]?((\d*\.\d+)|(\d+\.?))(eE[-+]?\d+)?" 

return bool(regex.match(pat, f)) 

 

# (a,b) -> gcd(a,b) 

_gcdcache = {} 

 

# TODO caching with decorator, but not to degrade performance 

 

 

def igcd(*args): 

"""Computes nonnegative integer greatest common divisor. 

 

The algorithm is based on the well known Euclid's algorithm. To 

improve speed, igcd() has its own caching mechanism implemented. 

 

Examples 

======== 

 

>>> from sympy.core.numbers import igcd 

>>> igcd(2, 4) 

2 

>>> igcd(5, 10, 15) 

5 

 

""" 

if len(args) < 2: 

raise TypeError( 

'igcd() takes at least 2 arguments (%s given)' % len(args)) 

if 1 in args: 

a = 1 

k = 0 

else: 

a = abs(as_int(args[0])) 

k = 1 

if a != 1: 

while k < len(args): 

b = args[k] 

k += 1 

try: 

a = _gcdcache[(a, b)] 

except KeyError: 

b = as_int(b) 

if not b: 

continue 

if b == 1: 

a = 1 

break 

if b < 0: 

b = -b 

t = a, b 

while b: 

a, b = b, a % b 

_gcdcache[t] = _gcdcache[t[1], t[0]] = a 

while k < len(args): 

ok = as_int(args[k]) 

k += 1 

return a 

 

 

def ilcm(*args): 

"""Computes integer least common multiple. 

 

Examples 

======== 

 

>>> from sympy.core.numbers import ilcm 

>>> ilcm(5, 10) 

10 

>>> ilcm(7, 3) 

21 

>>> ilcm(5, 10, 15) 

30 

 

""" 

if len(args) < 2: 

raise TypeError( 

'ilcm() takes at least 2 arguments (%s given)' % len(args)) 

if 0 in args: 

return 0 

a = args[0] 

for b in args[1:]: 

a = a*b // igcd(a, b) 

return a 

 

 

def igcdex(a, b): 

"""Returns x, y, g such that g = x*a + y*b = gcd(a, b). 

 

>>> from sympy.core.numbers import igcdex 

>>> igcdex(2, 3) 

(-1, 1, 1) 

>>> igcdex(10, 12) 

(-1, 1, 2) 

 

>>> x, y, g = igcdex(100, 2004) 

>>> x, y, g 

(-20, 1, 4) 

>>> x*100 + y*2004 

4 

 

""" 

if (not a) and (not b): 

return (0, 1, 0) 

 

if not a: 

return (0, b//abs(b), abs(b)) 

if not b: 

return (a//abs(a), 0, abs(a)) 

 

if a < 0: 

a, x_sign = -a, -1 

else: 

x_sign = 1 

 

if b < 0: 

b, y_sign = -b, -1 

else: 

y_sign = 1 

 

x, y, r, s = 1, 0, 0, 1 

 

while b: 

(c, q) = (a % b, a // b) 

(a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) 

 

return (x*x_sign, y*y_sign, a) 

 

 

def mod_inverse(a, m): 

""" 

Return the number c such that, ( a * c ) % m == 1 where 

c has the same sign as a. If no such value exists, a 

ValueError is raised. 

 

Examples 

======== 

 

>>> from sympy import S 

>>> from sympy.core.numbers import mod_inverse 

 

Suppose we wish to find multiplicative inverse x of 

3 modulo 11. This is the same as finding x such 

that 3 * x = 1 (mod 11). One value of x that satisfies 

this congruence is 4. Because 3 * 4 = 12 and 12 = 1 mod(11). 

This is the value return by mod_inverse: 

 

>>> mod_inverse(3, 11) 

4 

>>> mod_inverse(-3, 11) 

-4 

 

When there is a commono factor between the numerators of 

``a`` and ``m`` the inverse does not exist: 

 

>>> mod_inverse(2, 4) 

Traceback (most recent call last): 

... 

ValueError: inverse of 2 mod 4 does not exist 

 

>>> mod_inverse(S(2)/7, S(5)/2) 

7/2 

 

References 

========== 

- https://en.wikipedia.org/wiki/Modular_multiplicative_inverse 

- https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm 

""" 

c = None 

try: 

a, m = as_int(a), as_int(m) 

if m > 1: 

x, y, g = igcdex(a, m) 

if g == 1: 

c = x % m 

if a < 0: 

c -= m 

except ValueError: 

a, m = sympify(a), sympify(m) 

if not (a.is_number and m.is_number): 

raise TypeError(filldedent(''' 

Expected numbers for arguments; symbolic `mod_inverse` 

is not implemented 

but symbolic expressions can be handled with the 

similar function, 

sympy.polys.polytools.invert''')) 

big = (m > 1) 

if not (big is S.true or big is S.false): 

raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) 

elif big: 

c = 1/a 

if c is None: 

raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) 

return c 

 

 

class Number(AtomicExpr): 

""" 

Represents any kind of number in sympy. 

 

Floating point numbers are represented by the Float class. 

Integer numbers (of any size), together with rational numbers (again, 

there is no limit on their size) are represented by the Rational class. 

 

If you want to represent, for example, ``1+sqrt(2)``, then you need to do:: 

 

Rational(1) + sqrt(Rational(2)) 

""" 

is_commutative = True 

is_number = True 

is_Number = True 

 

__slots__ = [] 

 

# Used to make max(x._prec, y._prec) return x._prec when only x is a float 

_prec = -1 

 

def __new__(cls, *obj): 

if len(obj) == 1: 

obj = obj[0] 

 

if isinstance(obj, Number): 

return obj 

if isinstance(obj, SYMPY_INTS): 

return Integer(obj) 

if isinstance(obj, tuple) and len(obj) == 2: 

return Rational(*obj) 

if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): 

return Float(obj) 

if isinstance(obj, string_types): 

val = sympify(obj) 

if isinstance(val, Number): 

return val 

else: 

raise ValueError('String "%s" does not denote a Number' % obj) 

if isinstance(obj, Number): 

return obj 

msg = "expected str|int|long|float|Decimal|Number object but got %r" 

raise TypeError(msg % type(obj).__name__) 

 

def invert(self, other, *gens, **args): 

from sympy.polys.polytools import invert 

if getattr(other, 'is_number', True): 

return mod_inverse(self, other) 

return invert(self, other, *gens, **args) 

 

def __divmod__(self, other): 

from .containers import Tuple 

from sympy.functions.elementary.complexes import sign 

 

try: 

other = Number(other) 

except TypeError: 

msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" 

raise TypeError(msg % (type(self).__name__, type(other).__name__)) 

if not other: 

raise ZeroDivisionError('modulo by zero') 

if self.is_Integer and other.is_Integer: 

return Tuple(*divmod(self.p, other.p)) 

else: 

rat = self/other 

w = sign(rat)*int(abs(rat)) # = rat.floor() 

r = self - other*w 

return Tuple(w, r) 

 

def __rdivmod__(self, other): 

try: 

other = Number(other) 

except TypeError: 

msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" 

raise TypeError(msg % (type(other).__name__, type(self).__name__)) 

return divmod(other, self) 

 

def __round__(self, *args): 

return round(float(self), *args) 

 

def _as_mpf_val(self, prec): 

"""Evaluation of mpf tuple accurate to at least prec bits.""" 

raise NotImplementedError('%s needs ._as_mpf_val() method' % 

(self.__class__.__name__)) 

 

def _eval_evalf(self, prec): 

return Float._new(self._as_mpf_val(prec), prec) 

 

def _as_mpf_op(self, prec): 

prec = max(prec, self._prec) 

return self._as_mpf_val(prec), prec 

 

def __float__(self): 

return mlib.to_float(self._as_mpf_val(53)) 

 

def _eval_conjugate(self): 

return self 

 

def _eval_order(self, *symbols): 

from sympy import Order 

# Order(5, x, y) -> Order(1,x,y) 

return Order(S.One, *symbols) 

 

def _eval_subs(self, old, new): 

if old == -self: 

return -new 

return self # there is no other possibility 

 

def _eval_is_finite(self): 

return True 

 

@classmethod 

def class_key(cls): 

return 1, 0, 'Number' 

 

@cacheit 

def sort_key(self, order=None): 

return self.class_key(), (0, ()), (), self 

 

@_sympifyit('other', NotImplemented) 

def __add__(self, other): 

if isinstance(other, Number): 

if other is S.NaN: 

return S.NaN 

elif other is S.Infinity: 

return S.Infinity 

elif other is S.NegativeInfinity: 

return S.NegativeInfinity 

return AtomicExpr.__add__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __sub__(self, other): 

if isinstance(other, Number): 

if other is S.NaN: 

return S.NaN 

elif other is S.Infinity: 

return S.NegativeInfinity 

elif other is S.NegativeInfinity: 

return S.Infinity 

return AtomicExpr.__sub__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __mul__(self, other): 

if isinstance(other, Number): 

if other is S.NaN: 

return S.NaN 

elif other is S.Infinity: 

if self.is_zero: 

return S.NaN 

elif self.is_positive: 

return S.Infinity 

else: 

return S.NegativeInfinity 

elif other is S.NegativeInfinity: 

if self.is_zero: 

return S.NaN 

elif self.is_positive: 

return S.NegativeInfinity 

else: 

return S.Infinity 

elif isinstance(other, Tuple): 

return NotImplemented 

return AtomicExpr.__mul__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __div__(self, other): 

if isinstance(other, Number): 

if other is S.NaN: 

return S.NaN 

elif other is S.Infinity or other is S.NegativeInfinity: 

return S.Zero 

return AtomicExpr.__div__(self, other) 

 

__truediv__ = __div__ 

 

def __eq__(self, other): 

raise NotImplementedError('%s needs .__eq__() method' % 

(self.__class__.__name__)) 

 

def __ne__(self, other): 

raise NotImplementedError('%s needs .__ne__() method' % 

(self.__class__.__name__)) 

 

def __lt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s < %s" % (self, other)) 

raise NotImplementedError('%s needs .__lt__() method' % 

(self.__class__.__name__)) 

 

def __le__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s <= %s" % (self, other)) 

raise NotImplementedError('%s needs .__le__() method' % 

(self.__class__.__name__)) 

 

def __gt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s > %s" % (self, other)) 

return _sympify(other).__lt__(self) 

 

def __ge__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s >= %s" % (self, other)) 

return _sympify(other).__le__(self) 

 

def __hash__(self): 

return super(Number, self).__hash__() 

 

def is_constant(self, *wrt, **flags): 

return True 

 

def as_coeff_mul(self, *deps, **kwargs): 

# a -> c*t 

if self.is_Rational or not kwargs.pop('rational', True): 

return self, tuple() 

elif self.is_negative: 

return S.NegativeOne, (-self,) 

return S.One, (self,) 

 

def as_coeff_add(self, *deps): 

# a -> c + t 

if self.is_Rational: 

return self, tuple() 

return S.Zero, (self,) 

 

def as_coeff_Mul(self, rational=False): 

"""Efficiently extract the coefficient of a product. """ 

if rational and not self.is_Rational: 

return S.One, self 

return (self, S.One) if self else (S.One, self) 

 

def as_coeff_Add(self, rational=False): 

"""Efficiently extract the coefficient of a summation. """ 

if not rational: 

return self, S.Zero 

return S.Zero, self 

 

def gcd(self, other): 

"""Compute GCD of `self` and `other`. """ 

from sympy.polys import gcd 

return gcd(self, other) 

 

def lcm(self, other): 

"""Compute LCM of `self` and `other`. """ 

from sympy.polys import lcm 

return lcm(self, other) 

 

def cofactors(self, other): 

"""Compute GCD and cofactors of `self` and `other`. """ 

from sympy.polys import cofactors 

return cofactors(self, other) 

 

 

class Float(Number): 

"""Represent a floating-point number of arbitrary precision. 

 

Examples 

======== 

 

>>> from sympy import Float 

>>> Float(3.5) 

3.50000000000000 

>>> Float(3) 

3.00000000000000 

 

Creating Floats from strings (and Python ``int`` and ``long`` 

types) will give a minimum precision of 15 digits, but the 

precision will automatically increase to capture all digits 

entered. 

 

>>> Float(1) 

1.00000000000000 

>>> Float(10**20) 

100000000000000000000. 

>>> Float('1e20') 

100000000000000000000. 

 

However, *floating-point* numbers (Python ``float`` types) retain 

only 15 digits of precision: 

 

>>> Float(1e20) 

1.00000000000000e+20 

>>> Float(1.23456789123456789) 

1.23456789123457 

 

It may be preferable to enter high-precision decimal numbers 

as strings: 

 

Float('1.23456789123456789') 

1.23456789123456789 

 

The desired number of digits can also be specified: 

 

>>> Float('1e-3', 3) 

0.00100 

>>> Float(100, 4) 

100.0 

 

Float can automatically count significant figures if a null string 

is sent for the precision; space are also allowed in the string. (Auto- 

counting is only allowed for strings, ints and longs). 

 

>>> Float('123 456 789 . 123 456', '') 

123456789.123456 

>>> Float('12e-3', '') 

0.012 

>>> Float(3, '') 

3. 

 

If a number is written in scientific notation, only the digits before the 

exponent are considered significant if a decimal appears, otherwise the 

"e" signifies only how to move the decimal: 

 

>>> Float('60.e2', '') # 2 digits significant 

6.0e+3 

>>> Float('60e2', '') # 4 digits significant 

6000. 

>>> Float('600e-2', '') # 3 digits significant 

6.00 

 

Notes 

===== 

 

Floats are inexact by their nature unless their value is a binary-exact 

value. 

 

>>> approx, exact = Float(.1, 1), Float(.125, 1) 

 

For calculation purposes, evalf needs to be able to change the precision 

but this will not increase the accuracy of the inexact value. The 

following is the most accurate 5-digit approximation of a value of 0.1 

that had only 1 digit of precision: 

 

>>> approx.evalf(5) 

0.099609 

 

By contrast, 0.125 is exact in binary (as it is in base 10) and so it 

can be passed to Float or evalf to obtain an arbitrary precision with 

matching accuracy: 

 

>>> Float(exact, 5) 

0.12500 

>>> exact.evalf(20) 

0.12500000000000000000 

 

Trying to make a high-precision Float from a float is not disallowed, 

but one must keep in mind that the *underlying float* (not the apparent 

decimal value) is being obtained with high precision. For example, 0.3 

does not have a finite binary representation. The closest rational is 

the fraction 5404319552844595/2**54. So if you try to obtain a Float of 

0.3 to 20 digits of precision you will not see the same thing as 0.3 

followed by 19 zeros: 

 

>>> Float(0.3, 20) 

0.29999999999999998890 

 

If you want a 20-digit value of the decimal 0.3 (not the floating point 

approximation of 0.3) you should send the 0.3 as a string. The underlying 

representation is still binary but a higher precision than Python's float 

is used: 

 

>>> Float('0.3', 20) 

0.30000000000000000000 

 

Although you can increase the precision of an existing Float using Float 

it will not increase the accuracy -- the underlying value is not changed: 

 

>>> def show(f): # binary rep of Float 

... from sympy import Mul, Pow 

... s, m, e, b = f._mpf_ 

... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) 

... print('%s at prec=%s' % (v, f._prec)) 

... 

>>> t = Float('0.3', 3) 

>>> show(t) 

4915/2**14 at prec=13 

>>> show(Float(t, 20)) # higher prec, not higher accuracy 

4915/2**14 at prec=70 

>>> show(Float(t, 2)) # lower prec 

307/2**10 at prec=10 

 

The same thing happens when evalf is used on a Float: 

 

>>> show(t.evalf(20)) 

4915/2**14 at prec=70 

>>> show(t.evalf(2)) 

307/2**10 at prec=10 

 

Finally, Floats can be instantiated with an mpf tuple (n, c, p) to 

produce the number (-1)**n*c*2**p: 

 

>>> n, c, p = 1, 5, 0 

>>> (-1)**n*c*2**p 

-5 

>>> Float((1, 5, 0)) 

-5.00000000000000 

 

An actual mpf tuple also contains the number of bits in c as the last 

element of the tuple: 

 

>>> _._mpf_ 

(1, 5, 0, 3) 

 

This is not needed for instantiation and is not the same thing as the 

precision. The mpf tuple and the precision are two separate quantities 

that Float tracks. 

 

""" 

__slots__ = ['_mpf_', '_prec'] 

 

# A Float represents many real numbers, 

# both rational and irrational. 

is_rational = None 

is_irrational = None 

is_number = True 

 

is_real = True 

 

is_Float = True 

 

def __new__(cls, num, prec=None): 

if isinstance(num, string_types): 

num = num.replace(' ', '') 

if num.startswith('.') and len(num) > 1: 

num = '0' + num 

elif num.startswith('-.') and len(num) > 2: 

num = '-0.' + num[2:] 

elif isinstance(num, float) and num == 0: 

num = '0' 

elif isinstance(num, (SYMPY_INTS, Integer)): 

num = str(num) # faster than mlib.from_int 

elif num is S.Infinity: 

num = '+inf' 

elif num is S.NegativeInfinity: 

num = '-inf' 

elif isinstance(num, mpmath.mpf): 

num = num._mpf_ 

 

if prec is None: 

dps = 15 

if isinstance(num, Float): 

return num 

if isinstance(num, string_types) and _literal_float(num): 

try: 

Num = decimal.Decimal(num) 

except decimal.InvalidOperation: 

pass 

else: 

isint = '.' not in num 

num, dps = _decimal_to_Rational_prec(Num) 

if num.is_Integer and isint: 

dps = max(dps, len(str(num).lstrip('-'))) 

dps = max(15, dps) 

elif prec == '': 

if not isinstance(num, string_types): 

raise ValueError('The null string can only be used when ' 

'the number to Float is passed as a string or an integer.') 

ok = None 

if _literal_float(num): 

try: 

Num = decimal.Decimal(num) 

except decimal.InvalidOperation: 

pass 

else: 

isint = '.' not in num 

num, dps = _decimal_to_Rational_prec(Num) 

if num.is_Integer and isint: 

dps = max(dps, len(str(num).lstrip('-'))) 

ok = True 

if ok is None: 

raise ValueError('string-float not recognized: %s' % num) 

else: 

dps = prec 

 

prec = mlib.libmpf.dps_to_prec(dps) 

if isinstance(num, float): 

_mpf_ = mlib.from_float(num, prec, rnd) 

elif isinstance(num, str): 

_mpf_ = mlib.from_str(num, prec, rnd) 

elif isinstance(num, decimal.Decimal): 

if num.is_finite(): 

_mpf_ = mlib.from_str(str(num), prec, rnd) 

elif num.is_nan(): 

_mpf_ = _mpf_nan 

elif num.is_infinite(): 

if num > 0: 

_mpf_ = _mpf_inf 

else: 

_mpf_ = _mpf_ninf 

else: 

raise ValueError("unexpected decimal value %s" % str(num)) 

elif isinstance(num, Rational): 

_mpf_ = mlib.from_rational(num.p, num.q, prec, rnd) 

elif isinstance(num, tuple) and len(num) in (3, 4): 

if type(num[1]) is str: 

# it's a hexadecimal (coming from a pickled object) 

# assume that it is in standard form 

num = list(num) 

num[1] = long(num[1], 16) 

_mpf_ = tuple(num) 

else: 

if not num[1] and len(num) == 4: 

# handle normalization hack 

return Float._new(num, prec) 

else: 

_mpf_ = mpmath.mpf( 

S.NegativeOne**num[0]*num[1]*2**num[2])._mpf_ 

elif isinstance(num, Float): 

_mpf_ = num._mpf_ 

if prec < num._prec: 

_mpf_ = mpf_norm(_mpf_, prec) 

else: 

_mpf_ = mpmath.mpf(num)._mpf_ 

 

# special cases 

if _mpf_ == _mpf_zero: 

pass # we want a Float 

elif _mpf_ == _mpf_nan: 

return S.NaN 

 

obj = Expr.__new__(cls) 

obj._mpf_ = _mpf_ 

obj._prec = prec 

return obj 

 

@classmethod 

def _new(cls, _mpf_, _prec): 

# special cases 

if _mpf_ == _mpf_zero: 

return S.Zero # XXX this is different from Float which gives 0.0 

elif _mpf_ == _mpf_nan: 

return S.NaN 

 

obj = Expr.__new__(cls) 

obj._mpf_ = mpf_norm(_mpf_, _prec) 

obj._prec = _prec 

return obj 

 

# mpz can't be pickled 

def __getnewargs__(self): 

return (mlib.to_pickable(self._mpf_),) 

 

def __getstate__(self): 

return {'_prec': self._prec} 

 

def _hashable_content(self): 

return (self._mpf_, self._prec) 

 

def floor(self): 

return Integer(int(mlib.to_int( 

mlib.mpf_floor(self._mpf_, self._prec)))) 

 

def ceiling(self): 

return Integer(int(mlib.to_int( 

mlib.mpf_ceil(self._mpf_, self._prec)))) 

 

@property 

def num(self): 

return mpmath.mpf(self._mpf_) 

 

def _as_mpf_val(self, prec): 

rv = mpf_norm(self._mpf_, prec) 

if rv != self._mpf_ and self._prec == prec: 

debug(self._mpf_, rv) 

return rv 

 

def _as_mpf_op(self, prec): 

return self._mpf_, max(prec, self._prec) 

 

def _eval_is_finite(self): 

if self._mpf_ in (_mpf_inf, _mpf_ninf): 

return False 

return True 

 

def _eval_is_infinite(self): 

if self._mpf_ in (_mpf_inf, _mpf_ninf): 

return True 

return False 

 

def _eval_is_integer(self): 

return self._mpf_ == _mpf_zero 

 

def _eval_is_negative(self): 

if self._mpf_ == _mpf_ninf: 

return True 

if self._mpf_ == _mpf_inf: 

return False 

return self.num < 0 

 

def _eval_is_positive(self): 

if self._mpf_ == _mpf_inf: 

return True 

if self._mpf_ == _mpf_ninf: 

return False 

return self.num > 0 

 

def _eval_is_zero(self): 

return self._mpf_ == _mpf_zero 

 

def __nonzero__(self): 

return self._mpf_ != _mpf_zero 

 

__bool__ = __nonzero__ 

 

def __neg__(self): 

return Float._new(mlib.mpf_neg(self._mpf_), self._prec) 

 

@_sympifyit('other', NotImplemented) 

def __add__(self, other): 

if isinstance(other, Number): 

rhs, prec = other._as_mpf_op(self._prec) 

return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) 

return Number.__add__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __sub__(self, other): 

if isinstance(other, Number): 

rhs, prec = other._as_mpf_op(self._prec) 

return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) 

return Number.__sub__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __mul__(self, other): 

if isinstance(other, Number): 

rhs, prec = other._as_mpf_op(self._prec) 

return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) 

return Number.__mul__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __div__(self, other): 

if isinstance(other, Number) and other != 0: 

rhs, prec = other._as_mpf_op(self._prec) 

return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) 

return Number.__div__(self, other) 

 

__truediv__ = __div__ 

 

@_sympifyit('other', NotImplemented) 

def __mod__(self, other): 

if isinstance(other, Rational) and other.q != 1: 

# calculate mod with Rationals, *then* round the result 

return Float(Rational.__mod__(Rational(self), other), 

prec_to_dps(self._prec)) 

if isinstance(other, Float): 

r = self/other 

if r == int(r): 

prec = max([prec_to_dps(i) 

for i in (self._prec, other._prec)]) 

return Float(0, prec) 

if isinstance(other, Number): 

rhs, prec = other._as_mpf_op(self._prec) 

return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) 

return Number.__mod__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __rmod__(self, other): 

if isinstance(other, Float): 

return other.__mod__(self) 

if isinstance(other, Number): 

rhs, prec = other._as_mpf_op(self._prec) 

return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) 

return Number.__rmod__(self, other) 

 

def _eval_power(self, expt): 

""" 

expt is symbolic object but not equal to 0, 1 

 

(-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> 

-> p**r*(sin(Pi*r) + cos(Pi*r)*I) 

""" 

if self == 0: 

if expt.is_positive: 

return S.Zero 

if expt.is_negative: 

return Float('inf') 

if isinstance(expt, Number): 

if isinstance(expt, Integer): 

prec = self._prec 

return Float._new( 

mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) 

elif isinstance(expt, Rational) and \ 

expt.p == 1 and expt.q % 2 and self.is_negative: 

return Pow(S.NegativeOne, expt, evaluate=False)*( 

-self)._eval_power(expt) 

expt, prec = expt._as_mpf_op(self._prec) 

mpfself = self._mpf_ 

try: 

y = mpf_pow(mpfself, expt, prec, rnd) 

return Float._new(y, prec) 

except mlib.ComplexResult: 

re, im = mlib.mpc_pow( 

(mpfself, _mpf_zero), (expt, _mpf_zero), prec, rnd) 

return Float._new(re, prec) + \ 

Float._new(im, prec)*S.ImaginaryUnit 

 

def __abs__(self): 

return Float._new(mlib.mpf_abs(self._mpf_), self._prec) 

 

def __int__(self): 

if self._mpf_ == _mpf_zero: 

return 0 

return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down 

 

__long__ = __int__ 

 

def __eq__(self, other): 

if isinstance(other, float): 

# coerce to Float at same precision 

o = Float(other) 

try: 

ompf = o._as_mpf_val(self._prec) 

except ValueError: 

return False 

return bool(mlib.mpf_eq(self._mpf_, ompf)) 

try: 

other = _sympify(other) 

except SympifyError: 

return False # sympy != other --> not == 

if isinstance(other, NumberSymbol): 

if other.is_irrational: 

return False 

return other.__eq__(self) 

if isinstance(other, Float): 

return bool(mlib.mpf_eq(self._mpf_, other._mpf_)) 

if isinstance(other, Number): 

# numbers should compare at the same precision; 

# all _as_mpf_val routines should be sure to abide 

# by the request to change the prec if necessary; if 

# they don't, the equality test will fail since it compares 

# the mpf tuples 

ompf = other._as_mpf_val(self._prec) 

return bool(mlib.mpf_eq(self._mpf_, ompf)) 

return False # Float != non-Number 

 

def __ne__(self, other): 

return not self.__eq__(other) 

 

def __gt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s > %s" % (self, other)) 

if isinstance(other, NumberSymbol): 

return other.__le__(self) 

if other.is_comparable: 

other = other.evalf() 

if isinstance(other, Number) and other is not S.NaN: 

return _sympify(bool( 

mlib.mpf_gt(self._mpf_, other._as_mpf_val(self._prec)))) 

return Expr.__gt__(self, other) 

 

def __ge__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s >= %s" % (self, other)) 

if isinstance(other, NumberSymbol): 

return other.__lt__(self) 

if other.is_comparable: 

other = other.evalf() 

if isinstance(other, Number) and other is not S.NaN: 

return _sympify(bool( 

mlib.mpf_ge(self._mpf_, other._as_mpf_val(self._prec)))) 

return Expr.__ge__(self, other) 

 

def __lt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s < %s" % (self, other)) 

if isinstance(other, NumberSymbol): 

return other.__ge__(self) 

if other.is_real and other.is_number: 

other = other.evalf() 

if isinstance(other, Number) and other is not S.NaN: 

return _sympify(bool( 

mlib.mpf_lt(self._mpf_, other._as_mpf_val(self._prec)))) 

return Expr.__lt__(self, other) 

 

def __le__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s <= %s" % (self, other)) 

if isinstance(other, NumberSymbol): 

return other.__gt__(self) 

if other.is_real and other.is_number: 

other = other.evalf() 

if isinstance(other, Number) and other is not S.NaN: 

return _sympify(bool( 

mlib.mpf_le(self._mpf_, other._as_mpf_val(self._prec)))) 

return Expr.__le__(self, other) 

 

def __hash__(self): 

return super(Float, self).__hash__() 

 

def epsilon_eq(self, other, epsilon="1e-15"): 

return abs(self - other) < Float(epsilon) 

 

def _sage_(self): 

import sage.all as sage 

return sage.RealNumber(str(self)) 

 

def __format__(self, format_spec): 

return format(decimal.Decimal(str(self)), format_spec) 

 

 

# Add sympify converters 

converter[float] = converter[decimal.Decimal] = Float 

 

# this is here to work nicely in Sage 

RealNumber = Float 

 

 

class Rational(Number): 

"""Represents integers and rational numbers (p/q) of any size. 

 

Examples 

======== 

 

>>> from sympy import Rational, nsimplify, S, pi 

>>> Rational(3) 

3 

>>> Rational(1, 2) 

1/2 

 

Rational is unprejudiced in accepting input. If a float is passed, the 

underlying value of the binary representation will be returned: 

 

>>> Rational(.5) 

1/2 

>>> Rational(.2) 

3602879701896397/18014398509481984 

 

If the simpler representation of the float is desired then consider 

limiting the denominator to the desired value or convert the float to 

a string (which is roughly equivalent to limiting the denominator to 

10**12): 

 

>>> Rational(str(.2)) 

1/5 

>>> Rational(.2).limit_denominator(10**12) 

1/5 

 

An arbitrarily precise Rational is obtained when a string literal is 

passed: 

 

>>> Rational("1.23") 

123/100 

>>> Rational('1e-2') 

1/100 

>>> Rational(".1") 

1/10 

>>> Rational('1e-2/3.2') 

1/320 

 

The conversion of other types of strings can be handled by 

the sympify() function, and conversion of floats to expressions 

or simple fractions can be handled with nsimplify: 

 

>>> S('.[3]') # repeating digits in brackets 

1/3 

>>> S('3**2/10') # general expressions 

9/10 

>>> nsimplify(.3) # numbers that have a simple form 

3/10 

 

But if the input does not reduce to a literal Rational, an error will 

be raised: 

 

>>> Rational(pi) 

Traceback (most recent call last): 

... 

TypeError: invalid input: pi 

 

 

Low-level 

--------- 

 

Access numerator and denominator as .p and .q: 

 

>>> r = Rational(3, 4) 

>>> r 

3/4 

>>> r.p 

3 

>>> r.q 

4 

 

Note that p and q return integers (not SymPy Integers) so some care 

is needed when using them in expressions: 

 

>>> r.p/r.q 

0.75 

 

See Also 

======== 

sympify, sympy.simplify.simplify.nsimplify 

""" 

is_real = True 

is_integer = False 

is_rational = True 

is_number = True 

 

__slots__ = ['p', 'q'] 

 

is_Rational = True 

 

@cacheit 

def __new__(cls, p, q=None, gcd=None): 

if q is None: 

if isinstance(p, Rational): 

return p 

 

if isinstance(p, string_types): 

if p.count('/') > 1: 

raise TypeError('invalid input: %s' % p) 

pq = p.rsplit('/', 1) 

if len(pq) == 2: 

p, q = pq 

fp = fractions.Fraction(p) 

fq = fractions.Fraction(q) 

f = fp/fq 

return Rational(f.numerator, f.denominator, 1) 

p = p.replace(' ', '') 

try: 

p = fractions.Fraction(p) 

except ValueError: 

pass # error will raise below 

elif isinstance(p, float): 

p = fractions.Fraction(p) 

 

if not isinstance(p, string_types): 

try: 

if isinstance(p, fractions.Fraction): 

return Rational(p.numerator, p.denominator, 1) 

except NameError: 

pass # error will raise below 

 

if isinstance(p, Float): 

return Rational(*float(p).as_integer_ratio()) 

 

if not isinstance(p, SYMPY_INTS + (Rational,)): 

raise TypeError('invalid input: %s' % p) 

q = q or S.One 

gcd = 1 

else: 

p = Rational(p) 

q = Rational(q) 

 

if isinstance(q, Rational): 

p *= q.q 

q = q.p 

if isinstance(p, Rational): 

q *= p.q 

p = p.p 

 

# p and q are now integers 

if q == 0: 

if p == 0: 

if _errdict["divide"]: 

raise ValueError("Indeterminate 0/0") 

else: 

return S.NaN 

return S.ComplexInfinity 

if q < 0: 

q = -q 

p = -p 

if not gcd: 

gcd = igcd(abs(p), q) 

if gcd > 1: 

p //= gcd 

q //= gcd 

if q == 1: 

return Integer(p) 

if p == 1 and q == 2: 

return S.Half 

obj = Expr.__new__(cls) 

obj.p = p 

obj.q = q 

return obj 

 

def limit_denominator(self, max_denominator=1000000): 

"""Closest Rational to self with denominator at most max_denominator. 

 

>>> from sympy import Rational 

>>> Rational('3.141592653589793').limit_denominator(10) 

22/7 

>>> Rational('3.141592653589793').limit_denominator(100) 

311/99 

 

""" 

f = fractions.Fraction(self.p, self.q) 

return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) 

 

def __getnewargs__(self): 

return (self.p, self.q) 

 

def _hashable_content(self): 

return (self.p, self.q) 

 

def _eval_is_positive(self): 

return self.p > 0 

 

def _eval_is_zero(self): 

return self.p == 0 

 

def __neg__(self): 

return Rational(-self.p, self.q) 

 

@_sympifyit('other', NotImplemented) 

def __add__(self, other): 

if isinstance(other, Integer): 

return Rational(self.p + self.q*other.p, self.q, 1) 

elif isinstance(other, Rational): 

#TODO: this can probably be optimized more 

return Rational(self.p*other.q + self.q*other.p, self.q*other.q) 

elif isinstance(other, Float): 

return other + self 

else: 

return Number.__add__(self, other) 

__radd__ = __add__ 

 

@_sympifyit('other', NotImplemented) 

def __sub__(self, other): 

if isinstance(other, Integer): 

return Rational(self.p - self.q*other.p, self.q, 1) 

elif isinstance(other, Rational): 

return Rational(self.p*other.q - self.q*other.p, self.q*other.q) 

elif isinstance(other, Float): 

return -other + self 

else: 

return Number.__sub__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __rsub__(self, other): 

if isinstance(other, Integer): 

return Rational(self.q*other.p - self.p, self.q, 1) 

elif isinstance(other, Rational): 

return Rational(self.q*other.p - self.p*other.q, self.q*other.q) 

elif isinstance(other, Float): 

return -self + other 

else: 

return Number.__rsub__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __mul__(self, other): 

if isinstance(other, Integer): 

return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) 

elif isinstance(other, Rational): 

return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) 

elif isinstance(other, Float): 

return other*self 

else: 

return Number.__mul__(self, other) 

__rmul__ = __mul__ 

 

@_sympifyit('other', NotImplemented) 

def __div__(self, other): 

if isinstance(other, Integer): 

if self.p and other.p == S.Zero: 

return S.ComplexInfinity 

else: 

return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) 

elif isinstance(other, Rational): 

return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) 

elif isinstance(other, Float): 

return self*(1/other) 

else: 

return Number.__div__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __rdiv__(self, other): 

if isinstance(other, Integer): 

return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) 

elif isinstance(other, Rational): 

return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) 

elif isinstance(other, Float): 

return other*(1/self) 

else: 

return Number.__rdiv__(self, other) 

 

__truediv__ = __div__ 

 

@_sympifyit('other', NotImplemented) 

def __mod__(self, other): 

if isinstance(other, Rational): 

n = (self.p*other.q) // (other.p*self.q) 

return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) 

if isinstance(other, Float): 

# calculate mod with Rationals, *then* round the answer 

return Float(self.__mod__(Rational(other)), 

prec_to_dps(other._prec)) 

return Number.__mod__(self, other) 

 

@_sympifyit('other', NotImplemented) 

def __rmod__(self, other): 

if isinstance(other, Rational): 

return Rational.__mod__(other, self) 

return Number.__rmod__(self, other) 

 

def _eval_power(self, expt): 

if isinstance(expt, Number): 

if isinstance(expt, Float): 

return self._eval_evalf(expt._prec)**expt 

if expt.is_negative: 

# (3/4)**-2 -> (4/3)**2 

ne = -expt 

if (ne is S.One): 

return Rational(self.q, self.p) 

if self.is_negative: 

if expt.q != 1: 

return -(S.NegativeOne)**((expt.p % expt.q) / 

S(expt.q))*Rational(self.q, -self.p)**ne 

else: 

return S.NegativeOne**ne*Rational(self.q, -self.p)**ne 

else: 

return Rational(self.q, self.p)**ne 

if expt is S.Infinity: # -oo already caught by test for negative 

if self.p > self.q: 

# (3/2)**oo -> oo 

return S.Infinity 

if self.p < -self.q: 

# (-3/2)**oo -> oo + I*oo 

return S.Infinity + S.Infinity*S.ImaginaryUnit 

return S.Zero 

if isinstance(expt, Integer): 

# (4/3)**2 -> 4**2 / 3**2 

return Rational(self.p**expt.p, self.q**expt.p, 1) 

if isinstance(expt, Rational): 

if self.p != 1: 

# (4/3)**(5/6) -> 4**(5/6)*3**(-5/6) 

return Integer(self.p)**expt*Integer(self.q)**(-expt) 

# as the above caught negative self.p, now self is positive 

return Integer(self.q)**Rational( 

expt.p*(expt.q - 1), expt.q) / \ 

Integer(self.q)**Integer(expt.p) 

 

if self.is_negative and expt.is_even: 

return (-self)**expt 

 

return 

 

def _as_mpf_val(self, prec): 

return mlib.from_rational(self.p, self.q, prec, rnd) 

 

def _mpmath_(self, prec, rnd): 

return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) 

 

def __abs__(self): 

return Rational(abs(self.p), self.q) 

 

def __int__(self): 

p, q = self.p, self.q 

if p < 0: 

return -int(-p//q) 

return int(p//q) 

 

__long__ = __int__ 

 

def __eq__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

return False # sympy != other --> not == 

if isinstance(other, NumberSymbol): 

if other.is_irrational: 

return False 

return other.__eq__(self) 

if isinstance(other, Number): 

if isinstance(other, Rational): 

# a Rational is always in reduced form so will never be 2/4 

# so we can just check equivalence of args 

return self.p == other.p and self.q == other.q 

if isinstance(other, Float): 

return mlib.mpf_eq(self._as_mpf_val(other._prec), other._mpf_) 

return False 

 

def __ne__(self, other): 

return not self.__eq__(other) 

 

def __gt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s > %s" % (self, other)) 

if isinstance(other, NumberSymbol): 

return other.__le__(self) 

expr = self 

if isinstance(other, Number): 

if isinstance(other, Rational): 

return _sympify(bool(self.p*other.q > self.q*other.p)) 

if isinstance(other, Float): 

return _sympify(bool(mlib.mpf_gt( 

self._as_mpf_val(other._prec), other._mpf_))) 

elif other.is_number and other.is_real: 

expr, other = Integer(self.p), self.q*other 

return Expr.__gt__(expr, other) 

 

def __ge__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s >= %s" % (self, other)) 

if isinstance(other, NumberSymbol): 

return other.__lt__(self) 

expr = self 

if isinstance(other, Number): 

if isinstance(other, Rational): 

return _sympify(bool(self.p*other.q >= self.q*other.p)) 

if isinstance(other, Float): 

return _sympify(bool(mlib.mpf_ge( 

self._as_mpf_val(other._prec), other._mpf_))) 

elif other.is_number and other.is_real: 

expr, other = Integer(self.p), self.q*other 

return Expr.__ge__(expr, other) 

 

def __lt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s < %s" % (self, other)) 

if isinstance(other, NumberSymbol): 

return other.__ge__(self) 

expr = self 

if isinstance(other, Number): 

if isinstance(other, Rational): 

return _sympify(bool(self.p*other.q < self.q*other.p)) 

if isinstance(other, Float): 

return _sympify(bool(mlib.mpf_lt( 

self._as_mpf_val(other._prec), other._mpf_))) 

elif other.is_number and other.is_real: 

expr, other = Integer(self.p), self.q*other 

return Expr.__lt__(expr, other) 

 

def __le__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s <= %s" % (self, other)) 

expr = self 

if isinstance(other, NumberSymbol): 

return other.__gt__(self) 

elif isinstance(other, Number): 

if isinstance(other, Rational): 

return _sympify(bool(self.p*other.q <= self.q*other.p)) 

if isinstance(other, Float): 

return _sympify(bool(mlib.mpf_le( 

self._as_mpf_val(other._prec), other._mpf_))) 

elif other.is_number and other.is_real: 

expr, other = Integer(self.p), self.q*other 

return Expr.__le__(expr, other) 

 

def __hash__(self): 

return super(Rational, self).__hash__() 

 

def factors(self, limit=None, use_trial=True, use_rho=False, 

use_pm1=False, verbose=False, visual=False): 

"""A wrapper to factorint which return factors of self that are 

smaller than limit (or cheap to compute). Special methods of 

factoring are disabled by default so that only trial division is used. 

""" 

from sympy.ntheory import factorrat 

 

return factorrat(self, limit=limit, use_trial=use_trial, 

use_rho=use_rho, use_pm1=use_pm1, 

verbose=verbose).copy() 

 

@_sympifyit('other', NotImplemented) 

def gcd(self, other): 

if isinstance(other, Rational): 

if other is S.Zero: 

return other 

return Rational( 

Integer(igcd(self.p, other.p)), 

Integer(ilcm(self.q, other.q))) 

return Number.gcd(self, other) 

 

@_sympifyit('other', NotImplemented) 

def lcm(self, other): 

if isinstance(other, Rational): 

return Rational( 

self.p*other.p//igcd(self.p, other.p), 

igcd(self.q, other.q)) 

return Number.lcm(self, other) 

 

def as_numer_denom(self): 

return Integer(self.p), Integer(self.q) 

 

def _sage_(self): 

import sage.all as sage 

return sage.Integer(self.p)/sage.Integer(self.q) 

 

def as_content_primitive(self, radical=False, clear=True): 

"""Return the tuple (R, self/R) where R is the positive Rational 

extracted from self. 

 

Examples 

======== 

 

>>> from sympy import S 

>>> (S(-3)/2).as_content_primitive() 

(3/2, -1) 

 

See docstring of Expr.as_content_primitive for more examples. 

""" 

 

if self: 

if self.is_positive: 

return self, S.One 

return -self, S.NegativeOne 

return S.One, self 

 

def as_coeff_Mul(self, rational=False): 

"""Efficiently extract the coefficient of a product. """ 

return self, S.One 

 

def as_coeff_Add(self, rational=False): 

"""Efficiently extract the coefficient of a summation. """ 

return self, S.Zero 

 

 

# int -> Integer 

_intcache = {} 

 

 

# TODO move this tracing facility to sympy/core/trace.py ? 

def _intcache_printinfo(): 

ints = sorted(_intcache.keys()) 

nhit = _intcache_hits 

nmiss = _intcache_misses 

 

if nhit == 0 and nmiss == 0: 

print() 

print('Integer cache statistic was not collected') 

return 

 

miss_ratio = float(nmiss) / (nhit + nmiss) 

 

print() 

print('Integer cache statistic') 

print('-----------------------') 

print() 

print('#items: %i' % len(ints)) 

print() 

print(' #hit #miss #total') 

print() 

print('%5i %5i (%7.5f %%) %5i' % ( 

nhit, nmiss, miss_ratio*100, nhit + nmiss) 

) 

print() 

print(ints) 

 

_intcache_hits = 0 

_intcache_misses = 0 

 

 

def int_trace(f): 

import os 

if os.getenv('SYMPY_TRACE_INT', 'no').lower() != 'yes': 

return f 

 

def Integer_tracer(cls, i): 

global _intcache_hits, _intcache_misses 

 

try: 

_intcache_hits += 1 

return _intcache[i] 

except KeyError: 

_intcache_hits -= 1 

_intcache_misses += 1 

 

return f(cls, i) 

 

# also we want to hook our _intcache_printinfo into sys.atexit 

import atexit 

atexit.register(_intcache_printinfo) 

 

return Integer_tracer 

 

 

class Integer(Rational): 

 

q = 1 

is_integer = True 

is_number = True 

 

is_Integer = True 

 

__slots__ = ['p'] 

 

def _as_mpf_val(self, prec): 

return mlib.from_int(self.p, prec) 

 

def _mpmath_(self, prec, rnd): 

return mpmath.make_mpf(self._as_mpf_val(prec)) 

 

# TODO caching with decorator, but not to degrade performance 

@int_trace 

def __new__(cls, i): 

if isinstance(i, string_types): 

i = i.replace(' ', '') 

# whereas we cannot, in general, make a Rational from an 

# arbitrary expression, we can make an Integer unambiguously 

# (except when a non-integer expression happens to round to 

# an integer). So we proceed by taking int() of the input and 

# let the int routines determine whether the expression can 

# be made into an int or whether an error should be raised. 

try: 

ival = int(i) 

except TypeError: 

raise TypeError( 

'Integer can only work with integer expressions.') 

try: 

return _intcache[ival] 

except KeyError: 

# We only work with well-behaved integer types. This converts, for 

# example, numpy.int32 instances. 

obj = Expr.__new__(cls) 

obj.p = ival 

 

_intcache[ival] = obj 

return obj 

 

def __getnewargs__(self): 

return (self.p,) 

 

# Arithmetic operations are here for efficiency 

def __int__(self): 

return self.p 

 

__long__ = __int__ 

 

def __neg__(self): 

return Integer(-self.p) 

 

def __abs__(self): 

if self.p >= 0: 

return self 

else: 

return Integer(-self.p) 

 

def __divmod__(self, other): 

from .containers import Tuple 

if isinstance(other, Integer): 

return Tuple(*(divmod(self.p, other.p))) 

else: 

return Number.__divmod__(self, other) 

 

def __rdivmod__(self, other): 

from .containers import Tuple 

if isinstance(other, integer_types): 

return Tuple(*(divmod(other, self.p))) 

else: 

try: 

other = Number(other) 

except TypeError: 

msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" 

oname = type(other).__name__ 

sname = type(self).__name__ 

raise TypeError(msg % (oname, sname)) 

return Number.__divmod__(other, self) 

 

# TODO make it decorator + bytecodehacks? 

def __add__(self, other): 

if isinstance(other, integer_types): 

return Integer(self.p + other) 

elif isinstance(other, Integer): 

return Integer(self.p + other.p) 

elif isinstance(other, Rational): 

return Rational(self.p*other.q + other.p, other.q, 1) 

return Rational.__add__(self, other) 

 

def __radd__(self, other): 

if isinstance(other, integer_types): 

return Integer(other + self.p) 

elif isinstance(other, Rational): 

return Rational(other.p + self.p*other.q, other.q, 1) 

return Rational.__radd__(self, other) 

 

def __sub__(self, other): 

if isinstance(other, integer_types): 

return Integer(self.p - other) 

elif isinstance(other, Integer): 

return Integer(self.p - other.p) 

elif isinstance(other, Rational): 

return Rational(self.p*other.q - other.p, other.q, 1) 

return Rational.__sub__(self, other) 

 

def __rsub__(self, other): 

if isinstance(other, integer_types): 

return Integer(other - self.p) 

elif isinstance(other, Rational): 

return Rational(other.p - self.p*other.q, other.q, 1) 

return Rational.__rsub__(self, other) 

 

def __mul__(self, other): 

if isinstance(other, integer_types): 

return Integer(self.p*other) 

elif isinstance(other, Integer): 

return Integer(self.p*other.p) 

elif isinstance(other, Rational): 

return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) 

return Rational.__mul__(self, other) 

 

def __rmul__(self, other): 

if isinstance(other, integer_types): 

return Integer(other*self.p) 

elif isinstance(other, Rational): 

return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) 

return Rational.__rmul__(self, other) 

 

def __mod__(self, other): 

if isinstance(other, integer_types): 

return Integer(self.p % other) 

elif isinstance(other, Integer): 

return Integer(self.p % other.p) 

return Rational.__mod__(self, other) 

 

def __rmod__(self, other): 

if isinstance(other, integer_types): 

return Integer(other % self.p) 

elif isinstance(other, Integer): 

return Integer(other.p % self.p) 

return Rational.__rmod__(self, other) 

 

def __eq__(self, other): 

if isinstance(other, integer_types): 

return (self.p == other) 

elif isinstance(other, Integer): 

return (self.p == other.p) 

return Rational.__eq__(self, other) 

 

def __ne__(self, other): 

return not self.__eq__(other) 

 

def __gt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s > %s" % (self, other)) 

if isinstance(other, Integer): 

return _sympify(self.p > other.p) 

return Rational.__gt__(self, other) 

 

def __lt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s < %s" % (self, other)) 

if isinstance(other, Integer): 

return _sympify(self.p < other.p) 

return Rational.__lt__(self, other) 

 

def __ge__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s >= %s" % (self, other)) 

if isinstance(other, Integer): 

return _sympify(self.p >= other.p) 

return Rational.__ge__(self, other) 

 

def __le__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s <= %s" % (self, other)) 

if isinstance(other, Integer): 

return _sympify(self.p <= other.p) 

return Rational.__le__(self, other) 

 

def __hash__(self): 

return hash(self.p) 

 

def __index__(self): 

return self.p 

 

######################################## 

 

def _eval_is_odd(self): 

return bool(self.p % 2) 

 

def _eval_power(self, expt): 

""" 

Tries to do some simplifications on self**expt 

 

Returns None if no further simplifications can be done 

 

When exponent is a fraction (so we have for example a square root), 

we try to find a simpler representation by factoring the argument 

up to factors of 2**15, e.g. 

 

- sqrt(4) becomes 2 

- sqrt(-4) becomes 2*I 

- (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) 

 

Further simplification would require a special call to factorint on 

the argument which is not done here for sake of speed. 

 

""" 

from sympy import perfect_power 

 

if expt is S.Infinity: 

if self.p > S.One: 

return S.Infinity 

# cases -1, 0, 1 are done in their respective classes 

return S.Infinity + S.ImaginaryUnit*S.Infinity 

if expt is S.NegativeInfinity: 

return Rational(1, self)**S.Infinity 

if not isinstance(expt, Number): 

# simplify when expt is even 

# (-2)**k --> 2**k 

if self.is_negative and expt.is_even: 

return (-self)**expt 

if isinstance(expt, Float): 

# Rational knows how to exponentiate by a Float 

return super(Integer, self)._eval_power(expt) 

if not isinstance(expt, Rational): 

return 

if expt is S.Half and self.is_negative: 

# we extract I for this special case since everyone is doing so 

return S.ImaginaryUnit*Pow(-self, expt) 

if expt.is_negative: 

# invert base and change sign on exponent 

ne = -expt 

if self.is_negative: 

if expt.q != 1: 

return -(S.NegativeOne)**((expt.p % expt.q) / 

S(expt.q))*Rational(1, -self)**ne 

else: 

return (S.NegativeOne)**ne*Rational(1, -self)**ne 

else: 

return Rational(1, self.p)**ne 

# see if base is a perfect root, sqrt(4) --> 2 

x, xexact = integer_nthroot(abs(self.p), expt.q) 

if xexact: 

# if it's a perfect root we've finished 

result = Integer(x**abs(expt.p)) 

if self.is_negative: 

result *= S.NegativeOne**expt 

return result 

 

# The following is an algorithm where we collect perfect roots 

# from the factors of base. 

 

# if it's not an nth root, it still might be a perfect power 

b_pos = int(abs(self.p)) 

p = perfect_power(b_pos) 

if p is not False: 

dict = {p[0]: p[1]} 

else: 

dict = Integer(self).factors(limit=2**15) 

 

# now process the dict of factors 

if self.is_negative: 

dict[-1] = 1 

out_int = 1 # integer part 

out_rad = 1 # extracted radicals 

sqr_int = 1 

sqr_gcd = 0 

sqr_dict = {} 

for prime, exponent in dict.items(): 

exponent *= expt.p 

# remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) 

div_e, div_m = divmod(exponent, expt.q) 

if div_e > 0: 

out_int *= prime**div_e 

if div_m > 0: 

# see if the reduced exponent shares a gcd with e.q 

# (2**2)**(1/10) -> 2**(1/5) 

g = igcd(div_m, expt.q) 

if g != 1: 

out_rad *= Pow(prime, Rational(div_m//g, expt.q//g)) 

else: 

sqr_dict[prime] = div_m 

# identify gcd of remaining powers 

for p, ex in sqr_dict.items(): 

if sqr_gcd == 0: 

sqr_gcd = ex 

else: 

sqr_gcd = igcd(sqr_gcd, ex) 

if sqr_gcd == 1: 

break 

for k, v in sqr_dict.items(): 

sqr_int *= k**(v//sqr_gcd) 

if sqr_int == self and out_int == 1 and out_rad == 1: 

result = None 

else: 

result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) 

return result 

 

def _eval_is_prime(self): 

from sympy.ntheory import isprime 

 

return isprime(self) 

 

def _eval_is_composite(self): 

if self > 1: 

return fuzzy_not(self.is_prime) 

else: 

return False 

 

def as_numer_denom(self): 

return self, S.One 

 

def __floordiv__(self, other): 

return Integer(self.p // Integer(other).p) 

 

def __rfloordiv__(self, other): 

return Integer(Integer(other).p // self.p) 

 

# Add sympify converters 

for i_type in integer_types: 

converter[i_type] = Integer 

 

 

class AlgebraicNumber(Expr): 

"""Class for representing algebraic numbers in SymPy. """ 

 

__slots__ = ['rep', 'root', 'alias', 'minpoly'] 

 

is_AlgebraicNumber = True 

is_algebraic = True 

is_number = True 

 

def __new__(cls, expr, coeffs=None, alias=None, **args): 

"""Construct a new algebraic number. """ 

from sympy import Poly 

from sympy.polys.polyclasses import ANP, DMP 

from sympy.polys.numberfields import minimal_polynomial 

from sympy.core.symbol import Symbol 

 

expr = sympify(expr) 

 

if isinstance(expr, (tuple, Tuple)): 

minpoly, root = expr 

 

if not minpoly.is_Poly: 

minpoly = Poly(minpoly) 

elif expr.is_AlgebraicNumber: 

minpoly, root = expr.minpoly, expr.root 

else: 

minpoly, root = minimal_polynomial( 

expr, args.get('gen'), polys=True), expr 

 

dom = minpoly.get_domain() 

 

if coeffs is not None: 

if not isinstance(coeffs, ANP): 

rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) 

scoeffs = Tuple(*coeffs) 

else: 

rep = DMP.from_list(coeffs.to_list(), 0, dom) 

scoeffs = Tuple(*coeffs.to_list()) 

 

if rep.degree() >= minpoly.degree(): 

rep = rep.rem(minpoly.rep) 

 

else: 

rep = DMP.from_list([1, 0], 0, dom) 

scoeffs = Tuple(1, 0) 

 

if root.is_negative: 

rep = -rep 

scoeffs = Tuple(-1, 0) 

 

sargs = (root, scoeffs) 

 

if alias is not None: 

if not isinstance(alias, Symbol): 

alias = Symbol(alias) 

sargs = sargs + (alias,) 

 

obj = Expr.__new__(cls, *sargs) 

 

obj.rep = rep 

obj.root = root 

obj.alias = alias 

obj.minpoly = minpoly 

 

return obj 

 

def __hash__(self): 

return super(AlgebraicNumber, self).__hash__() 

 

def _eval_evalf(self, prec): 

return self.as_expr()._evalf(prec) 

 

@property 

def is_aliased(self): 

"""Returns ``True`` if ``alias`` was set. """ 

return self.alias is not None 

 

def as_poly(self, x=None): 

"""Create a Poly instance from ``self``. """ 

from sympy import Dummy, Poly, PurePoly 

if x is not None: 

return Poly.new(self.rep, x) 

else: 

if self.alias is not None: 

return Poly.new(self.rep, self.alias) 

else: 

return PurePoly.new(self.rep, Dummy('x')) 

 

def as_expr(self, x=None): 

"""Create a Basic expression from ``self``. """ 

return self.as_poly(x or self.root).as_expr().expand() 

 

def coeffs(self): 

"""Returns all SymPy coefficients of an algebraic number. """ 

return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] 

 

def native_coeffs(self): 

"""Returns all native coefficients of an algebraic number. """ 

return self.rep.all_coeffs() 

 

def to_algebraic_integer(self): 

"""Convert ``self`` to an algebraic integer. """ 

from sympy import Poly 

f = self.minpoly 

 

if f.LC() == 1: 

return self 

 

coeff = f.LC()**(f.degree() - 1) 

poly = f.compose(Poly(f.gen/f.LC())) 

 

minpoly = poly*coeff 

root = f.LC()*self.root 

 

return AlgebraicNumber((minpoly, root), self.coeffs()) 

 

def _eval_simplify(self, ratio, measure): 

from sympy.polys import CRootOf, minpoly 

 

for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: 

if minpoly(self.root - r).is_Symbol: 

# use the matching root if it's simpler 

if measure(r) < ratio*measure(self.root): 

return AlgebraicNumber(r) 

return self 

 

 

class RationalConstant(Rational): 

""" 

Abstract base class for rationals with specific behaviors 

 

Derived classes must define class attributes p and q and should probably all 

be singletons. 

""" 

__slots__ = [] 

 

def __new__(cls): 

return AtomicExpr.__new__(cls) 

 

 

class IntegerConstant(Integer): 

__slots__ = [] 

 

def __new__(cls): 

return AtomicExpr.__new__(cls) 

 

 

class Zero(with_metaclass(Singleton, IntegerConstant)): 

"""The number zero. 

 

Zero is a singleton, and can be accessed by ``S.Zero`` 

 

Examples 

======== 

 

>>> from sympy import S, Integer, zoo 

>>> Integer(0) is S.Zero 

True 

>>> 1/S.Zero 

zoo 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Zero 

""" 

 

p = 0 

q = 1 

is_positive = False 

is_negative = False 

is_zero = True 

is_number = True 

 

__slots__ = [] 

 

@staticmethod 

def __abs__(): 

return S.Zero 

 

@staticmethod 

def __neg__(): 

return S.Zero 

 

def _eval_power(self, expt): 

if expt.is_positive: 

return self 

if expt.is_negative: 

return S.ComplexInfinity 

if expt.is_real is False: 

return S.NaN 

# infinities are already handled with pos and neg 

# tests above; now throw away leading numbers on Mul 

# exponent 

coeff, terms = expt.as_coeff_Mul() 

if coeff.is_negative: 

return S.ComplexInfinity**terms 

if coeff is not S.One: # there is a Number to discard 

return self**terms 

 

def _eval_order(self, *symbols): 

# Order(0,x) -> 0 

return self 

 

def __nonzero__(self): 

return False 

 

__bool__ = __nonzero__ 

 

def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted 

"""Efficiently extract the coefficient of a summation. """ 

return S.One, self 

 

 

class One(with_metaclass(Singleton, IntegerConstant)): 

"""The number one. 

 

One is a singleton, and can be accessed by ``S.One``. 

 

Examples 

======== 

 

>>> from sympy import S, Integer 

>>> Integer(1) is S.One 

True 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/1_%28number%29 

""" 

is_number = True 

 

p = 1 

q = 1 

 

__slots__ = [] 

 

@staticmethod 

def __abs__(): 

return S.One 

 

@staticmethod 

def __neg__(): 

return S.NegativeOne 

 

def _eval_power(self, expt): 

return self 

 

def _eval_order(self, *symbols): 

return 

 

@staticmethod 

def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, 

verbose=False, visual=False): 

if visual: 

return S.One 

else: 

return {} 

 

 

class NegativeOne(with_metaclass(Singleton, IntegerConstant)): 

"""The number negative one. 

 

NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. 

 

Examples 

======== 

 

>>> from sympy import S, Integer 

>>> Integer(-1) is S.NegativeOne 

True 

 

See Also 

======== 

 

One 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/%E2%88%921_%28number%29 

 

""" 

is_number = True 

 

p = -1 

q = 1 

 

__slots__ = [] 

 

@staticmethod 

def __abs__(): 

return S.One 

 

@staticmethod 

def __neg__(): 

return S.One 

 

def _eval_power(self, expt): 

if expt.is_odd: 

return S.NegativeOne 

if expt.is_even: 

return S.One 

if isinstance(expt, Number): 

if isinstance(expt, Float): 

return Float(-1.0)**expt 

if expt is S.NaN: 

return S.NaN 

if expt is S.Infinity or expt is S.NegativeInfinity: 

return S.NaN 

if expt is S.Half: 

return S.ImaginaryUnit 

if isinstance(expt, Rational): 

if expt.q == 2: 

return S.ImaginaryUnit**Integer(expt.p) 

i, r = divmod(expt.p, expt.q) 

if i: 

return self**i*self**Rational(r, expt.q) 

return 

 

 

class Half(with_metaclass(Singleton, RationalConstant)): 

"""The rational number 1/2. 

 

Half is a singleton, and can be accessed by ``S.Half``. 

 

Examples 

======== 

 

>>> from sympy import S, Rational 

>>> Rational(1, 2) is S.Half 

True 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/One_half 

""" 

is_number = True 

 

p = 1 

q = 2 

 

__slots__ = [] 

 

@staticmethod 

def __abs__(): 

return S.Half 

 

 

class Infinity(with_metaclass(Singleton, Number)): 

r"""Positive infinite quantity. 

 

In real analysis the symbol `\infty` denotes an unbounded 

limit: `x\to\infty` means that `x` grows without bound. 

 

Infinity is often used not only to define a limit but as a value 

in the affinely extended real number system. Points labeled `+\infty` 

and `-\infty` can be added to the topological space of the real numbers, 

producing the two-point compactification of the real numbers. Adding 

algebraic properties to this gives us the extended real numbers. 

 

Infinity is a singleton, and can be accessed by ``S.Infinity``, 

or can be imported as ``oo``. 

 

Examples 

======== 

 

>>> from sympy import oo, exp, limit, Symbol 

>>> 1 + oo 

oo 

>>> 42/oo 

0 

>>> x = Symbol('x') 

>>> limit(exp(x), x, oo) 

oo 

 

See Also 

======== 

 

NegativeInfinity, NaN 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Infinity 

""" 

 

is_commutative = True 

is_positive = True 

is_infinite = True 

is_number = True 

is_prime = False 

 

__slots__ = [] 

 

def __new__(cls): 

return AtomicExpr.__new__(cls) 

 

def _latex(self, printer): 

return r"\infty" 

 

@_sympifyit('other', NotImplemented) 

def __add__(self, other): 

if isinstance(other, Number): 

if other is S.NegativeInfinity or other is S.NaN: 

return S.NaN 

elif other.is_Float: 

if other == Float('-inf'): 

return S.NaN 

else: 

return Float('inf') 

else: 

return S.Infinity 

return NotImplemented 

__radd__ = __add__ 

 

@_sympifyit('other', NotImplemented) 

def __sub__(self, other): 

if isinstance(other, Number): 

if other is S.Infinity or other is S.NaN: 

return S.NaN 

elif other.is_Float: 

if other == Float('inf'): 

return S.NaN 

else: 

return Float('inf') 

else: 

return S.Infinity 

return NotImplemented 

 

@_sympifyit('other', NotImplemented) 

def __mul__(self, other): 

if isinstance(other, Number): 

if other is S.Zero or other is S.NaN: 

return S.NaN 

elif other.is_Float: 

if other == 0: 

return S.NaN 

if other > 0: 

return Float('inf') 

else: 

return Float('-inf') 

else: 

if other > 0: 

return S.Infinity 

else: 

return S.NegativeInfinity 

return NotImplemented 

__rmul__ = __mul__ 

 

@_sympifyit('other', NotImplemented) 

def __div__(self, other): 

if isinstance(other, Number): 

if other is S.Infinity or \ 

other is S.NegativeInfinity or \ 

other is S.NaN: 

return S.NaN 

elif other.is_Float: 

if other == Float('-inf') or \ 

other == Float('inf'): 

return S.NaN 

elif other.is_nonnegative: 

return Float('inf') 

else: 

return Float('-inf') 

else: 

if other >= 0: 

return S.Infinity 

else: 

return S.NegativeInfinity 

return NotImplemented 

 

__truediv__ = __div__ 

 

def __abs__(self): 

return S.Infinity 

 

def __neg__(self): 

return S.NegativeInfinity 

 

def _eval_power(self, expt): 

""" 

``expt`` is symbolic object but not equal to 0 or 1. 

 

================ ======= ============================== 

Expression Result Notes 

================ ======= ============================== 

``oo ** nan`` ``nan`` 

``oo ** -p`` ``0`` ``p`` is number, ``oo`` 

================ ======= ============================== 

 

See Also 

======== 

Pow 

NaN 

NegativeInfinity 

 

""" 

from sympy.functions import re 

 

if expt.is_positive: 

return S.Infinity 

if expt.is_negative: 

return S.Zero 

if expt is S.NaN: 

return S.NaN 

if expt is S.ComplexInfinity: 

return S.NaN 

if expt.is_real is False and expt.is_number: 

expt_real = re(expt) 

if expt_real.is_positive: 

return S.ComplexInfinity 

if expt_real.is_negative: 

return S.Zero 

if expt_real.is_zero: 

return S.NaN 

 

return self**expt.evalf() 

 

def _as_mpf_val(self, prec): 

return mlib.finf 

 

def _sage_(self): 

import sage.all as sage 

return sage.oo 

 

def __hash__(self): 

return super(Infinity, self).__hash__() 

 

def __eq__(self, other): 

return other is S.Infinity 

 

def __ne__(self, other): 

return other is not S.Infinity 

 

def __lt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s < %s" % (self, other)) 

if other.is_real: 

return S.false 

return Expr.__lt__(self, other) 

 

def __le__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s <= %s" % (self, other)) 

if other.is_real: 

if other.is_finite or other is S.NegativeInfinity: 

return S.false 

elif other.is_nonpositive: 

return S.false 

elif other.is_infinite and other.is_positive: 

return S.true 

return Expr.__le__(self, other) 

 

def __gt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s > %s" % (self, other)) 

if other.is_real: 

if other.is_finite or other is S.NegativeInfinity: 

return S.true 

elif other.is_nonpositive: 

return S.true 

elif other.is_infinite and other.is_positive: 

return S.false 

return Expr.__gt__(self, other) 

 

def __ge__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s >= %s" % (self, other)) 

if other.is_real: 

return S.true 

return Expr.__ge__(self, other) 

 

def __mod__(self, other): 

return S.NaN 

 

__rmod__ = __mod__ 

 

oo = S.Infinity 

 

 

class NegativeInfinity(with_metaclass(Singleton, Number)): 

"""Negative infinite quantity. 

 

NegativeInfinity is a singleton, and can be accessed 

by ``S.NegativeInfinity``. 

 

See Also 

======== 

 

Infinity 

""" 

 

is_commutative = True 

is_negative = True 

is_infinite = True 

is_number = True 

 

__slots__ = [] 

 

def __new__(cls): 

return AtomicExpr.__new__(cls) 

 

def _latex(self, printer): 

return r"-\infty" 

 

@_sympifyit('other', NotImplemented) 

def __add__(self, other): 

if isinstance(other, Number): 

if other is S.Infinity or other is S.NaN: 

return S.NaN 

elif other.is_Float: 

if other == Float('inf'): 

return Float('nan') 

else: 

return Float('-inf') 

else: 

return S.NegativeInfinity 

return NotImplemented 

__radd__ = __add__ 

 

@_sympifyit('other', NotImplemented) 

def __sub__(self, other): 

if isinstance(other, Number): 

if other is S.NegativeInfinity or other is S.NaN: 

return S.NaN 

elif other.is_Float: 

if other == Float('-inf'): 

return Float('nan') 

else: 

return Float('-inf') 

else: 

return S.NegativeInfinity 

return NotImplemented 

 

@_sympifyit('other', NotImplemented) 

def __mul__(self, other): 

if isinstance(other, Number): 

if other is S.Zero or other is S.NaN: 

return S.NaN 

elif other.is_Float: 

if other is S.NaN or other.is_zero: 

return S.NaN 

elif other.is_positive: 

return Float('-inf') 

else: 

return Float('inf') 

else: 

if other.is_positive: 

return S.NegativeInfinity 

else: 

return S.Infinity 

return NotImplemented 

__rmul__ = __mul__ 

 

@_sympifyit('other', NotImplemented) 

def __div__(self, other): 

if isinstance(other, Number): 

if other is S.Infinity or \ 

other is S.NegativeInfinity or \ 

other is S.NaN: 

return S.NaN 

elif other.is_Float: 

if other == Float('-inf') or \ 

other == Float('inf') or \ 

other is S.NaN: 

return S.NaN 

elif other.is_nonnegative: 

return Float('-inf') 

else: 

return Float('inf') 

else: 

if other >= 0: 

return S.NegativeInfinity 

else: 

return S.Infinity 

return NotImplemented 

 

__truediv__ = __div__ 

 

def __abs__(self): 

return S.Infinity 

 

def __neg__(self): 

return S.Infinity 

 

def _eval_power(self, expt): 

""" 

``expt`` is symbolic object but not equal to 0 or 1. 

 

================ ======= ============================== 

Expression Result Notes 

================ ======= ============================== 

``(-oo) ** nan`` ``nan`` 

``(-oo) ** oo`` ``nan`` 

``(-oo) ** -oo`` ``nan`` 

``(-oo) ** e`` ``oo`` ``e`` is positive even integer 

``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer 

================ ======= ============================== 

 

See Also 

======== 

 

Infinity 

Pow 

NaN 

 

""" 

if expt.is_number: 

if expt is S.NaN or \ 

expt is S.Infinity or \ 

expt is S.NegativeInfinity: 

return S.NaN 

 

if isinstance(expt, Integer) and expt.is_positive: 

if expt.is_odd: 

return S.NegativeInfinity 

else: 

return S.Infinity 

 

return S.NegativeOne**expt*S.Infinity**expt 

 

def _as_mpf_val(self, prec): 

return mlib.fninf 

 

def _sage_(self): 

import sage.all as sage 

return -(sage.oo) 

 

def __hash__(self): 

return super(NegativeInfinity, self).__hash__() 

 

def __eq__(self, other): 

return other is S.NegativeInfinity 

 

def __ne__(self, other): 

return other is not S.NegativeInfinity 

 

def __lt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s < %s" % (self, other)) 

if other.is_real: 

if other.is_finite or other is S.Infinity: 

return S.true 

elif other.is_nonnegative: 

return S.true 

elif other.is_infinite and other.is_negative: 

return S.false 

return Expr.__lt__(self, other) 

 

def __le__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s <= %s" % (self, other)) 

if other.is_real: 

return S.true 

return Expr.__le__(self, other) 

 

def __gt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s > %s" % (self, other)) 

if other.is_real: 

return S.false 

return Expr.__gt__(self, other) 

 

def __ge__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s >= %s" % (self, other)) 

if other.is_real: 

if other.is_finite or other is S.Infinity: 

return S.false 

elif other.is_nonnegative: 

return S.false 

elif other.is_infinite and other.is_negative: 

return S.true 

return Expr.__ge__(self, other) 

 

def __mod__(self, other): 

return S.NaN 

 

__rmod__ = __mod__ 

 

 

class NaN(with_metaclass(Singleton, Number)): 

""" 

Not a Number. 

 

This serves as a place holder for numeric values that are indeterminate. 

Most operations on NaN, produce another NaN. Most indeterminate forms, 

such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` 

and ``oo**0``, which all produce ``1`` (this is consistent with Python's 

float). 

 

NaN is loosely related to floating point nan, which is defined in the 

IEEE 754 floating point standard, and corresponds to the Python 

``float('nan')``. Differences are noted below. 

 

NaN is mathematically not equal to anything else, even NaN itself. This 

explains the initially counter-intuitive results with ``Eq`` and ``==`` in 

the examples below. 

 

NaN is not comparable so inequalities raise a TypeError. This is in 

constrast with floating point nan where all inequalities are false. 

 

NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported 

as ``nan``. 

 

Examples 

======== 

 

>>> from sympy import nan, S, oo, Eq 

>>> nan is S.NaN 

True 

>>> oo - oo 

nan 

>>> nan + 1 

nan 

>>> Eq(nan, nan) # mathematical equality 

False 

>>> nan == nan # structural equality 

True 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/NaN 

 

""" 

is_commutative = True 

is_real = None 

is_rational = None 

is_algebraic = None 

is_transcendental = None 

is_integer = None 

is_comparable = False 

is_finite = None 

is_zero = None 

is_prime = None 

is_positive = None 

is_negative = None 

is_number = True 

 

__slots__ = [] 

 

def __new__(cls): 

return AtomicExpr.__new__(cls) 

 

def _latex(self, printer): 

return r"\mathrm{NaN}" 

 

@_sympifyit('other', NotImplemented) 

def __add__(self, other): 

return self 

 

@_sympifyit('other', NotImplemented) 

def __sub__(self, other): 

return self 

 

@_sympifyit('other', NotImplemented) 

def __mul__(self, other): 

return self 

 

@_sympifyit('other', NotImplemented) 

def __div__(self, other): 

return self 

 

__truediv__ = __div__ 

 

def _as_mpf_val(self, prec): 

return _mpf_nan 

 

def _sage_(self): 

import sage.all as sage 

return sage.NaN 

 

def __hash__(self): 

return super(NaN, self).__hash__() 

 

def __eq__(self, other): 

# NaN is structurally equal to another NaN 

return other is S.NaN 

 

def __ne__(self, other): 

return other is not S.NaN 

 

def _eval_Eq(self, other): 

# NaN is not mathematically equal to anything, even NaN 

return S.false 

 

# Expr will _sympify and raise TypeError 

__gt__ = Expr.__gt__ 

__ge__ = Expr.__ge__ 

__lt__ = Expr.__lt__ 

__le__ = Expr.__le__ 

 

nan = S.NaN 

 

 

class ComplexInfinity(with_metaclass(Singleton, AtomicExpr)): 

r"""Complex infinity. 

 

In complex analysis the symbol `\tilde\infty`, called "complex 

infinity", represents a quantity with infinite magnitude, but 

undetermined complex phase. 

 

ComplexInfinity is a singleton, and can be accessed by 

``S.ComplexInfinity``, or can be imported as ``zoo``. 

 

Examples 

======== 

 

>>> from sympy import zoo, oo 

>>> zoo + 42 

zoo 

>>> 42/zoo 

0 

>>> zoo + zoo 

nan 

>>> zoo*zoo 

zoo 

 

See Also 

======== 

 

Infinity 

""" 

 

is_commutative = True 

is_infinite = True 

is_number = True 

is_prime = False 

 

__slots__ = [] 

 

def __new__(cls): 

return AtomicExpr.__new__(cls) 

 

def _latex(self, printer): 

return r"\tilde{\infty}" 

 

@staticmethod 

def __abs__(): 

return S.Infinity 

 

@staticmethod 

def __neg__(): 

return S.ComplexInfinity 

 

def _eval_power(self, expt): 

if expt is S.ComplexInfinity: 

return S.NaN 

 

if isinstance(expt, Number): 

if expt is S.Zero: 

return S.NaN 

else: 

if expt.is_positive: 

return S.ComplexInfinity 

else: 

return S.Zero 

 

def _sage_(self): 

import sage.all as sage 

return sage.UnsignedInfinityRing.gen() 

 

 

zoo = S.ComplexInfinity 

 

 

class NumberSymbol(AtomicExpr): 

 

is_commutative = True 

is_finite = True 

is_number = True 

 

__slots__ = [] 

 

is_NumberSymbol = True 

 

def __new__(cls): 

return AtomicExpr.__new__(cls) 

 

def approximation(self, number_cls): 

""" Return an interval with number_cls endpoints 

that contains the value of NumberSymbol. 

If not implemented, then return None. 

""" 

 

def _eval_evalf(self, prec): 

return Float._new(self._as_mpf_val(prec), prec) 

 

def __eq__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

return False # sympy != other --> not == 

if self is other: 

return True 

if isinstance(other, Number) and self.is_irrational: 

return False 

 

return False # NumberSymbol != non-(Number|self) 

 

def __ne__(self, other): 

return not self.__eq__(other) 

 

def __lt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s < %s" % (self, other)) 

if self is other: 

return S.false 

if isinstance(other, Number): 

approx = self.approximation_interval(other.__class__) 

if approx is not None: 

l, u = approx 

if other < l: 

return S.false 

if other > u: 

return S.true 

return _sympify(self.evalf() < other) 

if other.is_real and other.is_number: 

other = other.evalf() 

return _sympify(self.evalf() < other) 

return Expr.__lt__(self, other) 

 

def __le__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s <= %s" % (self, other)) 

if self is other: 

return S.true 

if other.is_real and other.is_number: 

other = other.evalf() 

if isinstance(other, Number): 

return _sympify(self.evalf() <= other) 

return Expr.__le__(self, other) 

 

def __gt__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s > %s" % (self, other)) 

r = _sympify((-self) < (-other)) 

if r in (S.true, S.false): 

return r 

else: 

return Expr.__gt__(self, other) 

 

def __ge__(self, other): 

try: 

other = _sympify(other) 

except SympifyError: 

raise TypeError("Invalid comparison %s >= %s" % (self, other)) 

r = _sympify((-self) <= (-other)) 

if r in (S.true, S.false): 

return r 

else: 

return Expr.__ge__(self, other) 

 

def __int__(self): 

# subclass with appropriate return value 

raise NotImplementedError 

 

def __long__(self): 

return self.__int__() 

 

def __hash__(self): 

return super(NumberSymbol, self).__hash__() 

 

 

class Exp1(with_metaclass(Singleton, NumberSymbol)): 

r"""The `e` constant. 

 

The transcendental number `e = 2.718281828\dots` is the base of the 

natural logarithm and of the exponential function, `e = \exp(1)`. 

Sometimes called Euler's number or Napier's constant. 

 

Exp1 is a singleton, and can be accessed by ``S.Exp1``, 

or can be imported as ``E``. 

 

Examples 

======== 

 

>>> from sympy import exp, log, E 

>>> E is exp(1) 

True 

>>> log(E) 

1 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 

""" 

 

is_real = True 

is_positive = True 

is_negative = False # XXX Forces is_negative/is_nonnegative 

is_irrational = True 

is_number = True 

is_algebraic = False 

is_transcendental = True 

 

__slots__ = [] 

 

def _latex(self, printer): 

return r"e" 

 

@staticmethod 

def __abs__(): 

return S.Exp1 

 

def __int__(self): 

return 2 

 

def _as_mpf_val(self, prec): 

return mpf_e(prec) 

 

def approximation_interval(self, number_cls): 

if issubclass(number_cls, Integer): 

return (Integer(2), Integer(3)) 

elif issubclass(number_cls, Rational): 

pass 

 

def _eval_power(self, expt): 

from sympy import exp 

return exp(expt) 

 

def _eval_rewrite_as_sin(self): 

from sympy import sin 

I = S.ImaginaryUnit 

return sin(I + S.Pi/2) - I*sin(I) 

 

def _eval_rewrite_as_cos(self): 

from sympy import cos 

I = S.ImaginaryUnit 

return cos(I) + I*cos(I + S.Pi/2) 

 

def _sage_(self): 

import sage.all as sage 

return sage.e 

E = S.Exp1 

 

 

class Pi(with_metaclass(Singleton, NumberSymbol)): 

r"""The `\pi` constant. 

 

The transcendental number `\pi = 3.141592654\dots` represents the ratio 

of a circle's circumference to its diameter, the area of the unit circle, 

the half-period of trigonometric functions, and many other things 

in mathematics. 

 

Pi is a singleton, and can be accessed by ``S.Pi``, or can 

be imported as ``pi``. 

 

Examples 

======== 

 

>>> from sympy import S, pi, oo, sin, exp, integrate, Symbol 

>>> S.Pi 

pi 

>>> pi > 3 

True 

>>> pi.is_irrational 

True 

>>> x = Symbol('x') 

>>> sin(x + 2*pi) 

sin(x) 

>>> integrate(exp(-x**2), (x, -oo, oo)) 

sqrt(pi) 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Pi 

""" 

 

is_real = True 

is_positive = True 

is_negative = False 

is_irrational = True 

is_number = True 

is_algebraic = False 

is_transcendental = True 

 

__slots__ = [] 

 

def _latex(self, printer): 

return r"\pi" 

 

@staticmethod 

def __abs__(): 

return S.Pi 

 

def __int__(self): 

return 3 

 

def _as_mpf_val(self, prec): 

return mpf_pi(prec) 

 

def approximation_interval(self, number_cls): 

if issubclass(number_cls, Integer): 

return (Integer(3), Integer(4)) 

elif issubclass(number_cls, Rational): 

return (Rational(223, 71), Rational(22, 7)) 

 

def _sage_(self): 

import sage.all as sage 

return sage.pi 

pi = S.Pi 

 

 

class GoldenRatio(with_metaclass(Singleton, NumberSymbol)): 

r"""The golden ratio, `\phi`. 

 

`\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities 

are in the golden ratio if their ratio is the same as the ratio of 

their sum to the larger of the two quantities, i.e. their maximum. 

 

GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. 

 

Examples 

======== 

 

>>> from sympy import S 

>>> S.GoldenRatio > 1 

True 

>>> S.GoldenRatio.expand(func=True) 

1/2 + sqrt(5)/2 

>>> S.GoldenRatio.is_irrational 

True 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Golden_ratio 

""" 

 

is_real = True 

is_positive = True 

is_negative = False 

is_irrational = True 

is_number = True 

is_algebraic = True 

is_transcendental = False 

 

__slots__ = [] 

 

def _latex(self, printer): 

return r"\phi" 

 

def __int__(self): 

return 1 

 

def _as_mpf_val(self, prec): 

# XXX track down why this has to be increased 

rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) 

return mpf_norm(rv, prec) 

 

def _eval_expand_func(self, **hints): 

from sympy import sqrt 

return S.Half + S.Half*sqrt(5) 

 

def approximation_interval(self, number_cls): 

if issubclass(number_cls, Integer): 

return (S.One, Rational(2)) 

elif issubclass(number_cls, Rational): 

pass 

 

def _sage_(self): 

import sage.all as sage 

return sage.golden_ratio 

 

_eval_rewrite_as_sqrt = _eval_expand_func 

 

 

class EulerGamma(with_metaclass(Singleton, NumberSymbol)): 

r"""The Euler-Mascheroni constant. 

 

`\gamma = 0.5772157\dots` (also called Euler's constant) is a mathematical 

constant recurring in analysis and number theory. It is defined as the 

limiting difference between the harmonic series and the 

natural logarithm: 

 

.. math:: \gamma = \lim\limits_{n\to\infty} 

\left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) 

 

EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. 

 

Examples 

======== 

 

>>> from sympy import S 

>>> S.EulerGamma.is_irrational 

>>> S.EulerGamma > 0 

True 

>>> S.EulerGamma > 1 

False 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant 

""" 

 

is_real = True 

is_positive = True 

is_negative = False 

is_irrational = None 

is_number = True 

 

__slots__ = [] 

 

def _latex(self, printer): 

return r"\gamma" 

 

def __int__(self): 

return 0 

 

def _as_mpf_val(self, prec): 

# XXX track down why this has to be increased 

v = mlib.libhyper.euler_fixed(prec + 10) 

rv = mlib.from_man_exp(v, -prec - 10) 

return mpf_norm(rv, prec) 

 

def approximation_interval(self, number_cls): 

if issubclass(number_cls, Integer): 

return (S.Zero, S.One) 

elif issubclass(number_cls, Rational): 

return (S.Half, Rational(3, 5)) 

 

def _sage_(self): 

import sage.all as sage 

return sage.euler_gamma 

 

 

class Catalan(with_metaclass(Singleton, NumberSymbol)): 

r"""Catalan's constant. 

 

`K = 0.91596559\dots` is given by the infinite series 

 

.. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} 

 

Catalan is a singleton, and can be accessed by ``S.Catalan``. 

 

Examples 

======== 

 

>>> from sympy import S 

>>> S.Catalan.is_irrational 

>>> S.Catalan > 0 

True 

>>> S.Catalan > 1 

False 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Catalan%27s_constant 

""" 

 

is_real = True 

is_positive = True 

is_negative = False 

is_irrational = None 

is_number = True 

 

__slots__ = [] 

 

def __int__(self): 

return 0 

 

def _as_mpf_val(self, prec): 

# XXX track down why this has to be increased 

v = mlib.catalan_fixed(prec + 10) 

rv = mlib.from_man_exp(v, -prec - 10) 

return mpf_norm(rv, prec) 

 

def approximation_interval(self, number_cls): 

if issubclass(number_cls, Integer): 

return (S.Zero, S.One) 

elif issubclass(number_cls, Rational): 

return (Rational(9, 10), S.One) 

 

def _sage_(self): 

import sage.all as sage 

return sage.catalan 

 

 

class ImaginaryUnit(with_metaclass(Singleton, AtomicExpr)): 

r"""The imaginary unit, `i = \sqrt{-1}`. 

 

I is a singleton, and can be accessed by ``S.I``, or can be 

imported as ``I``. 

 

Examples 

======== 

 

>>> from sympy import I, sqrt 

>>> sqrt(-1) 

I 

>>> I*I 

-1 

>>> 1/I 

-I 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Imaginary_unit 

""" 

 

is_commutative = True 

is_imaginary = True 

is_finite = True 

is_number = True 

is_algebraic = True 

is_transcendental = False 

 

__slots__ = [] 

 

def _latex(self, printer): 

return r"i" 

 

@staticmethod 

def __abs__(): 

return S.One 

 

def _eval_evalf(self, prec): 

return self 

 

def _eval_conjugate(self): 

return -S.ImaginaryUnit 

 

def _eval_power(self, expt): 

""" 

b is I = sqrt(-1) 

e is symbolic object but not equal to 0, 1 

 

I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal 

I**0 mod 4 -> 1 

I**1 mod 4 -> I 

I**2 mod 4 -> -1 

I**3 mod 4 -> -I 

""" 

 

if isinstance(expt, Number): 

if isinstance(expt, Integer): 

expt = expt.p % 4 

if expt == 0: 

return S.One 

if expt == 1: 

return S.ImaginaryUnit 

if expt == 2: 

return -S.One 

return -S.ImaginaryUnit 

return (S.NegativeOne)**(expt*S.Half) 

return 

 

def as_base_exp(self): 

return S.NegativeOne, S.Half 

 

def _sage_(self): 

import sage.all as sage 

return sage.I 

 

I = S.ImaginaryUnit 

 

 

def sympify_fractions(f): 

return Rational(f.numerator, f.denominator) 

 

converter[fractions.Fraction] = sympify_fractions 

 

 

try: 

if HAS_GMPY == 2: 

import gmpy2 as gmpy 

elif HAS_GMPY == 1: 

import gmpy 

else: 

raise ImportError 

 

def sympify_mpz(x): 

return Integer(long(x)) 

 

def sympify_mpq(x): 

return Rational(long(x.numerator), long(x.denominator)) 

 

converter[type(gmpy.mpz(1))] = sympify_mpz 

converter[type(gmpy.mpq(1, 2))] = sympify_mpq 

except ImportError: 

pass 

 

 

def sympify_mpmath(x): 

return Expr._from_mpmath(x, x.context.prec) 

 

converter[mpnumeric] = sympify_mpmath 

 

 

def sympify_complex(a): 

real, imag = list(map(sympify, (a.real, a.imag))) 

return real + S.ImaginaryUnit*imag 

 

converter[complex] = sympify_complex 

 

_intcache[0] = S.Zero 

_intcache[1] = S.One 

_intcache[-1] = S.NegativeOne 

 

from .power import Pow, integer_nthroot 

from .mul import Mul 

Mul.identity = One() 

from .add import Add 

Add.identity = Zero()