Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

from __future__ import print_function, division 

 

from math import log as _log 

 

from .sympify import _sympify 

from .cache import cacheit 

from .singleton import S 

from .expr import Expr 

from .evalf import PrecisionExhausted 

from .function import (_coeff_isneg, expand_complex, expand_multinomial, 

expand_mul) 

from .logic import fuzzy_bool, fuzzy_not 

from .compatibility import as_int, range 

from .evaluate import global_evaluate 

from sympy.utilities.iterables import sift 

 

from mpmath.libmp import sqrtrem as mpmath_sqrtrem 

 

from math import sqrt as _sqrt 

 

 

 

def isqrt(n): 

"""Return the largest integer less than or equal to sqrt(n).""" 

if n < 17984395633462800708566937239552: 

return int(_sqrt(n)) 

return integer_nthroot(int(n), 2)[0] 

 

 

def integer_nthroot(y, n): 

""" 

Return a tuple containing x = floor(y**(1/n)) 

and a boolean indicating whether the result is exact (that is, 

whether x**n == y). 

 

Examples 

======== 

 

>>> from sympy import integer_nthroot 

>>> integer_nthroot(16, 2) 

(4, True) 

>>> integer_nthroot(26, 2) 

(5, False) 

 

To simply determine if a number is a perfect square, the is_square 

function should be used: 

 

>>> from sympy.ntheory.primetest import is_square 

>>> is_square(26) 

False 

 

See Also 

======== 

sympy.ntheory.primetest.is_square 

""" 

y, n = as_int(y), as_int(n) 

if y < 0: 

raise ValueError("y must be nonnegative") 

if n < 1: 

raise ValueError("n must be positive") 

if y in (0, 1): 

return y, True 

if n == 1: 

return y, True 

if n == 2: 

x, rem = mpmath_sqrtrem(y) 

return int(x), not rem 

if n > y: 

return 1, False 

# Get initial estimate for Newton's method. Care must be taken to 

# avoid overflow 

try: 

guess = int(y**(1./n) + 0.5) 

except OverflowError: 

exp = _log(y, 2)/n 

if exp > 53: 

shift = int(exp - 53) 

guess = int(2.0**(exp - shift) + 1) << shift 

else: 

guess = int(2.0**exp) 

if guess > 2**50: 

# Newton iteration 

xprev, x = -1, guess 

while 1: 

t = x**(n - 1) 

xprev, x = x, ((n - 1)*x + y//t)//n 

if abs(x - xprev) < 2: 

break 

else: 

x = guess 

# Compensate 

t = x**n 

while t < y: 

x += 1 

t = x**n 

while t > y: 

x -= 1 

t = x**n 

return int(x), t == y # int converts long to int if possible 

 

 

class Pow(Expr): 

""" 

Defines the expression x**y as "x raised to a power y" 

 

Singleton definitions involving (0, 1, -1, oo, -oo, I, -I): 

 

+--------------+---------+-----------------------------------------------+ 

| expr | value | reason | 

+==============+=========+===============================================+ 

| z**0 | 1 | Although arguments over 0**0 exist, see [2]. | 

+--------------+---------+-----------------------------------------------+ 

| z**1 | z | | 

+--------------+---------+-----------------------------------------------+ 

| (-oo)**(-1) | 0 | | 

+--------------+---------+-----------------------------------------------+ 

| (-1)**-1 | -1 | | 

+--------------+---------+-----------------------------------------------+ 

| S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be | 

| | | undefined, but is convenient in some contexts | 

| | | where the base is assumed to be positive. | 

+--------------+---------+-----------------------------------------------+ 

| 1**-1 | 1 | | 

+--------------+---------+-----------------------------------------------+ 

| oo**-1 | 0 | | 

+--------------+---------+-----------------------------------------------+ 

| 0**oo | 0 | Because for all complex numbers z near | 

| | | 0, z**oo -> 0. | 

+--------------+---------+-----------------------------------------------+ 

| 0**-oo | zoo | This is not strictly true, as 0**oo may be | 

| | | oscillating between positive and negative | 

| | | values or rotating in the complex plane. | 

| | | It is convenient, however, when the base | 

| | | is positive. | 

+--------------+---------+-----------------------------------------------+ 

| 1**oo | nan | Because there are various cases where | 

| 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), | 

| 1**zoo | | but lim( x(t)**y(t), t) != 1. See [3]. | 

+--------------+---------+-----------------------------------------------+ 

| (-1)**oo | nan | Because of oscillations in the limit. | 

| (-1)**(-oo) | | | 

+--------------+---------+-----------------------------------------------+ 

| oo**oo | oo | | 

+--------------+---------+-----------------------------------------------+ 

| oo**-oo | 0 | | 

+--------------+---------+-----------------------------------------------+ 

| (-oo)**oo | nan | | 

| (-oo)**-oo | | | 

+--------------+---------+-----------------------------------------------+ 

| oo**I | nan | oo**e could probably be best thought of as | 

| (-oo)**I | | the limit of x**e for real x as x tends to | 

| | | oo. If e is I, then the limit does not exist | 

| | | and nan is used to indicate that. | 

+--------------+---------+-----------------------------------------------+ 

| oo**(1+I) | zoo | If the real part of e is positive, then the | 

| (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value | 

| | | is zoo. | 

+--------------+---------+-----------------------------------------------+ 

| oo**(-1+I) | 0 | If the real part of e is negative, then the | 

| -oo**(-1+I) | | limit is 0. | 

+--------------+---------+-----------------------------------------------+ 

 

Because symbolic computations are more flexible that floating point 

calculations and we prefer to never return an incorrect answer, 

we choose not to conform to all IEEE 754 conventions. This helps 

us avoid extra test-case code in the calculation of limits. 

 

See Also 

======== 

 

sympy.core.numbers.Infinity 

sympy.core.numbers.NegativeInfinity 

sympy.core.numbers.NaN 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Exponentiation 

.. [2] http://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero 

.. [3] http://en.wikipedia.org/wiki/Indeterminate_forms 

 

""" 

is_Pow = True 

 

__slots__ = ['is_commutative'] 

 

@cacheit 

def __new__(cls, b, e, evaluate=None): 

if evaluate is None: 

evaluate = global_evaluate[0] 

from sympy.functions.elementary.exponential import exp_polar 

 

b = _sympify(b) 

e = _sympify(e) 

if evaluate: 

if e is S.Zero: 

return S.One 

elif e is S.One: 

return b 

# Only perform autosimplification if exponent or base is a Symbol or number 

elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\ 

e.is_integer and _coeff_isneg(b): 

if e.is_even: 

b = -b 

elif e.is_odd: 

return -Pow(-b, e) 

if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0 

return S.NaN 

elif b is S.One: 

if abs(e).is_infinite: 

return S.NaN 

return S.One 

else: 

# recognize base as E 

if not e.is_Atom and b is not S.Exp1 and b.func is not exp_polar: 

from sympy import numer, denom, log, sign, im, factor_terms 

c, ex = factor_terms(e, sign=False).as_coeff_Mul() 

den = denom(ex) 

if den.func is log and den.args[0] == b: 

return S.Exp1**(c*numer(ex)) 

elif den.is_Add: 

s = sign(im(b)) 

if s.is_Number and s and den == \ 

log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi: 

return S.Exp1**(c*numer(ex)) 

 

obj = b._eval_power(e) 

if obj is not None: 

return obj 

obj = Expr.__new__(cls, b, e) 

obj.is_commutative = (b.is_commutative and e.is_commutative) 

return obj 

 

@property 

def base(self): 

return self._args[0] 

 

@property 

def exp(self): 

return self._args[1] 

 

@classmethod 

def class_key(cls): 

return 3, 2, cls.__name__ 

 

def _eval_refine(self, assumptions): 

from sympy.assumptions.ask import ask, Q 

b, e = self.as_base_exp() 

if ask(Q.integer(e), assumptions) and _coeff_isneg(b): 

if ask(Q.even(e), assumptions): 

return Pow(-b, e) 

elif ask(Q.odd(e), assumptions): 

return -Pow(-b, e) 

 

def _eval_power(self, other): 

from sympy import Abs, arg, exp, floor, im, log, re, sign 

b, e = self.as_base_exp() 

if b is S.NaN: 

return (b**e)**other # let __new__ handle it 

 

s = None 

if other.is_integer: 

s = 1 

elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)... 

s = 1 

elif e.is_real is not None: 

# helper functions =========================== 

def _half(e): 

"""Return True if the exponent has a literal 2 as the 

denominator, else None.""" 

if getattr(e, 'q', None) == 2: 

return True 

n, d = e.as_numer_denom() 

if n.is_integer and d == 2: 

return True 

def _n2(e): 

"""Return ``e`` evaluated to a Number with 2 significant 

digits, else None.""" 

try: 

rv = e.evalf(2, strict=True) 

if rv.is_Number: 

return rv 

except PrecisionExhausted: 

pass 

# =================================================== 

if e.is_real: 

# we need _half(other) with constant floor or 

# floor(S.Half - e*arg(b)/2/pi) == 0 

 

# handle -1 as special case 

if (e == -1) == True: 

# floor arg. is 1/2 + arg(b)/2/pi 

if _half(other): 

if b.is_negative is True: 

return S.NegativeOne**other*Pow(-b, e*other) 

if b.is_real is False: 

return Pow(b.conjugate()/Abs(b)**2, other) 

elif e.is_even: 

if b.is_real: 

b = abs(b) 

if b.is_imaginary: 

b = abs(im(b))*S.ImaginaryUnit 

 

if (abs(e) < 1) == True or (e == 1) == True: 

s = 1 # floor = 0 

elif b.is_nonnegative: 

s = 1 # floor = 0 

elif re(b).is_nonnegative and (abs(e) < 2) == True: 

s = 1 # floor = 0 

elif fuzzy_not(im(b).is_zero) and (abs(e) == 2) == True: 

s = 1 # floor = 0 

elif _half(other): 

s = exp(2*S.Pi*S.ImaginaryUnit*other*floor( 

S.Half - e*arg(b)/(2*S.Pi))) 

if s.is_real and _n2(sign(s) - s) == 0: 

s = sign(s) 

else: 

s = None 

else: 

# e.is_real is False requires: 

# _half(other) with constant floor or 

# floor(S.Half - im(e*log(b))/2/pi) == 0 

try: 

s = exp(2*S.ImaginaryUnit*S.Pi*other* 

floor(S.Half - im(e*log(b))/2/S.Pi)) 

# be careful to test that s is -1 or 1 b/c sign(I) == I: 

# so check that s is real 

if s.is_real and _n2(sign(s) - s) == 0: 

s = sign(s) 

else: 

s = None 

except PrecisionExhausted: 

s = None 

 

if s is not None: 

return s*Pow(b, e*other) 

 

def _eval_is_even(self): 

if self.exp.is_integer and self.exp.is_positive: 

return self.base.is_even 

 

def _eval_is_positive(self): 

from sympy import log 

if self.base == self.exp: 

if self.base.is_nonnegative: 

return True 

elif self.base.is_positive: 

if self.exp.is_real: 

return True 

elif self.base.is_negative: 

if self.exp.is_even: 

return True 

if self.exp.is_odd: 

return False 

elif self.base.is_nonpositive: 

if self.exp.is_odd: 

return False 

elif self.base.is_imaginary: 

if self.exp.is_integer: 

m = self.exp % 4 

if m.is_zero: 

return True 

if m.is_integer and m.is_zero is False: 

return False 

if self.exp.is_imaginary: 

return log(self.base).is_imaginary 

 

def _eval_is_negative(self): 

if self.base.is_negative: 

if self.exp.is_odd: 

return True 

if self.exp.is_even: 

return False 

elif self.base.is_positive: 

if self.exp.is_real: 

return False 

elif self.base.is_nonnegative: 

if self.exp.is_nonnegative: 

return False 

elif self.base.is_nonpositive: 

if self.exp.is_even: 

return False 

elif self.base.is_real: 

if self.exp.is_even: 

return False 

 

def _eval_is_zero(self): 

if self.base.is_zero: 

if self.exp.is_positive: 

return True 

elif self.exp.is_nonpositive: 

return False 

elif self.base.is_zero is False: 

if self.exp.is_finite: 

return False 

elif self.exp.is_infinite: 

if (1 - abs(self.base)).is_positive: 

return self.exp.is_positive 

elif (1 - abs(self.base)).is_negative: 

return self.exp.is_negative 

else: 

# when self.base.is_zero is None 

return None 

 

def _eval_is_integer(self): 

b, e = self.args 

if b.is_rational: 

if b.is_integer is False and e.is_positive: 

return False # rat**nonneg 

if b.is_integer and e.is_integer: 

if b is S.NegativeOne: 

return True 

if e.is_nonnegative or e.is_positive: 

return True 

if b.is_integer and e.is_negative and (e.is_finite or e.is_integer): 

if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero): 

return False 

if b.is_Number and e.is_Number: 

check = self.func(*self.args) 

return check.is_Integer 

 

def _eval_is_real(self): 

from sympy import arg, exp, log, Mul 

real_b = self.base.is_real 

if real_b is None: 

if self.base.func == exp and self.base.args[0].is_imaginary: 

return self.exp.is_imaginary 

return 

real_e = self.exp.is_real 

if real_e is None: 

return 

if real_b and real_e: 

if self.base.is_positive: 

return True 

elif self.base.is_nonnegative: 

if self.exp.is_nonnegative: 

return True 

else: 

if self.exp.is_integer: 

return True 

elif self.base.is_negative: 

if self.exp.is_Rational: 

return False 

if real_e and self.exp.is_negative: 

return Pow(self.base, -self.exp).is_real 

im_b = self.base.is_imaginary 

im_e = self.exp.is_imaginary 

if im_b: 

if self.exp.is_integer: 

if self.exp.is_even: 

return True 

elif self.exp.is_odd: 

return False 

elif im_e and log(self.base).is_imaginary: 

return True 

elif self.exp.is_Add: 

c, a = self.exp.as_coeff_Add() 

if c and c.is_Integer: 

return Mul( 

self.base**c, self.base**a, evaluate=False).is_real 

elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit): 

if (self.exp/2).is_integer is False: 

return False 

if real_b and im_e: 

if self.base is S.NegativeOne: 

return True 

c = self.exp.coeff(S.ImaginaryUnit) 

if c: 

ok = (c*log(self.base)/S.Pi).is_Integer 

if ok is not None: 

return ok 

 

if real_b is False: # we already know it's not imag 

i = arg(self.base)*self.exp/S.Pi 

return i.is_integer 

 

def _eval_is_complex(self): 

if all(a.is_complex for a in self.args): 

return True 

 

def _eval_is_imaginary(self): 

from sympy import arg, log 

if self.base.is_imaginary: 

if self.exp.is_integer: 

odd = self.exp.is_odd 

if odd is not None: 

return odd 

return 

 

if self.exp.is_imaginary: 

imlog = log(self.base).is_imaginary 

if imlog is not None: 

return False # I**i -> real; (2*I)**i -> complex ==> not imaginary 

 

if self.base.is_real and self.exp.is_real: 

if self.base.is_positive: 

return False 

else: 

rat = self.exp.is_rational 

if not rat: 

return rat 

if self.exp.is_integer: 

return False 

else: 

half = (2*self.exp).is_integer 

if half: 

return self.base.is_negative 

return half 

 

if self.base.is_real is False: # we already know it's not imag 

i = arg(self.base)*self.exp/S.Pi 

isodd = (2*i).is_odd 

if isodd is not None: 

return isodd 

 

if self.exp.is_negative: 

return (1/self).is_imaginary 

 

def _eval_is_odd(self): 

if self.exp.is_integer: 

if self.exp.is_positive: 

return self.base.is_odd 

elif self.exp.is_nonnegative and self.base.is_odd: 

return True 

elif self.base is S.NegativeOne: 

return True 

 

def _eval_is_finite(self): 

if self.exp.is_negative: 

if self.base.is_zero: 

return False 

if self.base.is_infinite: 

return True 

c1 = self.base.is_finite 

if c1 is None: 

return 

c2 = self.exp.is_finite 

if c2 is None: 

return 

if c1 and c2: 

if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero): 

return True 

 

def _eval_is_prime(self): 

if self.exp == S.One: 

return self.base.is_prime 

if self.is_number: 

return self.doit().is_prime 

 

if self.is_integer and self.is_positive: 

""" 

a Power will be non-prime only if both base and exponent 

are greater than 1 

""" 

if (self.base-1).is_positive or (self.exp-1).is_positive: 

return False 

 

def _eval_is_polar(self): 

return self.base.is_polar 

 

def _eval_subs(self, old, new): 

from sympy import exp, log, Symbol 

def _check(ct1, ct2, old): 

"""Return bool, pow where, if bool is True, then the exponent of 

Pow `old` will combine with `pow` so the substitution is valid, 

otherwise bool will be False, 

 

cti are the coefficient and terms of an exponent of self or old 

In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y) 

will give y**2 since (b**x)**2 == b**(2*x); if that equality does 

not hold then the substitution should not occur so `bool` will be 

False. 

""" 

coeff1, terms1 = ct1 

coeff2, terms2 = ct2 

if terms1 == terms2: 

pow = coeff1/coeff2 

try: 

pow = as_int(pow) 

combines = True 

except ValueError: 

combines = Pow._eval_power( 

Pow(*old.as_base_exp(), evaluate=False), 

pow) is not None 

return combines, pow 

return False, None 

 

if old == self.base: 

return new**self.exp._subs(old, new) 

 

# issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2 

if old.func is self.func and self.exp == old.exp: 

l = log(self.base, old.base) 

if l.is_Number: 

return Pow(new, l) 

 

if old.func is self.func and self.base == old.base: 

if self.exp.is_Add is False: 

ct1 = self.exp.as_independent(Symbol, as_Add=False) 

ct2 = old.exp.as_independent(Symbol, as_Add=False) 

ok, pow = _check(ct1, ct2, old) 

if ok: 

# issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2 

return self.func(new, pow) 

else: # b**(6*x+a).subs(b**(3*x), y) -> y**2 * b**a 

# exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2)) 

oarg = old.exp 

new_l = [] 

o_al = [] 

ct2 = oarg.as_coeff_mul() 

for a in self.exp.args: 

newa = a._subs(old, new) 

ct1 = newa.as_coeff_mul() 

ok, pow = _check(ct1, ct2, old) 

if ok: 

new_l.append(new**pow) 

continue 

o_al.append(newa) 

if new_l: 

new_l.append(Pow(self.base, Add(*o_al), evaluate=False)) 

return Mul(*new_l) 

 

if old.func is exp and self.exp.is_real and self.base.is_positive: 

ct1 = old.args[0].as_independent(Symbol, as_Add=False) 

ct2 = (self.exp*log(self.base)).as_independent( 

Symbol, as_Add=False) 

ok, pow = _check(ct1, ct2, old) 

if ok: 

return self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z 

 

def as_base_exp(self): 

"""Return base and exp of self. 

 

If base is 1/Integer, then return Integer, -exp. If this extra 

processing is not needed, the base and exp properties will 

give the raw arguments 

 

Examples 

======== 

 

>>> from sympy import Pow, S 

>>> p = Pow(S.Half, 2, evaluate=False) 

>>> p.as_base_exp() 

(2, -2) 

>>> p.args 

(1/2, 2) 

 

""" 

 

b, e = self.args 

if b.is_Rational and b.p == 1 and b.q != 1: 

return Integer(b.q), -e 

return b, e 

 

def _eval_adjoint(self): 

from sympy.functions.elementary.complexes import adjoint 

i, p = self.exp.is_integer, self.base.is_positive 

if i: 

return adjoint(self.base)**self.exp 

if p: 

return self.base**adjoint(self.exp) 

if i is False and p is False: 

expanded = expand_complex(self) 

if expanded != self: 

return adjoint(expanded) 

 

def _eval_conjugate(self): 

from sympy.functions.elementary.complexes import conjugate as c 

i, p = self.exp.is_integer, self.base.is_positive 

if i: 

return c(self.base)**self.exp 

if p: 

return self.base**c(self.exp) 

if i is False and p is False: 

expanded = expand_complex(self) 

if expanded != self: 

return c(expanded) 

 

def _eval_transpose(self): 

from sympy.functions.elementary.complexes import transpose 

i, p = self.exp.is_integer, self.base.is_complex 

if p: 

return self.base**self.exp 

if i: 

return transpose(self.base)**self.exp 

if i is False and p is False: 

expanded = expand_complex(self) 

if expanded != self: 

return transpose(expanded) 

 

def _eval_expand_power_exp(self, **hints): 

"""a**(n+m) -> a**n*a**m""" 

b = self.base 

e = self.exp 

if e.is_Add and e.is_commutative: 

expr = [] 

for x in e.args: 

expr.append(self.func(self.base, x)) 

return Mul(*expr) 

return self.func(b, e) 

 

def _eval_expand_power_base(self, **hints): 

"""(a*b)**n -> a**n * b**n""" 

force = hints.get('force', False) 

 

b = self.base 

e = self.exp 

if not b.is_Mul: 

return self 

 

cargs, nc = b.args_cnc(split_1=False) 

 

# expand each term - this is top-level-only 

# expansion but we have to watch out for things 

# that don't have an _eval_expand method 

if nc: 

nc = [i._eval_expand_power_base(**hints) 

if hasattr(i, '_eval_expand_power_base') else i 

for i in nc] 

 

if e.is_Integer: 

if e.is_positive: 

rv = Mul(*nc*e) 

else: 

rv = 1/Mul(*nc*-e) 

if cargs: 

rv *= Mul(*cargs)**e 

return rv 

 

if not cargs: 

return self.func(Mul(*nc), e, evaluate=False) 

 

nc = [Mul(*nc)] 

 

# sift the commutative bases 

def pred(x): 

if x is S.ImaginaryUnit: 

return S.ImaginaryUnit 

polar = x.is_polar 

if polar: 

return True 

if polar is None: 

return fuzzy_bool(x.is_nonnegative) 

sifted = sift(cargs, pred) 

nonneg = sifted[True] 

other = sifted[None] 

neg = sifted[False] 

imag = sifted[S.ImaginaryUnit] 

if imag: 

I = S.ImaginaryUnit 

i = len(imag) % 4 

if i == 0: 

pass 

elif i == 1: 

other.append(I) 

elif i == 2: 

if neg: 

nonn = -neg.pop() 

if nonn is not S.One: 

nonneg.append(nonn) 

else: 

neg.append(S.NegativeOne) 

else: 

if neg: 

nonn = -neg.pop() 

if nonn is not S.One: 

nonneg.append(nonn) 

else: 

neg.append(S.NegativeOne) 

other.append(I) 

del imag 

 

# bring out the bases that can be separated from the base 

 

if force or e.is_integer: 

# treat all commutatives the same and put nc in other 

cargs = nonneg + neg + other 

other = nc 

else: 

# this is just like what is happening automatically, except 

# that now we are doing it for an arbitrary exponent for which 

# no automatic expansion is done 

 

assert not e.is_Integer 

 

# handle negatives by making them all positive and putting 

# the residual -1 in other 

if len(neg) > 1: 

o = S.One 

if not other and neg[0].is_Number: 

o *= neg.pop(0) 

if len(neg) % 2: 

o = -o 

for n in neg: 

nonneg.append(-n) 

if o is not S.One: 

other.append(o) 

elif neg and other: 

if neg[0].is_Number and neg[0] is not S.NegativeOne: 

other.append(S.NegativeOne) 

nonneg.append(-neg[0]) 

else: 

other.extend(neg) 

else: 

other.extend(neg) 

del neg 

 

cargs = nonneg 

other += nc 

 

rv = S.One 

if cargs: 

rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs]) 

if other: 

rv *= self.func(Mul(*other), e, evaluate=False) 

return rv 

 

def _eval_expand_multinomial(self, **hints): 

"""(a+b+..) ** n -> a**n + n*a**(n-1)*b + .., n is nonzero integer""" 

 

base, exp = self.args 

result = self 

 

if exp.is_Rational and exp.p > 0 and base.is_Add: 

if not exp.is_Integer: 

n = Integer(exp.p // exp.q) 

 

if not n: 

return result 

else: 

radical, result = self.func(base, exp - n), [] 

 

expanded_base_n = self.func(base, n) 

if expanded_base_n.is_Pow: 

expanded_base_n = \ 

expanded_base_n._eval_expand_multinomial() 

for term in Add.make_args(expanded_base_n): 

result.append(term*radical) 

 

return Add(*result) 

 

n = int(exp) 

 

if base.is_commutative: 

order_terms, other_terms = [], [] 

 

for b in base.args: 

if b.is_Order: 

order_terms.append(b) 

else: 

other_terms.append(b) 

 

if order_terms: 

# (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n) 

f = Add(*other_terms) 

o = Add(*order_terms) 

 

if n == 2: 

return expand_multinomial(f**n, deep=False) + n*f*o 

else: 

g = expand_multinomial(f**(n - 1), deep=False) 

return expand_mul(f*g, deep=False) + n*g*o 

 

if base.is_number: 

# Efficiently expand expressions of the form (a + b*I)**n 

# where 'a' and 'b' are real numbers and 'n' is integer. 

a, b = base.as_real_imag() 

 

if a.is_Rational and b.is_Rational: 

if not a.is_Integer: 

if not b.is_Integer: 

k = self.func(a.q * b.q, n) 

a, b = a.p*b.q, a.q*b.p 

else: 

k = self.func(a.q, n) 

a, b = a.p, a.q*b 

elif not b.is_Integer: 

k = self.func(b.q, n) 

a, b = a*b.q, b.p 

else: 

k = 1 

 

a, b, c, d = int(a), int(b), 1, 0 

 

while n: 

if n & 1: 

c, d = a*c - b*d, b*c + a*d 

n -= 1 

a, b = a*a - b*b, 2*a*b 

n //= 2 

 

I = S.ImaginaryUnit 

 

if k == 1: 

return c + I*d 

else: 

return Integer(c)/k + I*d/k 

 

p = other_terms 

# (x+y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3 

# in this particular example: 

# p = [x,y]; n = 3 

# so now it's easy to get the correct result -- we get the 

# coefficients first: 

from sympy import multinomial_coefficients 

from sympy.polys.polyutils import basic_from_dict 

expansion_dict = multinomial_coefficients(len(p), n) 

# in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} 

# and now construct the expression. 

return basic_from_dict(expansion_dict, *p) 

else: 

if n == 2: 

return Add(*[f*g for f in base.args for g in base.args]) 

else: 

multi = (base**(n - 1))._eval_expand_multinomial() 

if multi.is_Add: 

return Add(*[f*g for f in base.args 

for g in multi.args]) 

else: 

# XXX can this ever happen if base was an Add? 

return Add(*[f*multi for f in base.args]) 

elif (exp.is_Rational and exp.p < 0 and base.is_Add and 

abs(exp.p) > exp.q): 

return 1 / self.func(base, -exp)._eval_expand_multinomial() 

elif exp.is_Add and base.is_Number: 

# a + b a b 

# n --> n n , where n, a, b are Numbers 

 

coeff, tail = S.One, S.Zero 

for term in exp.args: 

if term.is_Number: 

coeff *= self.func(base, term) 

else: 

tail += term 

 

return coeff * self.func(base, tail) 

else: 

return result 

 

def as_real_imag(self, deep=True, **hints): 

from sympy import atan2, cos, im, re, sin 

from sympy.polys.polytools import poly 

 

if self.exp.is_Integer: 

exp = self.exp 

re, im = self.base.as_real_imag(deep=deep) 

if not im: 

return self, S.Zero 

a, b = symbols('a b', cls=Dummy) 

if exp >= 0: 

if re.is_Number and im.is_Number: 

# We can be more efficient in this case 

expr = expand_multinomial(self.base**exp) 

return expr.as_real_imag() 

 

expr = poly( 

(a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp 

else: 

mag = re**2 + im**2 

re, im = re/mag, -im/mag 

if re.is_Number and im.is_Number: 

# We can be more efficient in this case 

expr = expand_multinomial((re + im*S.ImaginaryUnit)**-exp) 

return expr.as_real_imag() 

 

expr = poly((a + b)**-exp) 

 

# Terms with even b powers will be real 

r = [i for i in expr.terms() if not i[0][1] % 2] 

re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) 

# Terms with odd b powers will be imaginary 

r = [i for i in expr.terms() if i[0][1] % 4 == 1] 

im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) 

r = [i for i in expr.terms() if i[0][1] % 4 == 3] 

im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) 

 

return (re_part.subs({a: re, b: S.ImaginaryUnit*im}), 

im_part1.subs({a: re, b: im}) + im_part3.subs({a: re, b: -im})) 

 

elif self.exp.is_Rational: 

re, im = self.base.as_real_imag(deep=deep) 

 

if im.is_zero and self.exp is S.Half: 

if re.is_nonnegative: 

return self, S.Zero 

if re.is_nonpositive: 

return S.Zero, (-self.base)**self.exp 

 

# XXX: This is not totally correct since for x**(p/q) with 

# x being imaginary there are actually q roots, but 

# only a single one is returned from here. 

r = self.func(self.func(re, 2) + self.func(im, 2), S.Half) 

t = atan2(im, re) 

 

rp, tp = self.func(r, self.exp), t*self.exp 

 

return (rp*cos(tp), rp*sin(tp)) 

else: 

 

if deep: 

hints['complex'] = False 

 

expanded = self.expand(deep, **hints) 

if hints.get('ignore') == expanded: 

return None 

else: 

return (re(expanded), im(expanded)) 

else: 

return (re(self), im(self)) 

 

def _eval_derivative(self, s): 

from sympy import log 

dbase = self.base.diff(s) 

dexp = self.exp.diff(s) 

return self * (dexp * log(self.base) + dbase * self.exp/self.base) 

 

def _eval_evalf(self, prec): 

base, exp = self.as_base_exp() 

base = base._evalf(prec) 

if not exp.is_Integer: 

exp = exp._evalf(prec) 

if exp.is_negative and base.is_number and base.is_real is False: 

base = base.conjugate() / (base * base.conjugate())._evalf(prec) 

exp = -exp 

return self.func(base, exp).expand() 

return self.func(base, exp) 

 

def _eval_is_polynomial(self, syms): 

if self.exp.has(*syms): 

return False 

 

if self.base.has(*syms): 

return bool(self.base._eval_is_polynomial(syms) and 

self.exp.is_Integer and (self.exp >= 0)) 

else: 

return True 

 

def _eval_is_rational(self): 

p = self.func(*self.as_base_exp()) # in case it's unevaluated 

if not p.is_Pow: 

return p.is_rational 

b, e = p.as_base_exp() 

if e.is_Rational and b.is_Rational: 

# we didn't check that e is not an Integer 

# because Rational**Integer autosimplifies 

return False 

if e.is_integer: 

if b.is_rational: 

if fuzzy_not(b.is_zero) or e.is_nonnegative: 

return True 

if b == e: # always rational, even for 0**0 

return True 

elif b.is_irrational: 

return e.is_zero 

 

def _eval_is_algebraic(self): 

if self.base.is_zero or (self.base - 1).is_zero: 

return True 

elif self.exp.is_rational: 

if self.base.is_algebraic is False: 

return self.exp.is_nonzero 

return self.base.is_algebraic 

elif self.base.is_algebraic and self.exp.is_algebraic: 

if ((fuzzy_not(self.base.is_zero) 

and fuzzy_not((self.base - 1).is_zero)) 

or self.base.is_integer is False 

or self.base.is_irrational): 

return self.exp.is_rational 

 

def _eval_is_rational_function(self, syms): 

if self.exp.has(*syms): 

return False 

 

if self.base.has(*syms): 

return self.base._eval_is_rational_function(syms) and \ 

self.exp.is_Integer 

else: 

return True 

 

def _eval_is_algebraic_expr(self, syms): 

if self.exp.has(*syms): 

return False 

 

if self.base.has(*syms): 

return self.base._eval_is_algebraic_expr(syms) and \ 

self.exp.is_Rational 

else: 

return True 

 

def as_numer_denom(self): 

if not self.is_commutative: 

return self, S.One 

base, exp = self.as_base_exp() 

n, d = base.as_numer_denom() 

# this should be the same as ExpBase.as_numer_denom wrt 

# exponent handling 

neg_exp = exp.is_negative 

if not neg_exp and not (-exp).is_negative: 

neg_exp = _coeff_isneg(exp) 

int_exp = exp.is_integer 

# the denominator cannot be separated from the numerator if 

# its sign is unknown unless the exponent is an integer, e.g. 

# sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the 

# denominator is negative the numerator and denominator can 

# be negated and the denominator (now positive) separated. 

if not (d.is_real or int_exp): 

n = base 

d = S.One 

dnonpos = d.is_nonpositive 

if dnonpos: 

n, d = -n, -d 

elif dnonpos is None and not int_exp: 

n = base 

d = S.One 

if neg_exp: 

n, d = d, n 

exp = -exp 

return self.func(n, exp), self.func(d, exp) 

 

def matches(self, expr, repl_dict={}, old=False): 

expr = _sympify(expr) 

 

# special case, pattern = 1 and expr.exp can match to 0 

if expr is S.One: 

d = repl_dict.copy() 

d = self.exp.matches(S.Zero, d) 

if d is not None: 

return d 

 

# make sure the expression to be matched is an Expr 

if not isinstance(expr, Expr): 

return None 

 

b, e = expr.as_base_exp() 

 

# special case number 

sb, se = self.as_base_exp() 

if sb.is_Symbol and se.is_Integer and expr: 

if e.is_rational: 

return sb.matches(b**(e/se), repl_dict) 

return sb.matches(expr**(1/se), repl_dict) 

 

d = repl_dict.copy() 

d = self.base.matches(b, d) 

if d is None: 

return None 

 

d = self.exp.xreplace(d).matches(e, d) 

if d is None: 

return Expr.matches(self, expr, repl_dict) 

return d 

 

def _eval_nseries(self, x, n, logx): 

# NOTE! This function is an important part of the gruntz algorithm 

# for computing limits. It has to return a generalized power 

# series with coefficients in C(log, log(x)). In more detail: 

# It has to return an expression 

# c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms) 

# where e_i are numbers (not necessarily integers) and c_i are 

# expressions involving only numbers, the log function, and log(x). 

from sympy import ceiling, collect, exp, log, O, Order, powsimp 

b, e = self.args 

if e.is_Integer: 

if e > 0: 

# positive integer powers are easy to expand, e.g.: 

# sin(x)**4 = (x-x**3/3+...)**4 = ... 

return expand_multinomial(self.func(b._eval_nseries(x, n=n, 

logx=logx), e), deep=False) 

elif e is S.NegativeOne: 

# this is also easy to expand using the formula: 

# 1/(1 + x) = 1 - x + x**2 - x**3 ... 

# so we need to rewrite base to the form "1+x" 

 

nuse = n 

cf = 1 

 

try: 

ord = b.as_leading_term(x) 

cf = Order(ord, x).getn() 

if cf and cf.is_Number: 

nuse = n + 2*ceiling(cf) 

else: 

cf = 1 

except NotImplementedError: 

pass 

 

b_orig, prefactor = b, O(1, x) 

while prefactor.is_Order: 

nuse += 1 

b = b_orig._eval_nseries(x, n=nuse, logx=logx) 

prefactor = b.as_leading_term(x) 

 

# express "rest" as: rest = 1 + k*x**l + ... + O(x**n) 

rest = expand_mul((b - prefactor)/prefactor) 

 

if rest.is_Order: 

return 1/prefactor + rest/prefactor + O(x**n, x) 

 

k, l = rest.leadterm(x) 

if l.is_Rational and l > 0: 

pass 

elif l.is_number and l > 0: 

l = l.evalf() 

elif l == 0: 

k = k.simplify() 

if k == 0: 

# if prefactor == w**4 + x**2*w**4 + 2*x*w**4, we need to 

# factor the w**4 out using collect: 

return 1/collect(prefactor, x) 

else: 

raise NotImplementedError() 

else: 

raise NotImplementedError() 

 

if cf < 0: 

cf = S.One/abs(cf) 

 

try: 

dn = Order(1/prefactor, x).getn() 

if dn and dn < 0: 

pass 

else: 

dn = 0 

except NotImplementedError: 

dn = 0 

 

terms = [1/prefactor] 

for m in range(1, ceiling((n - dn + 1)/l*cf)): 

new_term = terms[-1]*(-rest) 

if new_term.is_Pow: 

new_term = new_term._eval_expand_multinomial( 

deep=False) 

else: 

new_term = expand_mul(new_term, deep=False) 

terms.append(new_term) 

terms.append(O(x**n, x)) 

return powsimp(Add(*terms), deep=True, combine='exp') 

else: 

# negative powers are rewritten to the cases above, for 

# example: 

# sin(x)**(-4) = 1/( sin(x)**4) = ... 

# and expand the denominator: 

nuse, denominator = n, O(1, x) 

while denominator.is_Order: 

denominator = (b**(-e))._eval_nseries(x, n=nuse, logx=logx) 

nuse += 1 

if 1/denominator == self: 

return self 

# now we have a type 1/f(x), that we know how to expand 

return (1/denominator)._eval_nseries(x, n=n, logx=logx) 

 

if e.has(Symbol): 

return exp(e*log(b))._eval_nseries(x, n=n, logx=logx) 

 

# see if the base is as simple as possible 

bx = b 

while bx.is_Pow and bx.exp.is_Rational: 

bx = bx.base 

if bx == x: 

return self 

 

# work for b(x)**e where e is not an Integer and does not contain x 

# and hopefully has no other symbols 

 

def e2int(e): 

"""return the integer value (if possible) of e and a 

flag indicating whether it is bounded or not.""" 

n = e.limit(x, 0) 

infinite = n.is_infinite 

if not infinite: 

# XXX was int or floor intended? int used to behave like floor 

# so int(-Rational(1, 2)) returned -1 rather than int's 0 

try: 

n = int(n) 

except TypeError: 

#well, the n is something more complicated (like 1+log(2)) 

try: 

n = int(n.evalf()) + 1 # XXX why is 1 being added? 

except TypeError: 

pass # hope that base allows this to be resolved 

n = _sympify(n) 

return n, infinite 

 

order = O(x**n, x) 

ei, infinite = e2int(e) 

b0 = b.limit(x, 0) 

if infinite and (b0 is S.One or b0.has(Symbol)): 

# XXX what order 

if b0 is S.One: 

resid = (b - 1) 

if resid.is_positive: 

return S.Infinity 

elif resid.is_negative: 

return S.Zero 

raise ValueError('cannot determine sign of %s' % resid) 

 

return b0**ei 

 

if (b0 is S.Zero or b0.is_infinite): 

if infinite is not False: 

return b0**e # XXX what order 

 

if not ei.is_number: # if not, how will we proceed? 

raise ValueError( 

'expecting numerical exponent but got %s' % ei) 

 

nuse = n - ei 

 

if e.is_real and e.is_positive: 

lt = b.as_leading_term(x) 

 

# Try to correct nuse (= m) guess from: 

# (lt + rest + O(x**m))**e = 

# lt**e*(1 + rest/lt + O(x**m)/lt)**e = 

# lt**e + ... + O(x**m)*lt**(e - 1) = ... + O(x**n) 

try: 

cf = Order(lt, x).getn() 

nuse = ceiling(n - cf*(e - 1)) 

except NotImplementedError: 

pass 

 

bs = b._eval_nseries(x, n=nuse, logx=logx) 

terms = bs.removeO() 

if terms.is_Add: 

bs = terms 

lt = terms.as_leading_term(x) 

 

# bs -> lt + rest -> lt*(1 + (bs/lt - 1)) 

return ((self.func(lt, e) * self.func((bs/lt).expand(), e).nseries( 

x, n=nuse, logx=logx)).expand() + order) 

 

if bs.is_Add: 

from sympy import O 

# So, bs + O() == terms 

c = Dummy('c') 

res = [] 

for arg in bs.args: 

if arg.is_Order: 

arg = c*arg.expr 

res.append(arg) 

bs = Add(*res) 

rv = (bs**e).series(x).subs(c, O(1, x)) 

rv += order 

return rv 

 

rv = bs**e 

if terms != bs: 

rv += order 

return rv 

 

# either b0 is bounded but neither 1 nor 0 or e is infinite 

# b -> b0 + (b-b0) -> b0 * (1 + (b/b0-1)) 

o2 = order*(b0**-e) 

z = (b/b0 - 1) 

o = O(z, x) 

if o is S.Zero or o2 is S.Zero: 

infinite = True 

else: 

if o.expr.is_number: 

e2 = log(o2.expr*x)/log(x) 

else: 

e2 = log(o2.expr)/log(o.expr) 

n, infinite = e2int(e2) 

if infinite: 

# requested accuracy gives infinite series, 

# order is probably non-polynomial e.g. O(exp(-1/x), x). 

r = 1 + z 

else: 

l = [] 

g = None 

for i in range(n + 2): 

g = self._taylor_term(i, z, g) 

g = g.nseries(x, n=n, logx=logx) 

l.append(g) 

r = Add(*l) 

return expand_mul(r*b0**e) + order 

 

def _eval_as_leading_term(self, x): 

from sympy import exp, log 

if not self.exp.has(x): 

return self.func(self.base.as_leading_term(x), self.exp) 

return exp(self.exp * log(self.base)).as_leading_term(x) 

 

@cacheit 

def _taylor_term(self, n, x, *previous_terms): # of (1+x)**e 

from sympy import binomial 

return binomial(self.exp, n) * self.func(x, n) 

 

def _sage_(self): 

return self.args[0]._sage_()**self.args[1]._sage_() 

 

def as_content_primitive(self, radical=False, clear=True): 

"""Return the tuple (R, self/R) where R is the positive Rational 

extracted from self. 

 

Examples 

======== 

 

>>> from sympy import sqrt 

>>> sqrt(4 + 4*sqrt(2)).as_content_primitive() 

(2, sqrt(1 + sqrt(2))) 

>>> sqrt(3 + 3*sqrt(2)).as_content_primitive() 

(1, sqrt(3)*sqrt(1 + sqrt(2))) 

 

>>> from sympy import expand_power_base, powsimp, Mul 

>>> from sympy.abc import x, y 

 

>>> ((2*x + 2)**2).as_content_primitive() 

(4, (x + 1)**2) 

>>> (4**((1 + y)/2)).as_content_primitive() 

(2, 4**(y/2)) 

>>> (3**((1 + y)/2)).as_content_primitive() 

(1, 3**((y + 1)/2)) 

>>> (3**((5 + y)/2)).as_content_primitive() 

(9, 3**((y + 1)/2)) 

>>> eq = 3**(2 + 2*x) 

>>> powsimp(eq) == eq 

True 

>>> eq.as_content_primitive() 

(9, 3**(2*x)) 

>>> powsimp(Mul(*_)) 

3**(2*x + 2) 

 

>>> eq = (2 + 2*x)**y 

>>> s = expand_power_base(eq); s.is_Mul, s 

(False, (2*x + 2)**y) 

>>> eq.as_content_primitive() 

(1, (2*(x + 1))**y) 

>>> s = expand_power_base(_[1]); s.is_Mul, s 

(True, 2**y*(x + 1)**y) 

 

See docstring of Expr.as_content_primitive for more examples. 

""" 

 

b, e = self.as_base_exp() 

b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear)) 

ce, pe = e.as_content_primitive(radical=radical, clear=clear) 

if b.is_Rational: 

#e 

#= ce*pe 

#= ce*(h + t) 

#= ce*h + ce*t 

#=> self 

#= b**(ce*h)*b**(ce*t) 

#= b**(cehp/cehq)*b**(ce*t) 

#= b**(iceh+r/cehq)*b**(ce*t) 

#= b**(iceh)*b**(r/cehq)*b**(ce*t) 

#= b**(iceh)*b**(ce*t + r/cehq) 

h, t = pe.as_coeff_Add() 

if h.is_Rational: 

ceh = ce*h 

c = self.func(b, ceh) 

r = S.Zero 

if not c.is_Rational: 

iceh, r = divmod(ceh.p, ceh.q) 

c = self.func(b, iceh) 

return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q)) 

e = _keep_coeff(ce, pe) 

# b**e = (h*t)**e = h**e*t**e = c*m*t**e 

if e.is_Rational and b.is_Mul: 

h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive 

c, m = self.func(h, e).as_coeff_Mul() # so c is positive 

m, me = m.as_base_exp() 

if m is S.One or me == e: # probably always true 

# return the following, not return c, m*Pow(t, e) 

# which would change Pow into Mul; we let sympy 

# decide what to do by using the unevaluated Mul, e.g 

# should it stay as sqrt(2 + 2*sqrt(5)) or become 

# sqrt(2)*sqrt(1 + sqrt(5)) 

return c, self.func(_keep_coeff(m, t), e) 

return S.One, self.func(b, e) 

 

def is_constant(self, *wrt, **flags): 

expr = self 

if flags.get('simplify', True): 

expr = expr.simplify() 

b, e = expr.as_base_exp() 

bz = b.equals(0) 

if bz: # recalculate with assumptions in case it's unevaluated 

new = b**e 

if new != expr: 

return new.is_constant() 

econ = e.is_constant(*wrt) 

bcon = b.is_constant(*wrt) 

if bcon: 

if econ: 

return True 

bz = b.equals(0) 

if bz is False: 

return False 

elif bcon is None: 

return None 

 

return e.equals(0) 

 

def _eval_difference_delta(self, n, step): 

b, e = self.args 

if e.has(n) and not b.has(n): 

new_e = e.subs(n, n + step) 

return (b**(new_e - e) - 1) * self 

 

 

from .add import Add 

from .numbers import Integer 

from .mul import Mul, _keep_coeff 

from .symbol import Symbol, Dummy, symbols