Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

from __future__ import print_function, division 

 

from sympy.core.assumptions import StdFactKB 

from sympy.core.compatibility import string_types, range 

from .basic import Basic 

from .sympify import sympify 

from .singleton import S 

from .expr import Expr, AtomicExpr 

from .cache import cacheit 

from .function import FunctionClass 

from sympy.core.logic import fuzzy_bool 

from sympy.logic.boolalg import Boolean 

from sympy.utilities.iterables import cartes 

 

import string 

import re as _re 

 

 

class Symbol(AtomicExpr, Boolean): 

""" 

Assumptions: 

commutative = True 

 

You can override the default assumptions in the constructor: 

 

>>> from sympy import symbols 

>>> A,B = symbols('A,B', commutative = False) 

>>> bool(A*B != B*A) 

True 

>>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative 

True 

 

""" 

 

is_comparable = False 

 

__slots__ = ['name'] 

 

is_Symbol = True 

 

@property 

def _diff_wrt(self): 

"""Allow derivatives wrt Symbols. 

 

Examples 

======== 

 

>>> from sympy import Symbol 

>>> x = Symbol('x') 

>>> x._diff_wrt 

True 

""" 

return True 

 

@staticmethod 

def _sanitize(assumptions, obj=None): 

"""Remove None, covert values to bool, check commutativity *in place*. 

""" 

 

# be strict about commutativity: cannot be None 

is_commutative = fuzzy_bool(assumptions.get('commutative', True)) 

if is_commutative is None: 

whose = '%s ' % obj.__name__ if obj else '' 

raise ValueError( 

'%scommutativity must be True or False.' % whose) 

 

# sanitize other assumptions so 1 -> True and 0 -> False 

for key in list(assumptions.keys()): 

from collections import defaultdict 

from sympy.utilities.exceptions import SymPyDeprecationWarning 

keymap = defaultdict(lambda: None) 

keymap.update({'bounded': 'finite', 'unbounded': 'infinite', 'infinitesimal': 'zero'}) 

if keymap[key]: 

SymPyDeprecationWarning( 

feature="%s assumption" % key, 

useinstead="%s" % keymap[key], 

issue=8071, 

deprecated_since_version="0.7.6").warn() 

assumptions[keymap[key]] = assumptions[key] 

assumptions.pop(key) 

key = keymap[key] 

 

v = assumptions[key] 

if v is None: 

assumptions.pop(key) 

continue 

assumptions[key] = bool(v) 

 

def __new__(cls, name, **assumptions): 

"""Symbols are identified by name and assumptions:: 

 

>>> from sympy import Symbol 

>>> Symbol("x") == Symbol("x") 

True 

>>> Symbol("x", real=True) == Symbol("x", real=False) 

False 

 

""" 

cls._sanitize(assumptions, cls) 

return Symbol.__xnew_cached_(cls, name, **assumptions) 

 

def __new_stage2__(cls, name, **assumptions): 

if not isinstance(name, string_types): 

raise TypeError("name should be a string, not %s" % repr(type(name))) 

 

obj = Expr.__new__(cls) 

obj.name = name 

 

# TODO: Issue #8873: Forcing the commutative assumption here means 

# later code such as ``srepr()`` cannot tell whether the user 

# specified ``commutative=True`` or omitted it. To workaround this, 

# we keep a copy of the assumptions dict, then create the StdFactKB, 

# and finally overwrite its ``._generator`` with the dict copy. This 

# is a bit of a hack because we assume StdFactKB merely copies the 

# given dict as ``._generator``, but future modification might, e.g., 

# compute a minimal equivalent assumption set. 

tmp_asm_copy = assumptions.copy() 

 

# be strict about commutativity 

is_commutative = fuzzy_bool(assumptions.get('commutative', True)) 

assumptions['commutative'] = is_commutative 

obj._assumptions = StdFactKB(assumptions) 

obj._assumptions._generator = tmp_asm_copy # Issue #8873 

return obj 

 

__xnew__ = staticmethod( 

__new_stage2__) # never cached (e.g. dummy) 

__xnew_cached_ = staticmethod( 

cacheit(__new_stage2__)) # symbols are always cached 

 

def __getnewargs__(self): 

return (self.name,) 

 

def __getstate__(self): 

return {'_assumptions': self._assumptions} 

 

def _hashable_content(self): 

# Note: user-specified assumptions not hashed, just derived ones 

return (self.name,) + tuple(sorted(self.assumptions0.items())) 

 

@property 

def assumptions0(self): 

return dict((key, value) for key, value 

in self._assumptions.items() if value is not None) 

 

@cacheit 

def sort_key(self, order=None): 

return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One 

 

def as_dummy(self): 

"""Return a Dummy having the same name and same assumptions as self.""" 

return Dummy(self.name, **self._assumptions.generator) 

 

def __call__(self, *args): 

from .function import Function 

return Function(self.name)(*args) 

 

def as_real_imag(self, deep=True, **hints): 

from sympy import im, re 

if hints.get('ignore') == self: 

return None 

else: 

return (re(self), im(self)) 

 

def _sage_(self): 

import sage.all as sage 

return sage.var(self.name) 

 

def is_constant(self, *wrt, **flags): 

if not wrt: 

return False 

return not self in wrt 

 

@property 

def free_symbols(self): 

return {self} 

 

 

class Dummy(Symbol): 

"""Dummy symbols are each unique, identified by an internal count index: 

 

>>> from sympy import Dummy 

>>> bool(Dummy("x") == Dummy("x")) == True 

False 

 

If a name is not supplied then a string value of the count index will be 

used. This is useful when a temporary variable is needed and the name 

of the variable used in the expression is not important. 

 

>>> Dummy() #doctest: +SKIP 

_Dummy_10 

 

""" 

 

_count = 0 

 

__slots__ = ['dummy_index'] 

 

is_Dummy = True 

 

def __new__(cls, name=None, **assumptions): 

if name is None: 

name = "Dummy_" + str(Dummy._count) 

 

cls._sanitize(assumptions, cls) 

obj = Symbol.__xnew__(cls, name, **assumptions) 

 

Dummy._count += 1 

obj.dummy_index = Dummy._count 

return obj 

 

def __getstate__(self): 

return {'_assumptions': self._assumptions, 'dummy_index': self.dummy_index} 

 

@cacheit 

def sort_key(self, order=None): 

return self.class_key(), ( 

2, (str(self), self.dummy_index)), S.One.sort_key(), S.One 

 

def _hashable_content(self): 

return Symbol._hashable_content(self) + (self.dummy_index,) 

 

 

class Wild(Symbol): 

""" 

A Wild symbol matches anything, or anything 

without whatever is explicitly excluded. 

 

Examples 

======== 

 

>>> from sympy import Wild, WildFunction, cos, pi 

>>> from sympy.abc import x, y, z 

>>> a = Wild('a') 

>>> x.match(a) 

{a_: x} 

>>> pi.match(a) 

{a_: pi} 

>>> (3*x**2).match(a*x) 

{a_: 3*x} 

>>> cos(x).match(a) 

{a_: cos(x)} 

>>> b = Wild('b', exclude=[x]) 

>>> (3*x**2).match(b*x) 

>>> b.match(a) 

{a_: b_} 

>>> A = WildFunction('A') 

>>> A.match(a) 

{a_: A_} 

 

Tips 

==== 

 

When using Wild, be sure to use the exclude 

keyword to make the pattern more precise. 

Without the exclude pattern, you may get matches 

that are technically correct, but not what you 

wanted. For example, using the above without 

exclude: 

 

>>> from sympy import symbols 

>>> a, b = symbols('a b', cls=Wild) 

>>> (2 + 3*y).match(a*x + b*y) 

{a_: 2/x, b_: 3} 

 

This is technically correct, because 

(2/x)*x + 3*y == 2 + 3*y, but you probably 

wanted it to not match at all. The issue is that 

you really didn't want a and b to include x and y, 

and the exclude parameter lets you specify exactly 

this. With the exclude parameter, the pattern will 

not match. 

 

>>> a = Wild('a', exclude=[x, y]) 

>>> b = Wild('b', exclude=[x, y]) 

>>> (2 + 3*y).match(a*x + b*y) 

 

Exclude also helps remove ambiguity from matches. 

 

>>> E = 2*x**3*y*z 

>>> a, b = symbols('a b', cls=Wild) 

>>> E.match(a*b) 

{a_: 2*y*z, b_: x**3} 

>>> a = Wild('a', exclude=[x, y]) 

>>> E.match(a*b) 

{a_: z, b_: 2*x**3*y} 

>>> a = Wild('a', exclude=[x, y, z]) 

>>> E.match(a*b) 

{a_: 2, b_: x**3*y*z} 

 

""" 

is_Wild = True 

 

__slots__ = ['exclude', 'properties'] 

 

def __new__(cls, name, exclude=(), properties=(), **assumptions): 

exclude = tuple([sympify(x) for x in exclude]) 

properties = tuple(properties) 

cls._sanitize(assumptions, cls) 

return Wild.__xnew__(cls, name, exclude, properties, **assumptions) 

 

def __getnewargs__(self): 

return (self.name, self.exclude, self.properties) 

 

@staticmethod 

@cacheit 

def __xnew__(cls, name, exclude, properties, **assumptions): 

obj = Symbol.__xnew__(cls, name, **assumptions) 

obj.exclude = exclude 

obj.properties = properties 

return obj 

 

def _hashable_content(self): 

return super(Wild, self)._hashable_content() + (self.exclude, self.properties) 

 

# TODO add check against another Wild 

def matches(self, expr, repl_dict={}, old=False): 

if any(expr.has(x) for x in self.exclude): 

return None 

if any(not f(expr) for f in self.properties): 

return None 

repl_dict = repl_dict.copy() 

repl_dict[self] = expr 

return repl_dict 

 

def __call__(self, *args, **kwargs): 

raise TypeError("'%s' object is not callable" % type(self).__name__) 

 

 

_range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])') 

 

def symbols(names, **args): 

""" 

Transform strings into instances of :class:`Symbol` class. 

 

:func:`symbols` function returns a sequence of symbols with names taken 

from ``names`` argument, which can be a comma or whitespace delimited 

string, or a sequence of strings:: 

 

>>> from sympy import symbols, Function 

 

>>> x, y, z = symbols('x,y,z') 

>>> a, b, c = symbols('a b c') 

 

The type of output is dependent on the properties of input arguments:: 

 

>>> symbols('x') 

x 

>>> symbols('x,') 

(x,) 

>>> symbols('x,y') 

(x, y) 

>>> symbols(('a', 'b', 'c')) 

(a, b, c) 

>>> symbols(['a', 'b', 'c']) 

[a, b, c] 

>>> symbols(set(['a', 'b', 'c'])) 

set([a, b, c]) 

 

If an iterable container is needed for a single symbol, set the ``seq`` 

argument to ``True`` or terminate the symbol name with a comma:: 

 

>>> symbols('x', seq=True) 

(x,) 

 

To reduce typing, range syntax is supported to create indexed symbols. 

Ranges are indicated by a colon and the type of range is determined by 

the character to the right of the colon. If the character is a digit 

then all contiguous digits to the left are taken as the nonnegative 

starting value (or 0 if there is no digit left of the colon) and all 

contiguous digits to the right are taken as 1 greater than the ending 

value:: 

 

>>> symbols('x:10') 

(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) 

 

>>> symbols('x5:10') 

(x5, x6, x7, x8, x9) 

>>> symbols('x5(:2)') 

(x50, x51) 

 

>>> symbols('x5:10,y:5') 

(x5, x6, x7, x8, x9, y0, y1, y2, y3, y4) 

 

>>> symbols(('x5:10', 'y:5')) 

((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4)) 

 

If the character to the right of the colon is a letter, then the single 

letter to the left (or 'a' if there is none) is taken as the start 

and all characters in the lexicographic range *through* the letter to 

the right are used as the range:: 

 

>>> symbols('x:z') 

(x, y, z) 

>>> symbols('x:c') # null range 

() 

>>> symbols('x(:c)') 

(xa, xb, xc) 

 

>>> symbols(':c') 

(a, b, c) 

 

>>> symbols('a:d, x:z') 

(a, b, c, d, x, y, z) 

 

>>> symbols(('a:d', 'x:z')) 

((a, b, c, d), (x, y, z)) 

 

Multiple ranges are supported; contiguous numerical ranges should be 

separated by parentheses to disambiguate the ending number of one 

range from the starting number of the next:: 

 

>>> symbols('x:2(1:3)') 

(x01, x02, x11, x12) 

>>> symbols(':3:2') # parsing is from left to right 

(00, 01, 10, 11, 20, 21) 

 

Only one pair of parentheses surrounding ranges are removed, so to 

include parentheses around ranges, double them. And to include spaces, 

commas, or colons, escape them with a backslash:: 

 

>>> symbols('x((a:b))') 

(x(a), x(b)) 

>>> symbols('x(:1\,:2)') # or 'x((:1)\,(:2))' 

(x(0,0), x(0,1)) 

 

All newly created symbols have assumptions set according to ``args``:: 

 

>>> a = symbols('a', integer=True) 

>>> a.is_integer 

True 

 

>>> x, y, z = symbols('x,y,z', real=True) 

>>> x.is_real and y.is_real and z.is_real 

True 

 

Despite its name, :func:`symbols` can create symbol-like objects like 

instances of Function or Wild classes. To achieve this, set ``cls`` 

keyword argument to the desired type:: 

 

>>> symbols('f,g,h', cls=Function) 

(f, g, h) 

 

>>> type(_[0]) 

<class 'sympy.core.function.UndefinedFunction'> 

 

""" 

result = [] 

 

if isinstance(names, string_types): 

marker = 0 

literals = ['\,', '\:', '\ '] 

for i in range(len(literals)): 

lit = literals.pop(0) 

if lit in names: 

while chr(marker) in names: 

marker += 1 

lit_char = chr(marker) 

marker += 1 

names = names.replace(lit, lit_char) 

literals.append((lit_char, lit[1:])) 

def literal(s): 

if literals: 

for c, l in literals: 

s = s.replace(c, l) 

return s 

 

names = names.strip() 

as_seq = names.endswith(',') 

if as_seq: 

names = names[:-1].rstrip() 

if not names: 

raise ValueError('no symbols given') 

 

# split on commas 

names = [n.strip() for n in names.split(',')] 

if not all(n for n in names): 

raise ValueError('missing symbol between commas') 

# split on spaces 

for i in range(len(names) - 1, -1, -1): 

names[i: i + 1] = names[i].split() 

 

cls = args.pop('cls', Symbol) 

seq = args.pop('seq', as_seq) 

 

for name in names: 

if not name: 

raise ValueError('missing symbol') 

 

if ':' not in name: 

symbol = cls(literal(name), **args) 

result.append(symbol) 

continue 

 

split = _range.split(name) 

# remove 1 layer of bounding parentheses around ranges 

for i in range(len(split) - 1): 

if i and ':' in split[i] and split[i] != ':' and \ 

split[i - 1].endswith('(') and \ 

split[i + 1].startswith(')'): 

split[i - 1] = split[i - 1][:-1] 

split[i + 1] = split[i + 1][1:] 

for i, s in enumerate(split): 

if ':' in s: 

if s[-1].endswith(':'): 

raise ValueError('missing end range') 

a, b = s.split(':') 

if b[-1] in string.digits: 

a = 0 if not a else int(a) 

b = int(b) 

split[i] = [str(c) for c in range(a, b)] 

else: 

a = a or 'a' 

split[i] = [string.ascii_letters[c] for c in range( 

string.ascii_letters.index(a), 

string.ascii_letters.index(b) + 1)] # inclusive 

if not split[i]: 

break 

else: 

split[i] = [s] 

else: 

seq = True 

if len(split) == 1: 

names = split[0] 

else: 

names = [''.join(s) for s in cartes(*split)] 

if literals: 

result.extend([cls(literal(s), **args) for s in names]) 

else: 

result.extend([cls(s, **args) for s in names]) 

 

if not seq and len(result) <= 1: 

if not result: 

return () 

return result[0] 

 

return tuple(result) 

else: 

for name in names: 

result.append(symbols(name, **args)) 

 

return type(names)(result) 

 

 

def var(names, **args): 

""" 

Create symbols and inject them into the global namespace. 

 

This calls :func:`symbols` with the same arguments and puts the results 

into the *global* namespace. It's recommended not to use :func:`var` in 

library code, where :func:`symbols` has to be used:: 

 

Examples 

======== 

 

>>> from sympy import var 

 

>>> var('x') 

x 

>>> x 

x 

 

>>> var('a,ab,abc') 

(a, ab, abc) 

>>> abc 

abc 

 

>>> var('x,y', real=True) 

(x, y) 

>>> x.is_real and y.is_real 

True 

 

See :func:`symbol` documentation for more details on what kinds of 

arguments can be passed to :func:`var`. 

 

""" 

def traverse(symbols, frame): 

"""Recursively inject symbols to the global namespace. """ 

for symbol in symbols: 

if isinstance(symbol, Basic): 

frame.f_globals[symbol.name] = symbol 

elif isinstance(symbol, FunctionClass): 

frame.f_globals[symbol.__name__] = symbol 

else: 

traverse(symbol, frame) 

 

from inspect import currentframe 

frame = currentframe().f_back 

 

try: 

syms = symbols(names, **args) 

 

if syms is not None: 

if isinstance(syms, Basic): 

frame.f_globals[syms.name] = syms 

elif isinstance(syms, FunctionClass): 

frame.f_globals[syms.__name__] = syms 

else: 

traverse(syms, frame) 

finally: 

del frame # break cyclic dependencies as stated in inspect docs 

 

return syms