Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

from __future__ import print_function, division 

 

from sympy.core import S, Add, Mul, sympify, Symbol, Dummy 

from sympy.core.exprtools import factor_terms 

from sympy.core.function import (Function, Derivative, ArgumentIndexError, 

AppliedUndef) 

from sympy.core.numbers import pi 

from sympy.functions.elementary.miscellaneous import sqrt 

from sympy.functions.elementary.piecewise import Piecewise 

from sympy.core.expr import Expr 

from sympy.core.relational import Eq 

from sympy.core.logic import fuzzy_not 

from sympy.functions.elementary.exponential import exp, exp_polar 

from sympy.functions.elementary.trigonometric import atan2 

 

############################################################################### 

######################### REAL and IMAGINARY PARTS ############################ 

############################################################################### 

 

 

class re(Function): 

""" 

Returns real part of expression. This function performs only 

elementary analysis and so it will fail to decompose properly 

more complicated expressions. If completely simplified result 

is needed then use Basic.as_real_imag() or perform complex 

expansion on instance of this function. 

 

Examples 

======== 

 

>>> from sympy import re, im, I, E 

>>> from sympy.abc import x, y 

>>> re(2*E) 

2*E 

>>> re(2*I + 17) 

17 

>>> re(2*I) 

0 

>>> re(im(x) + x*I + 2) 

2 

 

See Also 

======== 

im 

""" 

 

is_real = True 

unbranched = True # implicitely works on the projection to C 

 

@classmethod 

def eval(cls, arg): 

if arg is S.NaN: 

return S.NaN 

elif arg is S.ComplexInfinity: 

return S.NaN 

elif arg.is_real: 

return arg 

elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: 

return S.Zero 

elif arg.is_Function and arg.func is conjugate: 

return re(arg.args[0]) 

else: 

 

included, reverted, excluded = [], [], [] 

args = Add.make_args(arg) 

for term in args: 

coeff = term.as_coefficient(S.ImaginaryUnit) 

 

if coeff is not None: 

if not coeff.is_real: 

reverted.append(coeff) 

elif not term.has(S.ImaginaryUnit) and term.is_real: 

excluded.append(term) 

else: 

# Try to do some advanced expansion. If 

# impossible, don't try to do re(arg) again 

# (because this is what we are trying to do now). 

real_imag = term.as_real_imag(ignore=arg) 

if real_imag: 

excluded.append(real_imag[0]) 

else: 

included.append(term) 

 

if len(args) != len(included): 

a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) 

 

return cls(a) - im(b) + c 

 

def as_real_imag(self, deep=True, **hints): 

""" 

Returns the real number with a zero imaginary part. 

""" 

return (self, S.Zero) 

 

def _eval_derivative(self, x): 

if x.is_real or self.args[0].is_real: 

return re(Derivative(self.args[0], x, evaluate=True)) 

if x.is_imaginary or self.args[0].is_imaginary: 

return -S.ImaginaryUnit \ 

* im(Derivative(self.args[0], x, evaluate=True)) 

 

def _eval_rewrite_as_im(self, arg): 

return self.args[0] - S.ImaginaryUnit*im(self.args[0]) 

 

def _eval_is_algebraic(self): 

return self.args[0].is_algebraic 

 

def _sage_(self): 

import sage.all as sage 

return sage.real_part(self.args[0]._sage_()) 

 

 

class im(Function): 

""" 

Returns imaginary part of expression. This function performs only 

elementary analysis and so it will fail to decompose properly more 

complicated expressions. If completely simplified result is needed then 

use Basic.as_real_imag() or perform complex expansion on instance of 

this function. 

 

Examples 

======== 

 

>>> from sympy import re, im, E, I 

>>> from sympy.abc import x, y 

>>> im(2*E) 

0 

>>> re(2*I + 17) 

17 

>>> im(x*I) 

re(x) 

>>> im(re(x) + y) 

im(y) 

 

See Also 

======== 

 

re 

""" 

 

is_real = True 

unbranched = True # implicitely works on the projection to C 

 

@classmethod 

def eval(cls, arg): 

if arg is S.NaN: 

return S.NaN 

elif arg is S.ComplexInfinity: 

return S.NaN 

elif arg.is_real: 

return S.Zero 

elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: 

return -S.ImaginaryUnit * arg 

elif arg.is_Function and arg.func is conjugate: 

return -im(arg.args[0]) 

else: 

included, reverted, excluded = [], [], [] 

args = Add.make_args(arg) 

for term in args: 

coeff = term.as_coefficient(S.ImaginaryUnit) 

 

if coeff is not None: 

if not coeff.is_real: 

reverted.append(coeff) 

else: 

excluded.append(coeff) 

elif term.has(S.ImaginaryUnit) or not term.is_real: 

# Try to do some advanced expansion. If 

# impossible, don't try to do im(arg) again 

# (because this is what we are trying to do now). 

real_imag = term.as_real_imag(ignore=arg) 

if real_imag: 

excluded.append(real_imag[1]) 

else: 

included.append(term) 

 

if len(args) != len(included): 

a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) 

 

return cls(a) + re(b) + c 

 

def as_real_imag(self, deep=True, **hints): 

""" 

Return the imaginary part with a zero real part. 

 

Examples 

======== 

 

>>> from sympy.functions import im 

>>> from sympy import I 

>>> im(2 + 3*I).as_real_imag() 

(3, 0) 

""" 

return (self, S.Zero) 

 

def _eval_derivative(self, x): 

if x.is_real or self.args[0].is_real: 

return im(Derivative(self.args[0], x, evaluate=True)) 

if x.is_imaginary or self.args[0].is_imaginary: 

return -S.ImaginaryUnit \ 

* re(Derivative(self.args[0], x, evaluate=True)) 

 

def _sage_(self): 

import sage.all as sage 

return sage.imag_part(self.args[0]._sage_()) 

 

def _eval_rewrite_as_re(self, arg): 

return -S.ImaginaryUnit*(self.args[0] - re(self.args[0])) 

 

def _eval_is_algebraic(self): 

return self.args[0].is_algebraic 

 

 

############################################################################### 

############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################ 

############################################################################### 

 

class sign(Function): 

""" 

Returns the complex sign of an expression: 

 

If the expresssion is real the sign will be: 

 

* 1 if expression is positive 

* 0 if expression is equal to zero 

* -1 if expression is negative 

 

If the expresssion is imaginary the sign will be: 

 

* I if im(expression) is positive 

* -I if im(expression) is negative 

 

Otherwise an unevaluated expression will be returned. When evaluated, the 

result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``. 

 

Examples 

======== 

 

>>> from sympy.functions import sign 

>>> from sympy.core.numbers import I 

 

>>> sign(-1) 

-1 

>>> sign(0) 

0 

>>> sign(-3*I) 

-I 

>>> sign(1 + I) 

sign(1 + I) 

>>> _.evalf() 

0.707106781186548 + 0.707106781186548*I 

 

See Also 

======== 

 

Abs, conjugate 

""" 

 

is_finite = True 

is_complex = True 

 

def doit(self, **hints): 

if self.args[0].is_zero is False: 

return self.args[0] / Abs(self.args[0]) 

return self 

 

@classmethod 

def eval(cls, arg): 

# handle what we can 

if arg.is_Mul: 

c, args = arg.as_coeff_mul() 

unk = [] 

s = sign(c) 

for a in args: 

if a.is_negative: 

s = -s 

elif a.is_positive: 

pass 

else: 

ai = im(a) 

if a.is_imaginary and ai.is_comparable: # i.e. a = I*real 

s *= S.ImaginaryUnit 

if ai.is_negative: 

# can't use sign(ai) here since ai might not be 

# a Number 

s = -s 

else: 

unk.append(a) 

if c is S.One and len(unk) == len(args): 

return None 

return s * cls(arg._new_rawargs(*unk)) 

if arg is S.NaN: 

return S.NaN 

if arg.is_zero: # it may be an Expr that is zero 

return S.Zero 

if arg.is_positive: 

return S.One 

if arg.is_negative: 

return S.NegativeOne 

if arg.is_Function: 

if arg.func is sign: 

return arg 

if arg.is_imaginary: 

if arg.is_Pow and arg.exp is S.Half: 

# we catch this because non-trivial sqrt args are not expanded 

# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1) 

return S.ImaginaryUnit 

arg2 = -S.ImaginaryUnit * arg 

if arg2.is_positive: 

return S.ImaginaryUnit 

if arg2.is_negative: 

return -S.ImaginaryUnit 

 

def _eval_Abs(self): 

if fuzzy_not(self.args[0].is_zero): 

return S.One 

 

def _eval_conjugate(self): 

return sign(conjugate(self.args[0])) 

 

def _eval_derivative(self, x): 

if self.args[0].is_real: 

from sympy.functions.special.delta_functions import DiracDelta 

return 2 * Derivative(self.args[0], x, evaluate=True) \ 

* DiracDelta(self.args[0]) 

elif self.args[0].is_imaginary: 

from sympy.functions.special.delta_functions import DiracDelta 

return 2 * Derivative(self.args[0], x, evaluate=True) \ 

* DiracDelta(-S.ImaginaryUnit * self.args[0]) 

 

def _eval_is_nonnegative(self): 

if self.args[0].is_nonnegative: 

return True 

 

def _eval_is_nonpositive(self): 

if self.args[0].is_nonpositive: 

return True 

 

def _eval_is_imaginary(self): 

return self.args[0].is_imaginary 

 

def _eval_is_integer(self): 

return self.args[0].is_real 

 

def _eval_is_zero(self): 

return self.args[0].is_zero 

 

def _eval_power(self, other): 

if ( 

fuzzy_not(self.args[0].is_zero) and 

other.is_integer and 

other.is_even 

): 

return S.One 

 

def _sage_(self): 

import sage.all as sage 

return sage.sgn(self.args[0]._sage_()) 

 

def _eval_rewrite_as_Piecewise(self, arg): 

if arg.is_real: 

return Piecewise((1, arg > 0), (-1, arg < 0), (0, True)) 

 

def _eval_rewrite_as_Heaviside(self, arg): 

from sympy import Heaviside 

if arg.is_real: 

return Heaviside(arg)*2-1 

 

def _eval_simplify(self, ratio, measure): 

return self.func(self.args[0].factor()) 

 

 

class Abs(Function): 

""" 

Return the absolute value of the argument. 

 

This is an extension of the built-in function abs() to accept symbolic 

values. If you pass a SymPy expression to the built-in abs(), it will 

pass it automatically to Abs(). 

 

Examples 

======== 

 

>>> from sympy import Abs, Symbol, S 

>>> Abs(-1) 

1 

>>> x = Symbol('x', real=True) 

>>> Abs(-x) 

Abs(x) 

>>> Abs(x**2) 

x**2 

>>> abs(-x) # The Python built-in 

Abs(x) 

 

Note that the Python built-in will return either an Expr or int depending on 

the argument:: 

 

>>> type(abs(-1)) 

<... 'int'> 

>>> type(abs(S.NegativeOne)) 

<class 'sympy.core.numbers.One'> 

 

Abs will always return a sympy object. 

 

See Also 

======== 

 

sign, conjugate 

""" 

 

is_real = True 

is_negative = False 

unbranched = True 

 

def fdiff(self, argindex=1): 

""" 

Get the first derivative of the argument to Abs(). 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> from sympy.functions import Abs 

>>> Abs(-x).fdiff() 

sign(x) 

""" 

if argindex == 1: 

return sign(self.args[0]) 

else: 

raise ArgumentIndexError(self, argindex) 

 

@classmethod 

def eval(cls, arg): 

from sympy.simplify.simplify import signsimp 

from sympy.core.function import expand_mul 

 

if hasattr(arg, '_eval_Abs'): 

obj = arg._eval_Abs() 

if obj is not None: 

return obj 

if not isinstance(arg, Expr): 

raise TypeError("Bad argument type for Abs(): %s" % type(arg)) 

# handle what we can 

arg = signsimp(arg, evaluate=False) 

if arg.is_Mul: 

known = [] 

unk = [] 

for t in arg.args: 

tnew = cls(t) 

if tnew.func is cls: 

unk.append(tnew.args[0]) 

else: 

known.append(tnew) 

known = Mul(*known) 

unk = cls(Mul(*unk), evaluate=False) if unk else S.One 

return known*unk 

if arg is S.NaN: 

return S.NaN 

if arg.is_Pow: 

base, exponent = arg.as_base_exp() 

if base.is_real: 

if exponent.is_integer: 

if exponent.is_even: 

return arg 

if base is S.NegativeOne: 

return S.One 

if base.func is cls and exponent is S.NegativeOne: 

return arg 

return Abs(base)**exponent 

if base.is_nonnegative: 

return base**re(exponent) 

if base.is_negative: 

return (-base)**re(exponent)*exp(-S.Pi*im(exponent)) 

return 

if isinstance(arg, exp): 

return exp(re(arg.args[0])) 

if isinstance(arg, AppliedUndef): 

return 

if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity): 

if any(a.is_infinite for a in arg.as_real_imag()): 

return S.Infinity 

if arg.is_zero: 

return S.Zero 

if arg.is_nonnegative: 

return arg 

if arg.is_nonpositive: 

return -arg 

if arg.is_imaginary: 

arg2 = -S.ImaginaryUnit * arg 

if arg2.is_nonnegative: 

return arg2 

# reject result if all new conjugates are just wrappers around 

# an expression that was already in the arg 

conj = arg.conjugate() 

new_conj = conj.atoms(conjugate) - arg.atoms(conjugate) 

if new_conj and all(arg.has(i.args[0]) for i in new_conj): 

return 

if arg != conj and arg != -conj: 

ignore = arg.atoms(Abs) 

abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore}) 

unk = [a for a in abs_free_arg.free_symbols if a.is_real is None] 

if not unk or not all(conj.has(conjugate(u)) for u in unk): 

return sqrt(expand_mul(arg*conj)) 

 

def _eval_is_integer(self): 

if self.args[0].is_real: 

return self.args[0].is_integer 

 

def _eval_is_nonzero(self): 

return fuzzy_not(self._args[0].is_zero) 

 

def _eval_is_zero(self): 

return self._args[0].is_zero 

 

def _eval_is_positive(self): 

is_z = self.is_zero 

if is_z is not None: 

return not is_z 

 

def _eval_is_rational(self): 

if self.args[0].is_real: 

return self.args[0].is_rational 

 

def _eval_is_even(self): 

if self.args[0].is_real: 

return self.args[0].is_even 

 

def _eval_is_odd(self): 

if self.args[0].is_real: 

return self.args[0].is_odd 

 

def _eval_is_algebraic(self): 

return self.args[0].is_algebraic 

 

def _eval_power(self, exponent): 

if self.args[0].is_real and exponent.is_integer: 

if exponent.is_even: 

return self.args[0]**exponent 

elif exponent is not S.NegativeOne and exponent.is_Integer: 

return self.args[0]**(exponent - 1)*self 

return 

 

def _eval_nseries(self, x, n, logx): 

direction = self.args[0].leadterm(x)[0] 

s = self.args[0]._eval_nseries(x, n=n, logx=logx) 

when = Eq(direction, 0) 

return Piecewise( 

((s.subs(direction, 0)), when), 

(sign(direction)*s, True), 

) 

 

def _sage_(self): 

import sage.all as sage 

return sage.abs_symbolic(self.args[0]._sage_()) 

 

def _eval_derivative(self, x): 

if self.args[0].is_real or self.args[0].is_imaginary: 

return Derivative(self.args[0], x, evaluate=True) \ 

* sign(conjugate(self.args[0])) 

return (re(self.args[0]) * Derivative(re(self.args[0]), x, 

evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]), 

x, evaluate=True)) / Abs(self.args[0]) 

 

def _eval_rewrite_as_Heaviside(self, arg): 

# Note this only holds for real arg (since Heaviside is not defined 

# for complex arguments). 

from sympy import Heaviside 

if arg.is_real: 

return arg*(Heaviside(arg) - Heaviside(-arg)) 

 

def _eval_rewrite_as_Piecewise(self, arg): 

if arg.is_real: 

return Piecewise((arg, arg >= 0), (-arg, True)) 

 

def _eval_rewrite_as_sign(self, arg): 

from sympy import sign 

return arg/sign(arg) 

 

 

class arg(Function): 

""" 

Returns the argument (in radians) of a complex number. For a real 

number, the argument is always 0. 

 

Examples 

======== 

 

>>> from sympy.functions import arg 

>>> from sympy import I, sqrt 

>>> arg(2.0) 

0 

>>> arg(I) 

pi/2 

>>> arg(sqrt(2) + I*sqrt(2)) 

pi/4 

 

""" 

 

is_real = True 

is_finite = True 

 

@classmethod 

def eval(cls, arg): 

if not arg.is_Atom: 

c, arg_ = factor_terms(arg).as_coeff_Mul() 

if arg_.is_Mul: 

arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else 

sign(a) for a in arg_.args]) 

arg_ = sign(c)*arg_ 

else: 

arg_ = arg 

if arg_.atoms(AppliedUndef): 

return 

x, y = re(arg_), im(arg_) 

rv = atan2(y, x) 

if rv.is_number: 

return rv 

if arg_ != arg: 

return cls(arg_, evaluate=False) 

 

def _eval_derivative(self, t): 

x, y = re(self.args[0]), im(self.args[0]) 

return (x * Derivative(y, t, evaluate=True) - y * 

Derivative(x, t, evaluate=True)) / (x**2 + y**2) 

 

def _eval_rewrite_as_atan2(self, arg): 

x, y = re(self.args[0]), im(self.args[0]) 

return atan2(y, x) 

 

 

class conjugate(Function): 

""" 

Returns the `complex conjugate` Ref[1] of an argument. 

In mathematics, the complex conjugate of a complex number 

is given by changing the sign of the imaginary part. 

 

Thus, the conjugate of the complex number 

:math:`a + ib` (where a and b are real numbers) is :math:`a - ib` 

 

Examples 

======== 

 

>>> from sympy import conjugate, I 

>>> conjugate(2) 

2 

>>> conjugate(I) 

-I 

 

See Also 

======== 

 

sign, Abs 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Complex_conjugation 

""" 

 

@classmethod 

def eval(cls, arg): 

obj = arg._eval_conjugate() 

if obj is not None: 

return obj 

 

def _eval_Abs(self): 

return Abs(self.args[0], evaluate=True) 

 

def _eval_adjoint(self): 

return transpose(self.args[0]) 

 

def _eval_conjugate(self): 

return self.args[0] 

 

def _eval_derivative(self, x): 

if x.is_real: 

return conjugate(Derivative(self.args[0], x, evaluate=True)) 

elif x.is_imaginary: 

return -conjugate(Derivative(self.args[0], x, evaluate=True)) 

 

def _eval_transpose(self): 

return adjoint(self.args[0]) 

 

def _eval_is_algebraic(self): 

return self.args[0].is_algebraic 

 

 

class transpose(Function): 

""" 

Linear map transposition. 

""" 

 

@classmethod 

def eval(cls, arg): 

obj = arg._eval_transpose() 

if obj is not None: 

return obj 

 

def _eval_adjoint(self): 

return conjugate(self.args[0]) 

 

def _eval_conjugate(self): 

return adjoint(self.args[0]) 

 

def _eval_transpose(self): 

return self.args[0] 

 

 

class adjoint(Function): 

""" 

Conjugate transpose or Hermite conjugation. 

""" 

 

@classmethod 

def eval(cls, arg): 

obj = arg._eval_adjoint() 

if obj is not None: 

return obj 

obj = arg._eval_transpose() 

if obj is not None: 

return conjugate(obj) 

 

def _eval_adjoint(self): 

return self.args[0] 

 

def _eval_conjugate(self): 

return transpose(self.args[0]) 

 

def _eval_transpose(self): 

return conjugate(self.args[0]) 

 

def _latex(self, printer, exp=None, *args): 

arg = printer._print(self.args[0]) 

tex = r'%s^{\dag}' % arg 

if exp: 

tex = r'\left(%s\right)^{%s}' % (tex, printer._print(exp)) 

return tex 

 

def _pretty(self, printer, *args): 

from sympy.printing.pretty.stringpict import prettyForm 

pform = printer._print(self.args[0], *args) 

if printer._use_unicode: 

pform = pform**prettyForm(u'\N{DAGGER}') 

else: 

pform = pform**prettyForm('+') 

return pform 

 

############################################################################### 

############### HANDLING OF POLAR NUMBERS ##################################### 

############################################################################### 

 

 

class polar_lift(Function): 

""" 

Lift argument to the Riemann surface of the logarithm, using the 

standard branch. 

 

>>> from sympy import Symbol, polar_lift, I 

>>> p = Symbol('p', polar=True) 

>>> x = Symbol('x') 

>>> polar_lift(4) 

4*exp_polar(0) 

>>> polar_lift(-4) 

4*exp_polar(I*pi) 

>>> polar_lift(-I) 

exp_polar(-I*pi/2) 

>>> polar_lift(I + 2) 

polar_lift(2 + I) 

 

>>> polar_lift(4*x) 

4*polar_lift(x) 

>>> polar_lift(4*p) 

4*p 

 

See Also 

======== 

 

sympy.functions.elementary.exponential.exp_polar 

periodic_argument 

""" 

 

is_polar = True 

is_comparable = False # Cannot be evalf'd. 

 

@classmethod 

def eval(cls, arg): 

from sympy import exp_polar, pi, I, arg as argument 

if arg.is_number: 

ar = argument(arg) 

# In general we want to affirm that something is known, 

# e.g. `not ar.has(argument) and not ar.has(atan)` 

# but for now we will just be more restrictive and 

# see that it has evaluated to one of the known values. 

if ar in (0, pi/2, -pi/2, pi): 

return exp_polar(I*ar)*abs(arg) 

 

if arg.is_Mul: 

args = arg.args 

else: 

args = [arg] 

included = [] 

excluded = [] 

positive = [] 

for arg in args: 

if arg.is_polar: 

included += [arg] 

elif arg.is_positive: 

positive += [arg] 

else: 

excluded += [arg] 

if len(excluded) < len(args): 

if excluded: 

return Mul(*(included + positive))*polar_lift(Mul(*excluded)) 

elif included: 

return Mul(*(included + positive)) 

else: 

return Mul(*positive)*exp_polar(0) 

 

def _eval_evalf(self, prec): 

""" Careful! any evalf of polar numbers is flaky """ 

return self.args[0]._eval_evalf(prec) 

 

def _eval_Abs(self): 

return Abs(self.args[0], evaluate=True) 

 

 

class periodic_argument(Function): 

""" 

Represent the argument on a quotient of the Riemann surface of the 

logarithm. That is, given a period P, always return a value in 

(-P/2, P/2], by using exp(P*I) == 1. 

 

>>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument 

>>> from sympy import I, pi 

>>> unbranched_argument(exp(5*I*pi)) 

pi 

>>> unbranched_argument(exp_polar(5*I*pi)) 

5*pi 

>>> periodic_argument(exp_polar(5*I*pi), 2*pi) 

pi 

>>> periodic_argument(exp_polar(5*I*pi), 3*pi) 

-pi 

>>> periodic_argument(exp_polar(5*I*pi), pi) 

0 

 

See Also 

======== 

 

sympy.functions.elementary.exponential.exp_polar 

polar_lift : Lift argument to the Riemann surface of the logarithm 

principal_branch 

""" 

 

@classmethod 

def _getunbranched(cls, ar): 

from sympy import exp_polar, log, polar_lift 

if ar.is_Mul: 

args = ar.args 

else: 

args = [ar] 

unbranched = 0 

for a in args: 

if not a.is_polar: 

unbranched += arg(a) 

elif a.func is exp_polar: 

unbranched += a.exp.as_real_imag()[1] 

elif a.is_Pow: 

re, im = a.exp.as_real_imag() 

unbranched += re*unbranched_argument( 

a.base) + im*log(abs(a.base)) 

elif a.func is polar_lift: 

unbranched += arg(a.args[0]) 

else: 

return None 

return unbranched 

 

@classmethod 

def eval(cls, ar, period): 

# Our strategy is to evaluate the argument on the Riemann surface of the 

# logarithm, and then reduce. 

# NOTE evidently this means it is a rather bad idea to use this with 

# period != 2*pi and non-polar numbers. 

from sympy import ceiling, oo, atan2, atan, polar_lift, pi, Mul 

if not period.is_positive: 

return None 

if period == oo and isinstance(ar, principal_branch): 

return periodic_argument(*ar.args) 

if ar.func is polar_lift and period >= 2*pi: 

return periodic_argument(ar.args[0], period) 

if ar.is_Mul: 

newargs = [x for x in ar.args if not x.is_positive] 

if len(newargs) != len(ar.args): 

return periodic_argument(Mul(*newargs), period) 

unbranched = cls._getunbranched(ar) 

if unbranched is None: 

return None 

if unbranched.has(periodic_argument, atan2, arg, atan): 

return None 

if period == oo: 

return unbranched 

if period != oo: 

n = ceiling(unbranched/period - S(1)/2)*period 

if not n.has(ceiling): 

return unbranched - n 

 

def _eval_evalf(self, prec): 

from sympy import ceiling, oo 

z, period = self.args 

if period == oo: 

unbranched = periodic_argument._getunbranched(z) 

if unbranched is None: 

return self 

return unbranched._eval_evalf(prec) 

ub = periodic_argument(z, oo)._eval_evalf(prec) 

return (ub - ceiling(ub/period - S(1)/2)*period)._eval_evalf(prec) 

 

 

def unbranched_argument(arg): 

from sympy import oo 

return periodic_argument(arg, oo) 

 

 

class principal_branch(Function): 

""" 

Represent a polar number reduced to its principal branch on a quotient 

of the Riemann surface of the logarithm. 

 

This is a function of two arguments. The first argument is a polar 

number `z`, and the second one a positive real number of infinity, `p`. 

The result is "z mod exp_polar(I*p)". 

 

>>> from sympy import exp_polar, principal_branch, oo, I, pi 

>>> from sympy.abc import z 

>>> principal_branch(z, oo) 

z 

>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi) 

3*exp_polar(0) 

>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi) 

3*principal_branch(z, 2*pi) 

 

See Also 

======== 

 

sympy.functions.elementary.exponential.exp_polar 

polar_lift : Lift argument to the Riemann surface of the logarithm 

periodic_argument 

""" 

 

is_polar = True 

is_comparable = False # cannot always be evalf'd 

 

@classmethod 

def eval(self, x, period): 

from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol 

if isinstance(x, polar_lift): 

return principal_branch(x.args[0], period) 

if period == oo: 

return x 

ub = periodic_argument(x, oo) 

barg = periodic_argument(x, period) 

if ub != barg and not ub.has(periodic_argument) \ 

and not barg.has(periodic_argument): 

pl = polar_lift(x) 

 

def mr(expr): 

if not isinstance(expr, Symbol): 

return polar_lift(expr) 

return expr 

pl = pl.replace(polar_lift, mr) 

if not pl.has(polar_lift): 

res = exp_polar(I*(barg - ub))*pl 

if not res.is_polar and not res.has(exp_polar): 

res *= exp_polar(0) 

return res 

 

if not x.free_symbols: 

c, m = x, () 

else: 

c, m = x.as_coeff_mul(*x.free_symbols) 

others = [] 

for y in m: 

if y.is_positive: 

c *= y 

else: 

others += [y] 

m = tuple(others) 

arg = periodic_argument(c, period) 

if arg.has(periodic_argument): 

return None 

if arg.is_number and (unbranched_argument(c) != arg or 

(arg == 0 and m != () and c != 1)): 

if arg == 0: 

return abs(c)*principal_branch(Mul(*m), period) 

return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c) 

if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \ 

and m == (): 

return exp_polar(arg*I)*abs(c) 

 

def _eval_evalf(self, prec): 

from sympy import exp, pi, I 

z, period = self.args 

p = periodic_argument(z, period)._eval_evalf(prec) 

if abs(p) > pi or p == -pi: 

return self # Cannot evalf for this argument. 

return (abs(z)*exp(I*p))._eval_evalf(prec) 

 

 

def _polarify(eq, lift, pause=False): 

from sympy import Integral 

if eq.is_polar: 

return eq 

if eq.is_number and not pause: 

return polar_lift(eq) 

if isinstance(eq, Symbol) and not pause and lift: 

return polar_lift(eq) 

elif eq.is_Atom: 

return eq 

elif eq.is_Add: 

r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args]) 

if lift: 

return polar_lift(r) 

return r 

elif eq.is_Function: 

return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args]) 

elif isinstance(eq, Integral): 

# Don't lift the integration variable 

func = _polarify(eq.function, lift, pause=pause) 

limits = [] 

for limit in eq.args[1:]: 

var = _polarify(limit[0], lift=False, pause=pause) 

rest = _polarify(limit[1:], lift=lift, pause=pause) 

limits.append((var,) + rest) 

return Integral(*((func,) + tuple(limits))) 

else: 

return eq.func(*[_polarify(arg, lift, pause=pause) 

if isinstance(arg, Expr) else arg for arg in eq.args]) 

 

 

def polarify(eq, subs=True, lift=False): 

""" 

Turn all numbers in eq into their polar equivalents (under the standard 

choice of argument). 

 

Note that no attempt is made to guess a formal convention of adding 

polar numbers, expressions like 1 + x will generally not be altered. 

 

Note also that this function does not promote exp(x) to exp_polar(x). 

 

If ``subs`` is True, all symbols which are not already polar will be 

substituted for polar dummies; in this case the function behaves much 

like posify. 

 

If ``lift`` is True, both addition statements and non-polar symbols are 

changed to their polar_lift()ed versions. 

Note that lift=True implies subs=False. 

 

>>> from sympy import polarify, sin, I 

>>> from sympy.abc import x, y 

>>> expr = (-x)**y 

>>> expr.expand() 

(-x)**y 

>>> polarify(expr) 

((_x*exp_polar(I*pi))**_y, {_x: x, _y: y}) 

>>> polarify(expr)[0].expand() 

_x**_y*exp_polar(_y*I*pi) 

>>> polarify(x, lift=True) 

polar_lift(x) 

>>> polarify(x*(1+y), lift=True) 

polar_lift(x)*polar_lift(y + 1) 

 

Adds are treated carefully: 

 

>>> polarify(1 + sin((1 + I)*x)) 

(sin(_x*polar_lift(1 + I)) + 1, {_x: x}) 

""" 

if lift: 

subs = False 

eq = _polarify(sympify(eq), lift) 

if not subs: 

return eq 

reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols} 

eq = eq.subs(reps) 

return eq, {r: s for s, r in reps.items()} 

 

 

def _unpolarify(eq, exponents_only, pause=False): 

if isinstance(eq, bool) or eq.is_Atom: 

return eq 

 

if not pause: 

if eq.func is exp_polar: 

return exp(_unpolarify(eq.exp, exponents_only)) 

if eq.func is principal_branch and eq.args[1] == 2*pi: 

return _unpolarify(eq.args[0], exponents_only) 

if ( 

eq.is_Add or eq.is_Mul or eq.is_Boolean or 

eq.is_Relational and ( 

eq.rel_op in ('==', '!=') and 0 in eq.args or 

eq.rel_op not in ('==', '!=')) 

): 

return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args]) 

if eq.func is polar_lift: 

return _unpolarify(eq.args[0], exponents_only) 

 

if eq.is_Pow: 

expo = _unpolarify(eq.exp, exponents_only) 

base = _unpolarify(eq.base, exponents_only, 

not (expo.is_integer and not pause)) 

return base**expo 

 

if eq.is_Function and getattr(eq.func, 'unbranched', False): 

return eq.func(*[_unpolarify(x, exponents_only, exponents_only) 

for x in eq.args]) 

 

return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args]) 

 

 

def unpolarify(eq, subs={}, exponents_only=False): 

""" 

If p denotes the projection from the Riemann surface of the logarithm to 

the complex line, return a simplified version eq' of `eq` such that 

p(eq') == p(eq). 

Also apply the substitution subs in the end. (This is a convenience, since 

``unpolarify``, in a certain sense, undoes polarify.) 

 

>>> from sympy import unpolarify, polar_lift, sin, I 

>>> unpolarify(polar_lift(I + 2)) 

2 + I 

>>> unpolarify(sin(polar_lift(I + 7))) 

sin(7 + I) 

""" 

if isinstance(eq, bool): 

return eq 

 

eq = sympify(eq) 

if subs != {}: 

return unpolarify(eq.subs(subs)) 

changed = True 

pause = False 

if exponents_only: 

pause = True 

while changed: 

changed = False 

res = _unpolarify(eq, exponents_only, pause) 

if res != eq: 

changed = True 

eq = res 

if isinstance(res, bool): 

return res 

# Finally, replacing Exp(0) by 1 is always correct. 

# So is polar_lift(0) -> 0. 

return res.subs({exp_polar(0): 1, polar_lift(0): 0}) 

 

 

 

# /cyclic/ 

from sympy.core import basic as _ 

_.abs_ = Abs 

del _