Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

from __future__ import print_function, division 

 

from sympy.core import Basic, S, Function, diff, Tuple 

from sympy.core.relational import Equality, Relational 

from sympy.functions.elementary.miscellaneous import Max, Min 

from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or, Not, Or, 

true, false) 

from sympy.core.compatibility import default_sort_key, range 

 

 

class ExprCondPair(Tuple): 

"""Represents an expression, condition pair.""" 

 

def __new__(cls, expr, cond): 

if cond == True: 

return Tuple.__new__(cls, expr, true) 

elif cond == False: 

return Tuple.__new__(cls, expr, false) 

return Tuple.__new__(cls, expr, cond) 

 

@property 

def expr(self): 

""" 

Returns the expression of this pair. 

""" 

return self.args[0] 

 

@property 

def cond(self): 

""" 

Returns the condition of this pair. 

""" 

return self.args[1] 

 

@property 

def free_symbols(self): 

""" 

Return the free symbols of this pair. 

""" 

# Overload Basic.free_symbols because self.args[1] may contain non-Basic 

result = self.expr.free_symbols 

if hasattr(self.cond, 'free_symbols'): 

result |= self.cond.free_symbols 

return result 

 

@property 

def is_commutative(self): 

return self.expr.is_commutative 

 

def __iter__(self): 

yield self.expr 

yield self.cond 

 

 

class Piecewise(Function): 

""" 

Represents a piecewise function. 

 

Usage: 

 

Piecewise( (expr,cond), (expr,cond), ... ) 

- Each argument is a 2-tuple defining an expression and condition 

- The conds are evaluated in turn returning the first that is True. 

If any of the evaluated conds are not determined explicitly False, 

e.g. x < 1, the function is returned in symbolic form. 

- If the function is evaluated at a place where all conditions are False, 

a ValueError exception will be raised. 

- Pairs where the cond is explicitly False, will be removed. 

 

Examples 

======== 

 

>>> from sympy import Piecewise, log 

>>> from sympy.abc import x 

>>> f = x**2 

>>> g = log(x) 

>>> p = Piecewise( (0, x<-1), (f, x<=1), (g, True)) 

>>> p.subs(x,1) 

1 

>>> p.subs(x,5) 

log(5) 

 

See Also 

======== 

 

piecewise_fold 

""" 

 

nargs = None 

is_Piecewise = True 

 

def __new__(cls, *args, **options): 

# (Try to) sympify args first 

newargs = [] 

for ec in args: 

# ec could be a ExprCondPair or a tuple 

pair = ExprCondPair(*getattr(ec, 'args', ec)) 

cond = pair.cond 

if cond == false: 

continue 

if not isinstance(cond, (bool, Relational, Boolean)): 

raise TypeError( 

"Cond %s is of type %s, but must be a Relational," 

" Boolean, or a built-in bool." % (cond, type(cond))) 

newargs.append(pair) 

if cond == True: 

break 

 

if options.pop('evaluate', True): 

r = cls.eval(*newargs) 

else: 

r = None 

 

if r is None: 

return Basic.__new__(cls, *newargs, **options) 

else: 

return r 

 

@classmethod 

def eval(cls, *args): 

# Check for situations where we can evaluate the Piecewise object. 

# 1) Hit an unevaluable cond (e.g. x<1) -> keep object 

# 2) Hit a true condition -> return that expr 

# 3) Remove false conditions, if no conditions left -> raise ValueError 

all_conds_evaled = True # Do all conds eval to a bool? 

piecewise_again = False # Should we pass args to Piecewise again? 

non_false_ecpairs = [] 

or1 = Or(*[cond for (_, cond) in args if cond != true]) 

for expr, cond in args: 

# Check here if expr is a Piecewise and collapse if one of 

# the conds in expr matches cond. This allows the collapsing 

# of Piecewise((Piecewise(x,x<0),x<0)) to Piecewise((x,x<0)). 

# This is important when using piecewise_fold to simplify 

# multiple Piecewise instances having the same conds. 

# Eventually, this code should be able to collapse Piecewise's 

# having different intervals, but this will probably require 

# using the new assumptions. 

if isinstance(expr, Piecewise): 

or2 = Or(*[c for (_, c) in expr.args if c != true]) 

for e, c in expr.args: 

# Don't collapse if cond is "True" as this leads to 

# incorrect simplifications with nested Piecewises. 

if c == cond and (or1 == or2 or cond != true): 

expr = e 

piecewise_again = True 

cond_eval = cls.__eval_cond(cond) 

if cond_eval is None: 

all_conds_evaled = False 

elif cond_eval: 

if all_conds_evaled: 

return expr 

if len(non_false_ecpairs) != 0: 

if non_false_ecpairs[-1].cond == cond: 

continue 

elif non_false_ecpairs[-1].expr == expr: 

newcond = Or(cond, non_false_ecpairs[-1].cond) 

if isinstance(newcond, (And, Or)): 

newcond = distribute_and_over_or(newcond) 

non_false_ecpairs[-1] = ExprCondPair(expr, newcond) 

continue 

non_false_ecpairs.append(ExprCondPair(expr, cond)) 

if len(non_false_ecpairs) != len(args) or piecewise_again: 

return cls(*non_false_ecpairs) 

 

return None 

 

def doit(self, **hints): 

""" 

Evaluate this piecewise function. 

""" 

newargs = [] 

for e, c in self.args: 

if hints.get('deep', True): 

if isinstance(e, Basic): 

e = e.doit(**hints) 

if isinstance(c, Basic): 

c = c.doit(**hints) 

newargs.append((e, c)) 

return self.func(*newargs) 

 

def _eval_as_leading_term(self, x): 

for e, c in self.args: 

if c == True or c.subs(x, 0) == True: 

return e.as_leading_term(x) 

 

def _eval_adjoint(self): 

return self.func(*[(e.adjoint(), c) for e, c in self.args]) 

 

def _eval_conjugate(self): 

return self.func(*[(e.conjugate(), c) for e, c in self.args]) 

 

def _eval_derivative(self, x): 

return self.func(*[(diff(e, x), c) for e, c in self.args]) 

 

def _eval_evalf(self, prec): 

return self.func(*[(e.evalf(prec), c) for e, c in self.args]) 

 

def _eval_integral(self, x): 

from sympy.integrals import integrate 

return self.func(*[(integrate(e, x), c) for e, c in self.args]) 

 

def _eval_interval(self, sym, a, b): 

"""Evaluates the function along the sym in a given interval ab""" 

# FIXME: Currently complex intervals are not supported. A possible 

# replacement algorithm, discussed in issue 5227, can be found in the 

# following papers; 

# http://portal.acm.org/citation.cfm?id=281649 

# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf 

 

if a is None or b is None: 

# In this case, it is just simple substitution 

return piecewise_fold( 

super(Piecewise, self)._eval_interval(sym, a, b)) 

 

mul = 1 

if (a == b) == True: 

return S.Zero 

elif (a > b) == True: 

a, b, mul = b, a, -1 

elif (a <= b) != True: 

newargs = [] 

for e, c in self.args: 

intervals = self._sort_expr_cond( 

sym, S.NegativeInfinity, S.Infinity, c) 

values = [] 

for lower, upper, expr in intervals: 

if (a < lower) == True: 

mid = lower 

rep = b 

val = e._eval_interval(sym, mid, b) 

val += self._eval_interval(sym, a, mid) 

elif (a > upper) == True: 

mid = upper 

rep = b 

val = e._eval_interval(sym, mid, b) 

val += self._eval_interval(sym, a, mid) 

elif (a >= lower) == True and (a <= upper) == True: 

rep = b 

val = e._eval_interval(sym, a, b) 

elif (b < lower) == True: 

mid = lower 

rep = a 

val = e._eval_interval(sym, a, mid) 

val += self._eval_interval(sym, mid, b) 

elif (b > upper) == True: 

mid = upper 

rep = a 

val = e._eval_interval(sym, a, mid) 

val += self._eval_interval(sym, mid, b) 

elif ((b >= lower) == True) and ((b <= upper) == True): 

rep = a 

val = e._eval_interval(sym, a, b) 

else: 

raise NotImplementedError( 

"""The evaluation of a Piecewise interval when both the lower 

and the upper limit are symbolic is not yet implemented.""") 

values.append(val) 

if len(set(values)) == 1: 

try: 

c = c.subs(sym, rep) 

except AttributeError: 

pass 

e = values[0] 

newargs.append((e, c)) 

else: 

for i in range(len(values)): 

newargs.append((values[i], (c == True and i == len(values) - 1) or 

And(rep >= intervals[i][0], rep <= intervals[i][1]))) 

return self.func(*newargs) 

 

# Determine what intervals the expr,cond pairs affect. 

int_expr = self._sort_expr_cond(sym, a, b) 

 

# Finally run through the intervals and sum the evaluation. 

ret_fun = 0 

for int_a, int_b, expr in int_expr: 

if isinstance(expr, Piecewise): 

# If we still have a Piecewise by now, _sort_expr_cond would 

# already have determined that its conditions are independent 

# of the integration variable, thus we just use substitution. 

ret_fun += piecewise_fold( 

super(Piecewise, expr)._eval_interval(sym, Max(a, int_a), Min(b, int_b))) 

else: 

ret_fun += expr._eval_interval(sym, Max(a, int_a), Min(b, int_b)) 

return mul * ret_fun 

 

def _sort_expr_cond(self, sym, a, b, targetcond=None): 

"""Determine what intervals the expr, cond pairs affect. 

 

1) If cond is True, then log it as default 

1.1) Currently if cond can't be evaluated, throw NotImplementedError. 

2) For each inequality, if previous cond defines part of the interval 

update the new conds interval. 

- eg x < 1, x < 3 -> [oo,1],[1,3] instead of [oo,1],[oo,3] 

3) Sort the intervals to make it easier to find correct exprs 

 

Under normal use, we return the expr,cond pairs in increasing order 

along the real axis corresponding to the symbol sym. If targetcond 

is given, we return a list of (lowerbound, upperbound) pairs for 

this condition.""" 

from sympy.solvers.inequalities import _solve_inequality 

default = None 

int_expr = [] 

expr_cond = [] 

or_cond = False 

or_intervals = [] 

independent_expr_cond = [] 

for expr, cond in self.args: 

if isinstance(cond, Or): 

for cond2 in sorted(cond.args, key=default_sort_key): 

expr_cond.append((expr, cond2)) 

else: 

expr_cond.append((expr, cond)) 

if cond == True: 

break 

for expr, cond in expr_cond: 

if cond == True: 

independent_expr_cond.append((expr, cond)) 

default = self.func(*independent_expr_cond) 

break 

orig_cond = cond 

if sym not in cond.free_symbols: 

independent_expr_cond.append((expr, cond)) 

continue 

elif isinstance(cond, Equality): 

continue 

elif isinstance(cond, And): 

lower = S.NegativeInfinity 

upper = S.Infinity 

for cond2 in cond.args: 

if sym not in [cond2.lts, cond2.gts]: 

cond2 = _solve_inequality(cond2, sym) 

if cond2.lts == sym: 

upper = Min(cond2.gts, upper) 

elif cond2.gts == sym: 

lower = Max(cond2.lts, lower) 

else: 

raise NotImplementedError( 

"Unable to handle interval evaluation of expression.") 

else: 

if sym not in [cond.lts, cond.gts]: 

cond = _solve_inequality(cond, sym) 

lower, upper = cond.lts, cond.gts # part 1: initialize with givens 

if cond.lts == sym: # part 1a: expand the side ... 

lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0 

elif cond.gts == sym: # part 1a: ... that can be expanded 

upper = S.Infinity # e.g. x >= 0 ---> oo >= 0 

else: 

raise NotImplementedError( 

"Unable to handle interval evaluation of expression.") 

 

# part 1b: Reduce (-)infinity to what was passed in. 

lower, upper = Max(a, lower), Min(b, upper) 

 

for n in range(len(int_expr)): 

# Part 2: remove any interval overlap. For any conflicts, the 

# iterval already there wins, and the incoming interval updates 

# its bounds accordingly. 

if self.__eval_cond(lower < int_expr[n][1]) and \ 

self.__eval_cond(lower >= int_expr[n][0]): 

lower = int_expr[n][1] 

elif len(int_expr[n][1].free_symbols) and \ 

self.__eval_cond(lower >= int_expr[n][0]): 

if self.__eval_cond(lower == int_expr[n][0]): 

lower = int_expr[n][1] 

else: 

int_expr[n][1] = Min(lower, int_expr[n][1]) 

elif len(int_expr[n][0].free_symbols) and \ 

self.__eval_cond(upper == int_expr[n][1]): 

upper = Min(upper, int_expr[n][0]) 

elif len(int_expr[n][1].free_symbols) and \ 

(lower >= int_expr[n][0]) != True and \ 

(int_expr[n][1] == Min(lower, upper)) != True: 

upper = Min(upper, int_expr[n][0]) 

elif self.__eval_cond(upper > int_expr[n][0]) and \ 

self.__eval_cond(upper <= int_expr[n][1]): 

upper = int_expr[n][0] 

elif len(int_expr[n][0].free_symbols) and \ 

self.__eval_cond(upper < int_expr[n][1]): 

int_expr[n][0] = Max(upper, int_expr[n][0]) 

 

if self.__eval_cond(lower >= upper) != True: # Is it still an interval? 

int_expr.append([lower, upper, expr]) 

if orig_cond == targetcond: 

return [(lower, upper, None)] 

elif isinstance(targetcond, Or) and cond in targetcond.args: 

or_cond = Or(or_cond, cond) 

or_intervals.append((lower, upper, None)) 

if or_cond == targetcond: 

or_intervals.sort(key=lambda x: x[0]) 

return or_intervals 

 

int_expr.sort(key=lambda x: x[1].sort_key( 

) if x[1].is_number else S.NegativeInfinity.sort_key()) 

int_expr.sort(key=lambda x: x[0].sort_key( 

) if x[0].is_number else S.Infinity.sort_key()) 

 

for n in range(len(int_expr)): 

if len(int_expr[n][0].free_symbols) or len(int_expr[n][1].free_symbols): 

if isinstance(int_expr[n][1], Min) or int_expr[n][1] == b: 

newval = Min(*int_expr[n][:-1]) 

if n > 0 and int_expr[n][0] == int_expr[n - 1][1]: 

int_expr[n - 1][1] = newval 

int_expr[n][0] = newval 

else: 

newval = Max(*int_expr[n][:-1]) 

if n < len(int_expr) - 1 and int_expr[n][1] == int_expr[n + 1][0]: 

int_expr[n + 1][0] = newval 

int_expr[n][1] = newval 

 

# Add holes to list of intervals if there is a default value, 

# otherwise raise a ValueError. 

holes = [] 

curr_low = a 

for int_a, int_b, expr in int_expr: 

if (curr_low < int_a) == True: 

holes.append([curr_low, Min(b, int_a), default]) 

elif (curr_low >= int_a) != True: 

holes.append([curr_low, Min(b, int_a), default]) 

curr_low = Min(b, int_b) 

if (curr_low < b) == True: 

holes.append([Min(b, curr_low), b, default]) 

elif (curr_low >= b) != True: 

holes.append([Min(b, curr_low), b, default]) 

 

if holes and default is not None: 

int_expr.extend(holes) 

if targetcond == True: 

return [(h[0], h[1], None) for h in holes] 

elif holes and default is None: 

raise ValueError("Called interval evaluation over piecewise " 

"function on undefined intervals %s" % 

", ".join([str((h[0], h[1])) for h in holes])) 

 

return int_expr 

 

def _eval_nseries(self, x, n, logx): 

args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args] 

return self.func(*args) 

 

def _eval_power(self, s): 

return self.func(*[(e**s, c) for e, c in self.args]) 

 

def _eval_subs(self, old, new): 

""" 

Piecewise conditions may contain bool which are not of Basic type. 

""" 

args = list(self.args) 

for i, (e, c) in enumerate(args): 

if isinstance(c, bool): 

pass 

elif isinstance(c, Basic): 

c = c._subs(old, new) 

if c != False: 

e = e._subs(old, new) 

args[i] = e, c 

if c == True: 

return self.func(*args) 

 

return self.func(*args) 

 

def _eval_transpose(self): 

return self.func(*[(e.transpose(), c) for e, c in self.args]) 

 

def _eval_template_is_attr(self, is_attr, when_multiple=None): 

b = None 

for expr, _ in self.args: 

a = getattr(expr, is_attr) 

if a is None: 

return None 

if b is None: 

b = a 

elif b is not a: 

return when_multiple 

return b 

 

_eval_is_finite = lambda self: self._eval_template_is_attr( 

'is_finite', when_multiple=False) 

_eval_is_complex = lambda self: self._eval_template_is_attr('is_complex') 

_eval_is_even = lambda self: self._eval_template_is_attr('is_even') 

_eval_is_imaginary = lambda self: self._eval_template_is_attr( 

'is_imaginary') 

_eval_is_integer = lambda self: self._eval_template_is_attr('is_integer') 

_eval_is_irrational = lambda self: self._eval_template_is_attr( 

'is_irrational') 

_eval_is_negative = lambda self: self._eval_template_is_attr('is_negative') 

_eval_is_nonnegative = lambda self: self._eval_template_is_attr( 

'is_nonnegative') 

_eval_is_nonpositive = lambda self: self._eval_template_is_attr( 

'is_nonpositive') 

_eval_is_nonzero = lambda self: self._eval_template_is_attr( 

'is_nonzero', when_multiple=True) 

_eval_is_odd = lambda self: self._eval_template_is_attr('is_odd') 

_eval_is_polar = lambda self: self._eval_template_is_attr('is_polar') 

_eval_is_positive = lambda self: self._eval_template_is_attr('is_positive') 

_eval_is_real = lambda self: self._eval_template_is_attr('is_real') 

_eval_is_zero = lambda self: self._eval_template_is_attr( 

'is_zero', when_multiple=False) 

 

@classmethod 

def __eval_cond(cls, cond): 

"""Return the truth value of the condition.""" 

from sympy.solvers.solvers import checksol 

if cond == True: 

return True 

if isinstance(cond, Equality): 

if checksol(cond, {}, minimal=True): 

# the equality is trivially solved 

return True 

diff = cond.lhs - cond.rhs 

if diff.is_commutative: 

return diff.is_zero 

return None 

 

def as_expr_set_pairs(self): 

exp_sets = [] 

U = S.Reals 

for expr, cond in self.args: 

cond_int = U.intersect(cond.as_set()) 

U = U - cond_int 

exp_sets.append((expr, cond_int)) 

return exp_sets 

 

 

def piecewise_fold(expr): 

""" 

Takes an expression containing a piecewise function and returns the 

expression in piecewise form. 

 

Examples 

======== 

 

>>> from sympy import Piecewise, piecewise_fold, sympify as S 

>>> from sympy.abc import x 

>>> p = Piecewise((x, x < 1), (1, S(1) <= x)) 

>>> piecewise_fold(x*p) 

Piecewise((x**2, x < 1), (x, 1 <= x)) 

 

See Also 

======== 

 

Piecewise 

""" 

if not isinstance(expr, Basic) or not expr.has(Piecewise): 

return expr 

new_args = list(map(piecewise_fold, expr.args)) 

if expr.func is ExprCondPair: 

return ExprCondPair(*new_args) 

piecewise_args = [] 

for n, arg in enumerate(new_args): 

if isinstance(arg, Piecewise): 

piecewise_args.append(n) 

if len(piecewise_args) > 0: 

n = piecewise_args[0] 

new_args = [(expr.func(*(new_args[:n] + [e] + new_args[n + 1:])), c) 

for e, c in new_args[n].args] 

if isinstance(expr, Boolean): 

# If expr is Boolean, we must return some kind of PiecewiseBoolean. 

# This is constructed by means of Or, And and Not. 

# piecewise_fold(0 < Piecewise( (sin(x), x<0), (cos(x), True))) 

# can't return Piecewise((0 < sin(x), x < 0), (0 < cos(x), True)) 

# but instead Or(And(x < 0, 0 < sin(x)), And(0 < cos(x), Not(x<0))) 

other = True 

rtn = False 

for e, c in new_args: 

rtn = Or(rtn, And(other, c, e)) 

other = And(other, Not(c)) 

if len(piecewise_args) > 1: 

return piecewise_fold(rtn) 

return rtn 

if len(piecewise_args) > 1: 

return piecewise_fold(Piecewise(*new_args)) 

return Piecewise(*new_args) 

else: 

return expr.func(*new_args)