Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

""" 

Generating and counting primes. 

 

""" 

from __future__ import print_function, division 

 

import random 

from bisect import bisect 

# Using arrays for sieving instead of lists greatly reduces 

# memory consumption 

from array import array as _array 

 

from .primetest import isprime 

from sympy.core.compatibility import as_int, range 

 

 

def _arange(a, b): 

ar = _array('l', [0]*(b - a)) 

for i, e in enumerate(range(a, b)): 

ar[i] = e 

return ar 

 

 

class Sieve: 

"""An infinite list of prime numbers, implemented as a dynamically 

growing sieve of Eratosthenes. When a lookup is requested involving 

an odd number that has not been sieved, the sieve is automatically 

extended up to that number. 

 

Examples 

======== 

 

>>> from sympy import sieve 

>>> sieve._reset() # this line for doctest only 

>>> 25 in sieve 

False 

>>> sieve._list 

array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23]) 

""" 

 

# data shared (and updated) by all Sieve instances 

_list = _array('l', [2, 3, 5, 7, 11, 13]) 

 

def __repr__(self): 

return "<Sieve with %i primes sieved: 2, 3, 5, ... %i, %i>" % \ 

(len(self._list), self._list[-2], self._list[-1]) 

 

def _reset(self): 

"""Return sieve to its initial state for testing purposes. 

""" 

self._list = self._list[:6] 

 

def extend(self, n): 

"""Grow the sieve to cover all primes <= n (a real number). 

 

Examples 

======== 

 

>>> from sympy import sieve 

>>> sieve._reset() # this line for doctest only 

>>> sieve.extend(30) 

>>> sieve[10] == 29 

True 

""" 

n = int(n) 

if n <= self._list[-1]: 

return 

 

# We need to sieve against all bases up to sqrt(n). 

# This is a recursive call that will do nothing if there are enough 

# known bases already. 

maxbase = int(n**0.5) + 1 

self.extend(maxbase) 

 

# Create a new sieve starting from sqrt(n) 

begin = self._list[-1] + 1 

newsieve = _arange(begin, n + 1) 

 

# Now eliminate all multiples of primes in [2, sqrt(n)] 

for p in self.primerange(2, maxbase): 

# Start counting at a multiple of p, offsetting 

# the index to account for the new sieve's base index 

startindex = (-begin) % p 

for i in range(startindex, len(newsieve), p): 

newsieve[i] = 0 

 

# Merge the sieves 

self._list += _array('l', [x for x in newsieve if x]) 

 

def extend_to_no(self, i): 

"""Extend to include the ith prime number. 

 

i must be an integer. 

 

The list is extended by 50% if it is too short, so it is 

likely that it will be longer than requested. 

 

Examples 

======== 

 

>>> from sympy import sieve 

>>> sieve._reset() # this line for doctest only 

>>> sieve.extend_to_no(9) 

>>> sieve._list 

array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23]) 

""" 

i = as_int(i) 

while len(self._list) < i: 

self.extend(int(self._list[-1] * 1.5)) 

 

def primerange(self, a, b): 

"""Generate all prime numbers in the range [a, b). 

 

Examples 

======== 

 

>>> from sympy import sieve 

>>> print([i for i in sieve.primerange(7, 18)]) 

[7, 11, 13, 17] 

""" 

from sympy.functions.elementary.integers import ceiling 

 

# wrapping ceiling in int will raise an error if there was a problem 

# determining whether the expression was exactly an integer or not 

a = max(2, int(ceiling(a))) 

b = int(ceiling(b)) 

if a >= b: 

return 

self.extend(b) 

i = self.search(a)[1] 

maxi = len(self._list) + 1 

while i < maxi: 

p = self._list[i - 1] 

if p < b: 

yield p 

i += 1 

else: 

return 

 

def search(self, n): 

"""Return the indices i, j of the primes that bound n. 

 

If n is prime then i == j. 

 

Although n can be an expression, if ceiling cannot convert 

it to an integer then an n error will be raised. 

 

Examples 

======== 

 

>>> from sympy import sieve 

>>> sieve.search(25) 

(9, 10) 

>>> sieve.search(23) 

(9, 9) 

""" 

from sympy.functions.elementary.integers import ceiling 

 

# wrapping ceiling in int will raise an error if there was a problem 

# determining whether the expression was exactly an integer or not 

test = int(ceiling(n)) 

n = int(n) 

if n < 2: 

raise ValueError("n should be >= 2 but got: %s" % n) 

if n > self._list[-1]: 

self.extend(n) 

b = bisect(self._list, n) 

if self._list[b - 1] == test: 

return b, b 

else: 

return b, b + 1 

 

def __contains__(self, n): 

try: 

n = as_int(n) 

assert n >= 2 

except (ValueError, AssertionError): 

return False 

if n % 2 == 0: 

return n == 2 

a, b = self.search(n) 

return a == b 

 

def __getitem__(self, n): 

"""Return the nth prime number""" 

if isinstance(n, slice): 

self.extend_to_no(n.stop) 

return self._list[n.start - 1:n.stop - 1:n.step] 

else: 

n = as_int(n) 

self.extend_to_no(n) 

return self._list[n - 1] 

 

# Generate a global object for repeated use in trial division etc 

sieve = Sieve() 

 

 

def prime(nth): 

""" Return the nth prime, with the primes indexed as prime(1) = 2, 

prime(2) = 3, etc.... The nth prime is approximately n*log(n). 

 

Logarithmic integral of x is a pretty nice approximation for number of 

primes <= x, i.e. 

li(x) ~ pi(x) 

In fact, for the numbers we are concerned about( x<1e11 ), 

li(x) - pi(x) < 50000 

 

Also, 

li(x) > pi(x) can be safely assumed for the numbers which 

can be evaluated by this function. 

 

Here, we find the least integer m such that li(m) > n using binary search. 

Now pi(m-1) < li(m-1) <= n, 

 

We find pi(m - 1) using primepi function. 

 

Starting from m, we have to find n - pi(m-1) more primes. 

 

For the inputs this implementation can handle, we will have to test 

primality for at max about 10**5 numbers, to get our answer. 

 

References 

========== 

 

- https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29 

- https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number 

- https://en.wikipedia.org/wiki/Skewes%27_number 

 

Examples 

======== 

 

>>> from sympy import prime 

>>> prime(10) 

29 

>>> prime(1) 

2 

>>> prime(100000) 

1299709 

 

See Also 

======== 

 

sympy.ntheory.primetest.isprime : Test if n is prime 

primerange : Generate all primes in a given range 

primepi : Return the number of primes less than or equal to n 

""" 

n = as_int(nth) 

if n < 1: 

raise ValueError("nth must be a positive integer; prime(1) == 2") 

if n <= len(sieve._list): 

return sieve[n] 

 

from sympy.functions.special.error_functions import li 

from sympy.functions.elementary.exponential import log 

 

a = 2 # Lower bound for binary search 

b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. 

 

while a < b: 

mid = (a + b) >> 1 

if li(mid) > n: 

b = mid 

else: 

a = mid + 1 

n_primes = primepi(a - 1) 

while n_primes < n: 

if isprime(a): 

n_primes += 1 

a += 1 

return a - 1 

 

 

def primepi(n): 

""" Return the value of the prime counting function pi(n) = the number 

of prime numbers less than or equal to n. 

 

Algorithm Description: 

 

In sieve method, we remove all multiples of prime p 

except p itself. 

 

Let phi(i,j) be the number of integers 2 <= k <= i 

which remain after sieving from primes less than 

or equal to j. 

Clearly, pi(n) = phi(n, sqrt(n)) 

 

If j is not a prime, 

phi(i,j) = phi(i, j - 1) 

 

if j is a prime, 

We remove all numbers(except j) whose 

smallest prime factor is j. 

 

Let x= j*a be such a number, where 2 <= a<= i / j 

Now, after sieving from primes <= j - 1, 

a must remain 

(because x, and hence a has no prime factor <= j - 1) 

Clearly, there are phi(i / j, j - 1) such a 

which remain on sieving from primes <= j - 1 

 

Now, if a is a prime less than equal to j - 1, 

x= j*a has smallest prime factor = a, and 

has already been removed(by sieving from a). 

So, we don't need to remove it again. 

(Note: there will be pi(j - 1) such x) 

 

Thus, number of x, that will be removed are: 

phi(i / j, j - 1) - phi(j - 1, j - 1) 

(Note that pi(j - 1) = phi(j - 1, j - 1)) 

 

=> phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1) 

 

So,following recursion is used and implemented as dp: 

 

phi(a, b) = phi(a, b - 1), if b is not a prime 

phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime 

 

Clearly a is always of the form floor(n / k), 

which can take at most 2*sqrt(n) values. 

Two arrays arr1,arr2 are maintained 

arr1[i] = phi(i, j), 

arr2[i] = phi(n // i, j) 

 

Finally the answer is arr2[1] 

 

Examples 

======== 

 

>>> from sympy import primepi 

>>> primepi(25) 

9 

 

See Also 

======== 

 

sympy.ntheory.primetest.isprime : Test if n is prime 

primerange : Generate all primes in a given range 

prime : Return the nth prime 

""" 

n = int(n) 

if n < 2: 

return 0 

if n <= sieve._list[-1]: 

return sieve.search(n)[0] 

lim = int(n ** 0.5) 

lim -= 1 

lim = max(lim,0) 

while lim * lim <= n: 

lim += 1 

lim-=1 

arr1 = [0] * (lim + 1) 

arr2 = [0] * (lim + 1) 

for i in range(1, lim + 1): 

arr1[i] = i - 1 

arr2[i] = n // i - 1 

for i in range(2, lim + 1): 

# Presently, arr1[k]=phi(k,i - 1), 

# arr2[k] = phi(n // k,i - 1) 

if arr1[i] == arr1[i - 1]: 

continue 

p = arr1[i - 1] 

for j in range(1,min(n // (i * i), lim) + 1): 

st = i * j 

if st <= lim: 

arr2[j] -= arr2[st] - p 

else: 

arr2[j] -= arr1[n // st] - p 

lim2 = min(lim, i*i - 1) 

for j in range(lim, lim2, -1): 

arr1[j] -= arr1[j // i] - p 

return arr2[1] 

 

 

def nextprime(n, ith=1): 

""" Return the ith prime greater than n. 

 

i must be an integer. 

 

Notes 

===== 

 

Potential primes are located at 6*j +/- 1. This 

property is used during searching. 

 

>>> from sympy import nextprime 

>>> [(i, nextprime(i)) for i in range(10, 15)] 

[(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)] 

>>> nextprime(2, ith=2) # the 2nd prime after 2 

5 

 

See Also 

======== 

 

prevprime : Return the largest prime smaller than n 

primerange : Generate all primes in a given range 

 

""" 

n = int(n) 

i = as_int(ith) 

if i > 1: 

pr = n 

j = 1 

while 1: 

pr = nextprime(pr) 

j += 1 

if j > i: 

break 

return pr 

 

if n < 2: 

return 2 

if n < 7: 

return {2: 3, 3: 5, 4: 5, 5: 7, 6: 7}[n] 

if n <= sieve._list[-2]: 

l, u = sieve.search(n) 

if l == u: 

return sieve[u + 1] 

else: 

return sieve[u] 

nn = 6*(n//6) 

if nn == n: 

n += 1 

if isprime(n): 

return n 

n += 4 

elif n - nn == 5: 

n += 2 

if isprime(n): 

return n 

n += 4 

else: 

n = nn + 5 

while 1: 

if isprime(n): 

return n 

n += 2 

if isprime(n): 

return n 

n += 4 

 

 

def prevprime(n): 

""" Return the largest prime smaller than n. 

 

Notes 

===== 

 

Potential primes are located at 6*j +/- 1. This 

property is used during searching. 

 

>>> from sympy import prevprime 

>>> [(i, prevprime(i)) for i in range(10, 15)] 

[(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)] 

 

See Also 

======== 

 

nextprime : Return the ith prime greater than n 

primerange : Generates all primes in a given range 

""" 

from sympy.functions.elementary.integers import ceiling 

 

# wrapping ceiling in int will raise an error if there was a problem 

# determining whether the expression was exactly an integer or not 

n = int(ceiling(n)) 

if n < 3: 

raise ValueError("no preceding primes") 

if n < 8: 

return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n] 

if n <= sieve._list[-1]: 

l, u = sieve.search(n) 

if l == u: 

return sieve[l-1] 

else: 

return sieve[l] 

nn = 6*(n//6) 

if n - nn <= 1: 

n = nn - 1 

if isprime(n): 

return n 

n -= 4 

else: 

n = nn + 1 

while 1: 

if isprime(n): 

return n 

n -= 2 

if isprime(n): 

return n 

n -= 4 

 

 

def primerange(a, b): 

""" Generate a list of all prime numbers in the range [a, b). 

 

If the range exists in the default sieve, the values will 

be returned from there; otherwise values will be returned 

but will not modify the sieve. 

 

Notes 

===== 

 

Some famous conjectures about the occurence of primes in a given 

range are [1]: 

 

- Twin primes: though often not, the following will give 2 primes 

an infinite number of times: 

primerange(6*n - 1, 6*n + 2) 

- Legendre's: the following always yields at least one prime 

primerange(n**2, (n+1)**2+1) 

- Bertrand's (proven): there is always a prime in the range 

primerange(n, 2*n) 

- Brocard's: there are at least four primes in the range 

primerange(prime(n)**2, prime(n+1)**2) 

 

The average gap between primes is log(n) [2]; the gap between 

primes can be arbitrarily large since sequences of composite 

numbers are arbitrarily large, e.g. the numbers in the sequence 

n! + 2, n! + 3 ... n! + n are all composite. 

 

References 

========== 

 

1. http://en.wikipedia.org/wiki/Prime_number 

2. http://primes.utm.edu/notes/gaps.html 

 

Examples 

======== 

 

>>> from sympy import primerange, sieve 

>>> print([i for i in primerange(1, 30)]) 

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29] 

 

The Sieve method, primerange, is generally faster but it will 

occupy more memory as the sieve stores values. The default 

instance of Sieve, named sieve, can be used: 

 

>>> list(sieve.primerange(1, 30)) 

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29] 

 

See Also 

======== 

 

nextprime : Return the ith prime greater than n 

prevprime : Return the largest prime smaller than n 

randprime : Returns a random prime in a given range 

primorial : Returns the product of primes based on condition 

Sieve.primerange : return range from already computed primes 

or extend the sieve to contain the requested 

range. 

""" 

from sympy.functions.elementary.integers import ceiling 

 

if a >= b: 

return 

# if we already have the range, return it 

if b <= sieve._list[-1]: 

for i in sieve.primerange(a, b): 

yield i 

return 

# otherwise compute, without storing, the desired range. 

 

# wrapping ceiling in int will raise an error if there was a problem 

# determining whether the expression was exactly an integer or not 

a = int(ceiling(a)) - 1 

b = int(ceiling(b)) 

while 1: 

a = nextprime(a) 

if a < b: 

yield a 

else: 

return 

 

 

def randprime(a, b): 

""" Return a random prime number in the range [a, b). 

 

Bertrand's postulate assures that 

randprime(a, 2*a) will always succeed for a > 1. 

 

References 

========== 

 

- http://en.wikipedia.org/wiki/Bertrand's_postulate 

 

Examples 

======== 

 

>>> from sympy import randprime, isprime 

>>> randprime(1, 30) #doctest: +SKIP 

13 

>>> isprime(randprime(1, 30)) 

True 

 

See Also 

======== 

 

primerange : Generate all primes in a given range 

 

""" 

if a >= b: 

return 

a, b = map(int, (a, b)) 

n = random.randint(a - 1, b) 

p = nextprime(n) 

if p >= b: 

p = prevprime(b) 

if p < a: 

raise ValueError("no primes exist in the specified range") 

return p 

 

 

def primorial(n, nth=True): 

""" 

Returns the product of the first n primes (default) or 

the primes less than or equal to n (when ``nth=False``). 

 

>>> from sympy.ntheory.generate import primorial, randprime, primerange 

>>> from sympy import factorint, Mul, primefactors, sqrt 

>>> primorial(4) # the first 4 primes are 2, 3, 5, 7 

210 

>>> primorial(4, nth=False) # primes <= 4 are 2 and 3 

6 

>>> primorial(1) 

2 

>>> primorial(1, nth=False) 

1 

>>> primorial(sqrt(101), nth=False) 

210 

 

One can argue that the primes are infinite since if you take 

a set of primes and multiply them together (e.g. the primorial) and 

then add or subtract 1, the result cannot be divided by any of the 

original factors, hence either 1 or more new primes must divide this 

product of primes. 

 

In this case, the number itself is a new prime: 

 

>>> factorint(primorial(4) + 1) 

{211: 1} 

 

In this case two new primes are the factors: 

 

>>> factorint(primorial(4) - 1) 

{11: 1, 19: 1} 

 

Here, some primes smaller and larger than the primes multiplied together 

are obtained: 

 

>>> p = list(primerange(10, 20)) 

>>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p))) 

[2, 5, 31, 149] 

 

See Also 

======== 

 

primerange : Generate all primes in a given range 

 

""" 

if nth: 

n = as_int(n) 

else: 

n = int(n) 

if n < 1: 

raise ValueError("primorial argument must be >= 1") 

p = 1 

if nth: 

for i in range(1, n + 1): 

p *= prime(i) 

else: 

for i in primerange(2, n + 1): 

p *= i 

return p 

 

 

def cycle_length(f, x0, nmax=None, values=False): 

"""For a given iterated sequence, return a generator that gives 

the length of the iterated cycle (lambda) and the length of terms 

before the cycle begins (mu); if ``values`` is True then the 

terms of the sequence will be returned instead. The sequence is 

started with value ``x0``. 

 

Note: more than the first lambda + mu terms may be returned and this 

is the cost of cycle detection with Brent's method; there are, however, 

generally less terms calculated than would have been calculated if the 

proper ending point were determined, e.g. by using Floyd's method. 

 

>>> from sympy.ntheory.generate import cycle_length 

 

This will yield successive values of i <-- func(i): 

 

>>> def iter(func, i): 

... while 1: 

... ii = func(i) 

... yield ii 

... i = ii 

... 

 

A function is defined: 

 

>>> func = lambda i: (i**2 + 1) % 51 

 

and given a seed of 4 and the mu and lambda terms calculated: 

 

>>> next(cycle_length(func, 4)) 

(6, 2) 

 

We can see what is meant by looking at the output: 

 

>>> n = cycle_length(func, 4, values=True) 

>>> list(ni for ni in n) 

[17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14] 

 

There are 6 repeating values after the first 2. 

 

If a sequence is suspected of being longer than you might wish, ``nmax`` 

can be used to exit early (and mu will be returned as None): 

 

>>> next(cycle_length(func, 4, nmax = 4)) 

(4, None) 

>>> [ni for ni in cycle_length(func, 4, nmax = 4, values=True)] 

[17, 35, 2, 5] 

 

Code modified from: 

http://en.wikipedia.org/wiki/Cycle_detection. 

""" 

 

nmax = int(nmax or 0) 

 

# main phase: search successive powers of two 

power = lam = 1 

tortoise, hare = x0, f(x0) # f(x0) is the element/node next to x0. 

i = 0 

while tortoise != hare and (not nmax or i < nmax): 

i += 1 

if power == lam: # time to start a new power of two? 

tortoise = hare 

power *= 2 

lam = 0 

if values: 

yield hare 

hare = f(hare) 

lam += 1 

if nmax and i == nmax: 

if values: 

return 

else: 

yield nmax, None 

return 

if not values: 

# Find the position of the first repetition of length lambda 

mu = 0 

tortoise = hare = x0 

for i in range(lam): 

hare = f(hare) 

while tortoise != hare: 

tortoise = f(tortoise) 

hare = f(hare) 

mu += 1 

if mu: 

mu -= 1 

yield lam, mu 

 

 

def composite(nth): 

""" Return the nth composite number, with the composite numbers indexed as 

composite(1) = 4, composite(2) = 6, etc.... 

 

Examples 

======== 

 

>>> from sympy import composite 

>>> composite(36) 

52 

>>> composite(1) 

4 

>>> composite(17737) 

20000 

 

See Also 

======== 

 

sympy.ntheory.primetest.isprime : Test if n is prime 

primerange : Generate all primes in a given range 

primepi : Return the number of primes less than or equal to n 

prime : Return the nth prime 

compositepi : Return the number of positive composite numbers less than or equal to n 

""" 

n = as_int(nth) 

if n < 1: 

raise ValueError("nth must be a positive integer; composite(1) == 4") 

composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18] 

if n <= 10: 

return composite_arr[n - 1] 

 

a, b = 4, sieve._list[-1] 

if n <= b - primepi(b) - 1: 

while a < b - 1: 

mid = (a + b) >> 1 

if mid - primepi(mid) - 1 > n: 

b = mid 

else: 

a = mid 

if isprime(a): 

a -= 1 

return a 

 

from sympy.functions.special.error_functions import li 

from sympy.functions.elementary.exponential import log 

 

a = 4 # Lower bound for binary search 

b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. 

 

while a < b: 

mid = (a + b) >> 1 

if mid - li(mid) - 1 > n: 

b = mid 

else: 

a = mid + 1 

 

n_composites = a - primepi(a) - 1 

while n_composites > n: 

if not isprime(a): 

n_composites -= 1 

a -= 1 

if isprime(a): 

a -= 1 

return a 

 

 

def compositepi(n): 

""" Return the number of positive composite numbers less than or equal to n. 

The first positive composite is 4, i.e. compositepi(4) = 1. 

 

Examples 

======== 

 

>>> from sympy import compositepi 

>>> compositepi(25) 

15 

>>> compositepi(1000) 

831 

 

See Also 

======== 

 

sympy.ntheory.primetest.isprime : Test if n is prime 

primerange : Generate all primes in a given range 

prime : Return the nth prime 

primepi : Return the number of primes less than or equal to n 

composite : Return the nth composite number 

""" 

n = int(n) 

if n < 4: 

return 0 

return n - primepi(n) - 1