Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

""" 

Primality testing 

 

""" 

 

from __future__ import print_function, division 

 

from sympy.core.compatibility import range, as_int 

from sympy.core.numbers import Float 

 

from mpmath.libmp import bitcount as _bitlength 

 

 

 

def _int_tuple(*i): 

return tuple(int(_) for _ in i) 

 

 

def is_square(n, prep=True): 

"""Return True if n == a * a for some integer a, else False. 

If n is suspected of *not* being a square then this is a 

quick method of confirming that it is not. 

 

References 

========== 

 

[1] http://mersenneforum.org/showpost.php?p=110896 

 

See Also 

======== 

sympy.core.power.integer_nthroot 

""" 

if prep: 

n = as_int(n) 

if n < 0: 

return False 

if n in [0, 1]: 

return True 

m = n & 127 

if not ((m*0x8bc40d7d) & (m*0xa1e2f5d1) & 0x14020a): 

m = n % 63; 

if not ((m*0x3d491df7) & (m*0xc824a9f9) & 0x10f14008): 

from sympy.ntheory import perfect_power 

if perfect_power(n, [2]): 

return True 

return False 

 

 

def _test(n, base, s, t): 

"""Miller-Rabin strong pseudoprime test for one base. 

Return False if n is definitely composite, True if n is 

probably prime, with a probability greater than 3/4. 

 

""" 

# do the Fermat test 

b = pow(base, t, n) 

if b == 1 or b == n - 1: 

return True 

else: 

for j in range(1, s): 

b = pow(b, 2, n) 

if b == n - 1: 

return True 

# see I. Niven et al. "An Introduction to Theory of Numbers", page 78 

if b == 1: 

return False 

return False 

 

 

def mr(n, bases): 

"""Perform a Miller-Rabin strong pseudoprime test on n using a 

given list of bases/witnesses. 

 

References 

========== 

 

- Richard Crandall & Carl Pomerance (2005), "Prime Numbers: 

A Computational Perspective", Springer, 2nd edition, 135-138 

 

A list of thresholds and the bases they require are here: 

http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test 

 

Examples 

======== 

 

>>> from sympy.ntheory.primetest import mr 

>>> mr(1373651, [2, 3]) 

False 

>>> mr(479001599, [31, 73]) 

True 

 

""" 

from sympy.ntheory.factor_ import trailing 

from sympy.polys.domains import ZZ 

 

n = as_int(n) 

if n < 2: 

return False 

# remove powers of 2 from n-1 (= t * 2**s) 

s = trailing(n - 1) 

t = n >> s 

for base in bases: 

# Bases >= n are wrapped, bases < 2 are invalid 

if base >= n: 

base %= n 

if base >= 2: 

base = ZZ(base) 

if not _test(n, base, s, t): 

return False 

return True 

 

 

def _lucas_sequence(n, P, Q, k): 

"""Return the modular Lucas sequence (U_k, V_k, Q_k). 

 

Given a Lucas sequence defined by P, Q, returns the kth values for 

U and V, along with Q^k, all modulo n. This is intended for use with 

possibly very large values of n and k, where the combinatorial functions 

would be completely unusable. 

 

The modular Lucas sequences are used in numerous places in number theory, 

especially in the Lucas compositeness tests and the various n + 1 proofs. 

 

Examples 

======== 

 

>>> from sympy.ntheory.primetest import _lucas_sequence 

>>> N = 10**2000 + 4561 

>>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol 

(0, 2, 1) 

 

""" 

D = P*P - 4*Q 

if n < 2: 

raise ValueError("n must be >= 2") 

if k < 0: 

raise ValueError("k must be >= 0") 

if D == 0: 

raise ValueError("D must not be zero") 

 

if k == 0: 

return _int_tuple(0, 2, Q) 

U = 1 

V = P 

Qk = Q 

b = _bitlength(k) 

if Q == 1: 

# Optimization for extra strong tests. 

while b > 1: 

U = (U*V) % n 

V = (V*V - 2) % n 

b -= 1 

if (k >> (b - 1)) & 1: 

t = U*D 

U = U*P + V 

if U & 1: 

U += n 

U >>= 1 

V = V*P + t 

if V & 1: 

V += n 

V >>= 1 

elif P == 1 and Q == -1: 

# Small optimization for 50% of Selfridge parameters. 

while b > 1: 

U = (U*V) % n 

if Qk == 1: 

V = (V*V - 2) % n 

else: 

V = (V*V + 2) % n 

Qk = 1 

b -= 1 

if (k >> (b-1)) & 1: 

t = U*D 

U = U + V 

if U & 1: 

U += n 

U >>= 1 

V = V + t 

if V & 1: 

V += n 

V >>= 1 

Qk = -1 

else: 

# The general case with any P and Q. 

while b > 1: 

U = (U*V) % n 

V = (V*V - 2*Qk) % n 

Qk *= Qk 

b -= 1 

if (k >> (b - 1)) & 1: 

t = U*D 

U = U*P + V 

if U & 1: 

U += n 

U >>= 1 

V = V*P + t 

if V & 1: 

V += n 

V >>= 1 

Qk *= Q 

Qk %= n 

U %= n 

V %= n 

return _int_tuple(U, V, Qk) 

 

 

def _lucas_selfridge_params(n): 

"""Calculates the Selfridge parameters (D, P, Q) for n. This is 

method A from page 1401 of Baillie and Wagstaff. 

 

References 

========== 

- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. 

http://mpqs.free.fr/LucasPseudoprimes.pdf 

""" 

from sympy.core import igcd 

from sympy.ntheory.residue_ntheory import jacobi_symbol 

D = 5 

while True: 

g = igcd(abs(D), n) 

if g > 1 and g != n: 

return (0, 0, 0) 

if jacobi_symbol(D, n) == -1: 

break 

if D > 0: 

D = -D - 2 

else: 

D = -D + 2 

return _int_tuple(D, 1, (1 - D)/4) 

 

 

def _lucas_extrastrong_params(n): 

"""Calculates the "extra strong" parameters (D, P, Q) for n. 

 

References 

========== 

- OEIS A217719: Extra Strong Lucas Pseudoprimes 

https://oeis.org/A217719 

- https://en.wikipedia.org/wiki/Lucas_pseudoprime 

""" 

from sympy.core import igcd 

from sympy.ntheory.residue_ntheory import jacobi_symbol 

P, Q, D = 3, 1, 5 

while True: 

g = igcd(D, n) 

if g > 1 and g != n: 

return (0, 0, 0) 

if jacobi_symbol(D, n) == -1: 

break 

P += 1 

D = P*P - 4 

return _int_tuple(D, P, Q) 

 

 

def is_lucas_prp(n): 

"""Standard Lucas compositeness test with Selfridge parameters. Returns 

False if n is definitely composite, and True if n is a Lucas probable 

prime. 

 

This is typically used in combination with the Miller-Rabin test. 

 

References 

========== 

- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. 

http://mpqs.free.fr/LucasPseudoprimes.pdf 

- OEIS A217120: Lucas Pseudoprimes 

https://oeis.org/A217120 

- https://en.wikipedia.org/wiki/Lucas_pseudoprime 

 

Examples 

======== 

 

>>> from sympy.ntheory.primetest import isprime, is_lucas_prp 

>>> for i in range(10000): 

... if is_lucas_prp(i) and not isprime(i): 

... print(i) 

323 

377 

1159 

1829 

3827 

5459 

5777 

9071 

9179 

""" 

n = as_int(n) 

if n == 2: 

return True 

if n < 2 or (n % 2) == 0: 

return False 

if is_square(n, False): 

return False 

 

D, P, Q = _lucas_selfridge_params(n) 

if D == 0: 

return False 

U, V, Qk = _lucas_sequence(n, P, Q, n+1) 

return U == 0 

 

 

def is_strong_lucas_prp(n): 

"""Strong Lucas compositeness test with Selfridge parameters. Returns 

False if n is definitely composite, and True if n is a strong Lucas 

probable prime. 

 

This is often used in combination with the Miller-Rabin test, and 

in particular, when combined with M-R base 2 creates the strong BPSW test. 

 

References 

========== 

- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. 

http://mpqs.free.fr/LucasPseudoprimes.pdf 

- OEIS A217255: Strong Lucas Pseudoprimes 

https://oeis.org/A217255 

- https://en.wikipedia.org/wiki/Lucas_pseudoprime 

- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test 

 

Examples 

======== 

 

>>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp 

>>> for i in range(20000): 

... if is_strong_lucas_prp(i) and not isprime(i): 

... print(i) 

5459 

5777 

10877 

16109 

18971 

""" 

from sympy.ntheory.factor_ import trailing 

n = as_int(n) 

if n == 2: 

return True 

if n < 2 or (n % 2) == 0: 

return False 

if is_square(n, False): 

return False 

 

D, P, Q = _lucas_selfridge_params(n) 

if D == 0: 

return False 

 

# remove powers of 2 from n+1 (= k * 2**s) 

s = trailing(n + 1) 

k = (n+1) >> s 

 

U, V, Qk = _lucas_sequence(n, P, Q, k) 

 

if U == 0 or V == 0: 

return True 

for r in range(1, s): 

V = (V*V - 2*Qk) % n 

if V == 0: 

return True 

Qk = pow(Qk, 2, n) 

return False 

 

 

def is_extra_strong_lucas_prp(n): 

"""Extra Strong Lucas compositeness test. Returns False if n is 

definitely composite, and True if n is a "extra strong" Lucas probable 

prime. 

 

The parameters are selected using P = 3, Q = 1, then incrementing P until 

(D|n) == -1. The test itself is as defined in Grantham 2000, from the 

Mo and Jones preprint. The parameter selection and test are the same as 

used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime 

page on Wikipedia. 

 

With these parameters, there are no counterexamples below 2^64 nor any 

known above that range. It is 20-50% faster than the strong test. 

 

Because of the different parameters selected, there is no relationship 

between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes. 

In particular, one is not a subset of the other. 

 

References 

========== 

- "Frobenius Pseudoprimes", Jon Grantham, 2000. 

http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/ 

- OEIS A217719: Extra Strong Lucas Pseudoprimes 

https://oeis.org/A217719 

- https://en.wikipedia.org/wiki/Lucas_pseudoprime 

 

Examples 

======== 

 

>>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp 

>>> for i in range(20000): 

... if is_extra_strong_lucas_prp(i) and not isprime(i): 

... print(i) 

989 

3239 

5777 

10877 

""" 

# Implementation notes: 

# 1) the parameters differ from Thomas R. Nicely's. His parameter 

# selection leads to pseudoprimes that overlap M-R tests, and 

# contradict Baillie and Wagstaff's suggestion of (D|n) = -1. 

# 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas 

# sequence must have Q=1. See Grantham theorem 2.3, any of the 

# references on the MathWorld page, or run it and see Q=-1 is wrong. 

from sympy.ntheory.factor_ import trailing 

n = as_int(n) 

if n == 2: 

return True 

if n < 2 or (n % 2) == 0: 

return False 

if is_square(n, False): 

return False 

 

D, P, Q = _lucas_extrastrong_params(n) 

if D == 0: 

return False 

 

# remove powers of 2 from n+1 (= k * 2**s) 

s = trailing(n + 1) 

k = (n+1) >> s 

 

U, V, Qk = _lucas_sequence(n, P, Q, k) 

 

if U == 0 and (V == 2 or V == n - 2): 

return True 

if V == 0: 

return True 

for r in range(1, s): 

V = (V*V - 2) % n 

if V == 0: 

return True 

return False 

 

 

def isprime(n): 

""" 

Test if n is a prime number (True) or not (False). For n < 2^64 the 

answer is definitive; larger n values have a small probability of actually 

being pseudoprimes. 

 

Negative numbers (e.g. -2) are not considered prime. 

 

The first step is looking for trivial factors, which if found enables 

a quick return. Next, if the sieve is large enough, use bisection search 

on the sieve. For small numbers, a set of deterministic Miller-Rabin 

tests are performed with bases that are known to have no counterexamples 

in their range. Finally if the number is larger than 2^64, a strong 

BPSW test is performed. While this is a probable prime test and we 

believe counterexamples exist, there are no known counterexamples. 

 

Examples 

======== 

 

>>> from sympy.ntheory import isprime 

>>> isprime(13) 

True 

>>> isprime(15) 

False 

 

See Also 

======== 

 

sympy.ntheory.generate.primerange : Generates all primes in a given range 

sympy.ntheory.generate.primepi : Return the number of primes less than or equal to n 

sympy.ntheory.generate.prime : Return the nth prime 

 

References 

========== 

- http://en.wikipedia.org/wiki/Strong_pseudoprime 

- "Lucas Pseudoprimes", Baillie and Wagstaff, 1980. 

http://mpqs.free.fr/LucasPseudoprimes.pdf 

- https://en.wikipedia.org/wiki/Baillie-PSW_primality_test 

""" 

if isinstance(n, (Float, float)): 

return False 

n = int(n) 

 

# Step 1, do quick composite testing via trial division. The individual 

# modulo tests benchmark faster than one or two primorial igcds for me. 

# The point here is just to speedily handle small numbers and many 

# composites. Step 2 only requires that n <= 2 get handled here. 

if n in [2, 3, 5]: 

return True 

if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0: 

return False 

if n < 49: 

return True 

if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \ 

(n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \ 

(n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0: 

return False 

if n < 2809: 

return True 

if n <= 23001: 

return pow(2, n, n) == 2 and n not in [341, 561, 645, 1105, 1387, 1729, 

1905, 2047, 2465, 2701, 2821, 

3277, 4033, 4369, 4371, 4681, 

5461, 6601, 7957, 8321, 8481, 

8911, 10261, 10585, 11305, 

12801, 13741, 13747, 13981, 

14491, 15709, 15841, 16705, 

18705, 18721, 19951, 23001] 

 

# bisection search on the sieve if the sieve is large enough 

from sympy.ntheory.generate import sieve as s 

if n <= s._list[-1]: 

l, u = s.search(n) 

return l == u 

 

# If we have GMPY2, skip straight to step 3 and do a strong BPSW test. 

# This should be a bit faster than our step 2, and for large values will 

# be a lot faster than our step 3 (C+GMP vs. Python). 

from sympy.core.compatibility import HAS_GMPY 

if HAS_GMPY == 2: 

from gmpy2 import is_strong_prp, is_strong_selfridge_prp 

return is_strong_prp(n, 2) and is_strong_selfridge_prp(n) 

 

 

# Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See: 

# https://miller-rabin.appspot.com/ 

# for lists. We have made sure the M-R routine will successfully handle 

# bases larger than n, so we can use the minimal set. 

if n < 341531: 

return mr(n, [9345883071009581737]) 

if n < 885594169: 

return mr(n, [725270293939359937, 3569819667048198375]) 

if n < 350269456337: 

return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375]) 

if n < 55245642489451: 

return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650]) 

if n < 7999252175582851: 

return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805]) 

if n < 585226005592931977: 

return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375]) 

if n < 18446744073709551616: 

return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) 

 

# We could do this instead at any point: 

#if n < 18446744073709551616: 

# return mr(n, [2]) and is_extra_strong_lucas_prp(n) 

 

# Here are tests that are safe for MR routines that don't understand 

# large bases. 

#if n < 9080191: 

# return mr(n, [31, 73]) 

#if n < 19471033: 

# return mr(n, [2, 299417]) 

#if n < 38010307: 

# return mr(n, [2, 9332593]) 

#if n < 316349281: 

# return mr(n, [11000544, 31481107]) 

#if n < 4759123141: 

# return mr(n, [2, 7, 61]) 

#if n < 105936894253: 

# return mr(n, [2, 1005905886, 1340600841]) 

#if n < 31858317218647: 

# return mr(n, [2, 642735, 553174392, 3046413974]) 

#if n < 3071837692357849: 

# return mr(n, [2, 75088, 642735, 203659041, 3613982119]) 

#if n < 18446744073709551616: 

# return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) 

 

# Step 3: BPSW. 

# 

# Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed 

# 44.0s old isprime using 46 bases 

# 5.3s strong BPSW + one random base 

# 4.3s extra strong BPSW + one random base 

# 4.1s strong BPSW 

# 3.2s extra strong BPSW 

 

# Classic BPSW from page 1401 of the paper. See alternate ideas below. 

return mr(n, [2]) and is_strong_lucas_prp(n) 

 

# Using extra strong test, which is somewhat faster 

#return mr(n, [2]) and is_extra_strong_lucas_prp(n) 

 

# Add a random M-R base 

#import random 

#return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n)