Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

"""Known matrices related to physics""" 

 

from __future__ import print_function, division 

 

from sympy import Matrix, I, pi, sqrt 

from sympy.functions import exp 

from sympy.core.compatibility import range 

 

 

def msigma(i): 

r"""Returns a Pauli matrix `\sigma_i` with `i=1,2,3` 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Pauli_matrices 

 

Examples 

======== 

 

>>> from sympy.physics.matrices import msigma 

>>> msigma(1) 

Matrix([ 

[0, 1], 

[1, 0]]) 

""" 

if i == 1: 

mat = ( ( 

(0, 1), 

(1, 0) 

) ) 

elif i == 2: 

mat = ( ( 

(0, -I), 

(I, 0) 

) ) 

elif i == 3: 

mat = ( ( 

(1, 0), 

(0, -1) 

) ) 

else: 

raise IndexError("Invalid Pauli index") 

return Matrix(mat) 

 

 

def pat_matrix(m, dx, dy, dz): 

"""Returns the Parallel Axis Theorem matrix to translate the inertia 

matrix a distance of `(dx, dy, dz)` for a body of mass m. 

 

Examples 

======== 

 

To translate a body having a mass of 2 units a distance of 1 unit along 

the `x`-axis we get: 

 

>>> from sympy.physics.matrices import pat_matrix 

>>> pat_matrix(2, 1, 0, 0) 

Matrix([ 

[0, 0, 0], 

[0, 2, 0], 

[0, 0, 2]]) 

 

""" 

dxdy = -dx*dy 

dydz = -dy*dz 

dzdx = -dz*dx 

dxdx = dx**2 

dydy = dy**2 

dzdz = dz**2 

mat = ((dydy + dzdz, dxdy, dzdx), 

(dxdy, dxdx + dzdz, dydz), 

(dzdx, dydz, dydy + dxdx)) 

return m*Matrix(mat) 

 

 

def mgamma(mu, lower=False): 

r"""Returns a Dirac gamma matrix `\gamma^\mu` in the standard 

(Dirac) representation. 

 

If you want `\gamma_\mu`, use ``gamma(mu, True)``. 

 

We use a convention: 

 

`\gamma^5 = i \cdot \gamma^0 \cdot \gamma^1 \cdot \gamma^2 \cdot \gamma^3` 

 

`\gamma_5 = i \cdot \gamma_0 \cdot \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = - \gamma^5` 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Gamma_matrices 

 

Examples 

======== 

 

>>> from sympy.physics.matrices import mgamma 

>>> mgamma(1) 

Matrix([ 

[ 0, 0, 0, 1], 

[ 0, 0, 1, 0], 

[ 0, -1, 0, 0], 

[-1, 0, 0, 0]]) 

""" 

if not mu in [0, 1, 2, 3, 5]: 

raise IndexError("Invalid Dirac index") 

if mu == 0: 

mat = ( 

(1, 0, 0, 0), 

(0, 1, 0, 0), 

(0, 0, -1, 0), 

(0, 0, 0, -1) 

) 

elif mu == 1: 

mat = ( 

(0, 0, 0, 1), 

(0, 0, 1, 0), 

(0, -1, 0, 0), 

(-1, 0, 0, 0) 

) 

elif mu == 2: 

mat = ( 

(0, 0, 0, -I), 

(0, 0, I, 0), 

(0, I, 0, 0), 

(-I, 0, 0, 0) 

) 

elif mu == 3: 

mat = ( 

(0, 0, 1, 0), 

(0, 0, 0, -1), 

(-1, 0, 0, 0), 

(0, 1, 0, 0) 

) 

elif mu == 5: 

mat = ( 

(0, 0, 1, 0), 

(0, 0, 0, 1), 

(1, 0, 0, 0), 

(0, 1, 0, 0) 

) 

m = Matrix(mat) 

if lower: 

if mu in [1, 2, 3, 5]: 

m = -m 

return m 

 

#Minkowski tensor using the convention (+,-,-,-) used in the Quantum Field 

#Theory 

minkowski_tensor = Matrix( ( 

(1, 0, 0, 0), 

(0, -1, 0, 0), 

(0, 0, -1, 0), 

(0, 0, 0, -1) 

)) 

 

def mdft(n): 

r""" 

Returns an expression of a discrete Fourier transform as a matrix multiplication. 

It is an n X n matrix. 

 

References 

========== 

 

.. [1] https://en.wikipedia.org/wiki/DFT_matrix 

 

Examples 

======== 

 

>>> from sympy.physics.matrices import mdft 

>>> mdft(3) 

Matrix([ 

[sqrt(3)/3, sqrt(3)/3, sqrt(3)/3], 

[sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(-4*I*pi/3)/3], 

[sqrt(3)/3, sqrt(3)*exp(-4*I*pi/3)/3, sqrt(3)*exp(-8*I*pi/3)/3]]) 

""" 

mat = [[None for x in range(n)] for y in range(n)] 

base = exp(-2*pi*I/n) 

mat[0] = [1]*n 

for i in range(n): 

mat[i][0] = 1 

for i in range(1, n): 

for j in range(i, n): 

mat[i][j] = mat[j][i] = base**(i*j) 

return (1/sqrt(n))*Matrix(mat)