Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

""" 

Computations with homomorphisms of modules and rings. 

 

This module implements classes for representing homomorphisms of rings and 

their modules. Instead of instantiating the classes directly, you should use 

the function ``homomorphism(from, to, matrix)`` to create homomorphism objects. 

""" 

 

from __future__ import print_function, division 

 

from sympy.polys.agca.modules import (Module, FreeModule, QuotientModule, 

SubModule, SubQuotientModule) 

from sympy.polys.polyerrors import CoercionFailed 

from sympy.core.compatibility import range 

 

# The main computational task for module homomorphisms is kernels. 

# For this reason, the concrete classes are organised by domain module type. 

 

 

class ModuleHomomorphism(object): 

""" 

Abstract base class for module homomoprhisms. Do not instantiate. 

 

Instead, use the ``homomorphism`` function: 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> homomorphism(F, F, [[1, 0], [0, 1]]) 

Matrix([ 

[1, 0], : QQ[x]**2 -> QQ[x]**2 

[0, 1]]) 

 

Attributes: 

 

- ring - the ring over which we are considering modules 

- domain - the domain module 

- codomain - the codomain module 

- _ker - cached kernel 

- _img - cached image 

 

Non-implemented methods: 

 

- _kernel 

- _image 

- _restrict_domain 

- _restrict_codomain 

- _quotient_domain 

- _quotient_codomain 

- _apply 

- _mul_scalar 

- _compose 

- _add 

""" 

 

def __init__(self, domain, codomain): 

if not isinstance(domain, Module): 

raise TypeError('Source must be a module, got %s' % domain) 

if not isinstance(codomain, Module): 

raise TypeError('Target must be a module, got %s' % codomain) 

if domain.ring != codomain.ring: 

raise ValueError('Source and codomain must be over same ring, ' 

'got %s != %s' % (domain, codomain)) 

self.domain = domain 

self.codomain = codomain 

self.ring = domain.ring 

self._ker = None 

self._img = None 

 

def kernel(self): 

r""" 

Compute the kernel of ``self``. 

 

That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute 

`ker(\phi) = \{x \in M | \phi(x) = 0\}`. This is a submodule of `M`. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> homomorphism(F, F, [[1, 0], [x, 0]]).kernel() 

<[x, -1]> 

""" 

if self._ker is None: 

self._ker = self._kernel() 

return self._ker 

 

def image(self): 

r""" 

Compute the image of ``self``. 

 

That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute 

`im(\phi) = \{\phi(x) | x \in M \}`. This is a submodule of `N`. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> homomorphism(F, F, [[1, 0], [x, 0]]).image() == F.submodule([1, 0]) 

True 

""" 

if self._img is None: 

self._img = self._image() 

return self._img 

 

def _kernel(self): 

"""Compute the kernel of ``self``.""" 

raise NotImplementedError 

 

def _image(self): 

"""Compute the image of ``self``.""" 

raise NotImplementedError 

 

def _restrict_domain(self, sm): 

"""Implementation of domain restriction.""" 

raise NotImplementedError 

 

def _restrict_codomain(self, sm): 

"""Implementation of codomain restriction.""" 

raise NotImplementedError 

 

def _quotient_domain(self, sm): 

"""Implementation of domain quotient.""" 

raise NotImplementedError 

 

def _quotient_codomain(self, sm): 

"""Implementation of codomain quotient.""" 

raise NotImplementedError 

 

def restrict_domain(self, sm): 

""" 

Return ``self``, with the domain restricted to ``sm``. 

 

Here ``sm`` has to be a submodule of ``self.domain``. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) 

>>> h 

Matrix([ 

[1, x], : QQ[x]**2 -> QQ[x]**2 

[0, 0]]) 

>>> h.restrict_domain(F.submodule([1, 0])) 

Matrix([ 

[1, x], : <[1, 0]> -> QQ[x]**2 

[0, 0]]) 

 

This is the same as just composing on the right with the submodule 

inclusion: 

 

>>> h * F.submodule([1, 0]).inclusion_hom() 

Matrix([ 

[1, x], : <[1, 0]> -> QQ[x]**2 

[0, 0]]) 

""" 

if not self.domain.is_submodule(sm): 

raise ValueError('sm must be a submodule of %s, got %s' 

% (self.domain, sm)) 

if sm == self.domain: 

return self 

return self._restrict_domain(sm) 

 

def restrict_codomain(self, sm): 

""" 

Return ``self``, with codomain restricted to to ``sm``. 

 

Here ``sm`` has to be a submodule of ``self.codomain`` containing the 

image. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) 

>>> h 

Matrix([ 

[1, x], : QQ[x]**2 -> QQ[x]**2 

[0, 0]]) 

>>> h.restrict_codomain(F.submodule([1, 0])) 

Matrix([ 

[1, x], : QQ[x]**2 -> <[1, 0]> 

[0, 0]]) 

""" 

if not sm.is_submodule(self.image()): 

raise ValueError('the image %s must contain sm, got %s' 

% (self.image(), sm)) 

if sm == self.codomain: 

return self 

return self._restrict_codomain(sm) 

 

def quotient_domain(self, sm): 

""" 

Return ``self`` with domain replaced by ``domain/sm``. 

 

Here ``sm`` must be a submodule of ``self.kernel()``. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) 

>>> h 

Matrix([ 

[1, x], : QQ[x]**2 -> QQ[x]**2 

[0, 0]]) 

>>> h.quotient_domain(F.submodule([-x, 1])) 

Matrix([ 

[1, x], : QQ[x]**2/<[-x, 1]> -> QQ[x]**2 

[0, 0]]) 

""" 

if not self.kernel().is_submodule(sm): 

raise ValueError('kernel %s must contain sm, got %s' % 

(self.kernel(), sm)) 

if sm.is_zero(): 

return self 

return self._quotient_domain(sm) 

 

def quotient_codomain(self, sm): 

""" 

Return ``self`` with codomain replaced by ``codomain/sm``. 

 

Here ``sm`` must be a submodule of ``self.codomain``. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) 

>>> h 

Matrix([ 

[1, x], : QQ[x]**2 -> QQ[x]**2 

[0, 0]]) 

>>> h.quotient_codomain(F.submodule([1, 1])) 

Matrix([ 

[1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]> 

[0, 0]]) 

 

This is the same as composing with the quotient map on the left: 

 

>>> (F/[(1, 1)]).quotient_hom() * h 

Matrix([ 

[1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]> 

[0, 0]]) 

""" 

if not self.codomain.is_submodule(sm): 

raise ValueError('sm must be a submodule of codomain %s, got %s' 

% (self.codomain, sm)) 

if sm.is_zero(): 

return self 

return self._quotient_codomain(sm) 

 

def _apply(self, elem): 

"""Apply ``self`` to ``elem``.""" 

raise NotImplementedError 

 

def __call__(self, elem): 

return self.codomain.convert(self._apply(self.domain.convert(elem))) 

 

def _compose(self, oth): 

""" 

Compose ``self`` with ``oth``, that is, return the homomorphism 

obtained by first applying then ``self``, then ``oth``. 

 

(This method is private since in this syntax, it is non-obvious which 

homomorphism is executed first.) 

""" 

raise NotImplementedError 

 

def _mul_scalar(self, c): 

"""Scalar multiplication. ``c`` is guaranteed in self.ring.""" 

raise NotImplementedError 

 

def _add(self, oth): 

""" 

Homomorphism addition. 

``oth`` is guaranteed to be a homomorphism with same domain/codomain. 

""" 

raise NotImplementedError 

 

def _check_hom(self, oth): 

"""Helper to check that oth is a homomorphism with same domain/codomain.""" 

if not isinstance(oth, ModuleHomomorphism): 

return False 

return oth.domain == self.domain and oth.codomain == self.codomain 

 

def __mul__(self, oth): 

if isinstance(oth, ModuleHomomorphism) and self.domain == oth.codomain: 

return oth._compose(self) 

try: 

return self._mul_scalar(self.ring.convert(oth)) 

except CoercionFailed: 

return NotImplemented 

 

# NOTE: _compose will never be called from rmul 

__rmul__ = __mul__ 

 

def __div__(self, oth): 

try: 

return self._mul_scalar(1/self.ring.convert(oth)) 

except CoercionFailed: 

return NotImplemented 

 

__truediv__ = __div__ 

 

def __add__(self, oth): 

if self._check_hom(oth): 

return self._add(oth) 

return NotImplemented 

 

def __sub__(self, oth): 

if self._check_hom(oth): 

return self._add(oth._mul_scalar(self.ring.convert(-1))) 

return NotImplemented 

 

def is_injective(self): 

""" 

Return True if ``self`` is injective. 

 

That is, check if the elements of the domain are mapped to the same 

codomain element. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) 

>>> h.is_injective() 

False 

>>> h.quotient_domain(h.kernel()).is_injective() 

True 

""" 

return self.kernel().is_zero() 

 

def is_surjective(self): 

""" 

Return True if ``self`` is surjective. 

 

That is, check if every element of the codomain has at least one 

preimage. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) 

>>> h.is_surjective() 

False 

>>> h.restrict_codomain(h.image()).is_surjective() 

True 

""" 

return self.image() == self.codomain 

 

def is_isomorphism(self): 

""" 

Return True if ``self`` is an isomorphism. 

 

That is, check if every element of the codomain has precisely one 

preimage. Equivalently, ``self`` is both injective and surjective. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) 

>>> h = h.restrict_codomain(h.image()) 

>>> h.is_isomorphism() 

False 

>>> h.quotient_domain(h.kernel()).is_isomorphism() 

True 

""" 

return self.is_injective() and self.is_surjective() 

 

def is_zero(self): 

""" 

Return True if ``self`` is a zero morphism. 

 

That is, check if every element of the domain is mapped to zero 

under self. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> h = homomorphism(F, F, [[1, 0], [x, 0]]) 

>>> h.is_zero() 

False 

>>> h.restrict_domain(F.submodule()).is_zero() 

True 

>>> h.quotient_codomain(h.image()).is_zero() 

True 

""" 

return self.image().is_zero() 

 

def __eq__(self, oth): 

try: 

return (self - oth).is_zero() 

except TypeError: 

return False 

 

def __ne__(self, oth): 

return not (self == oth) 

 

 

class MatrixHomomorphism(ModuleHomomorphism): 

""" 

Helper class for all homomoprhisms which are expressed via a matrix. 

 

That is, for such homomorphisms ``domain`` is contained in a module 

generated by finitely many elements `e_1, \dots, e_n`, so that the 

homomorphism is determined uniquely by its action on the `e_i`. It 

can thus be represented as a vector of elements of the codomain module, 

or potentially a supermodule of the codomain module 

(and hence conventionally as a matrix, if there is a similar interpretation 

for elements of the codomain module). 

 

Note that this class does *not* assume that the `e_i` freely generate a 

submodule, nor that ``domain`` is even all of this submodule. It exists 

only to unify the interface. 

 

Do not instantiate. 

 

Attributes: 

 

- matrix - the list of images determining the homomorphism. 

NOTE: the elements of matrix belong to either self.codomain or 

self.codomain.container 

 

Still non-implemented methods: 

 

- kernel 

- _apply 

""" 

 

def __init__(self, domain, codomain, matrix): 

ModuleHomomorphism.__init__(self, domain, codomain) 

if len(matrix) != domain.rank: 

raise ValueError('Need to provide %s elements, got %s' 

% (domain.rank, len(matrix))) 

 

converter = self.codomain.convert 

if isinstance(self.codomain, (SubModule, SubQuotientModule)): 

converter = self.codomain.container.convert 

self.matrix = tuple(converter(x) for x in matrix) 

 

def _sympy_matrix(self): 

"""Helper function which returns a sympy matrix ``self.matrix``.""" 

from sympy.matrices import Matrix 

c = lambda x: x 

if isinstance(self.codomain, (QuotientModule, SubQuotientModule)): 

c = lambda x: x.data 

return Matrix([[self.ring.to_sympy(y) for y in c(x)] for x in self.matrix]).T 

 

def __repr__(self): 

lines = repr(self._sympy_matrix()).split('\n') 

t = " : %s -> %s" % (self.domain, self.codomain) 

s = ' '*len(t) 

n = len(lines) 

for i in range(n // 2): 

lines[i] += s 

lines[n // 2] += t 

for i in range(n//2 + 1, n): 

lines[i] += s 

return '\n'.join(lines) 

 

def _restrict_domain(self, sm): 

"""Implementation of domain restriction.""" 

return SubModuleHomomorphism(sm, self.codomain, self.matrix) 

 

def _restrict_codomain(self, sm): 

"""Implementation of codomain restriction.""" 

return self.__class__(self.domain, sm, self.matrix) 

 

def _quotient_domain(self, sm): 

"""Implementation of domain quotient.""" 

return self.__class__(self.domain/sm, self.codomain, self.matrix) 

 

def _quotient_codomain(self, sm): 

"""Implementation of codomain quotient.""" 

Q = self.codomain/sm 

converter = Q.convert 

if isinstance(self.codomain, SubModule): 

converter = Q.container.convert 

return self.__class__(self.domain, self.codomain/sm, 

[converter(x) for x in self.matrix]) 

 

def _add(self, oth): 

return self.__class__(self.domain, self.codomain, 

[x + y for x, y in zip(self.matrix, oth.matrix)]) 

 

def _mul_scalar(self, c): 

return self.__class__(self.domain, self.codomain, [c*x for x in self.matrix]) 

 

def _compose(self, oth): 

return self.__class__(self.domain, oth.codomain, [oth(x) for x in self.matrix]) 

 

 

class FreeModuleHomomorphism(MatrixHomomorphism): 

""" 

Concrete class for homomorphisms with domain a free module or a quotient 

thereof. 

 

Do not instantiate; the constructor does not check that your data is well 

defined. Use the ``homomorphism`` function instead: 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> homomorphism(F, F, [[1, 0], [0, 1]]) 

Matrix([ 

[1, 0], : QQ[x]**2 -> QQ[x]**2 

[0, 1]]) 

""" 

 

def _apply(self, elem): 

if isinstance(self.domain, QuotientModule): 

elem = elem.data 

return sum(x * e for x, e in zip(elem, self.matrix)) 

 

def _image(self): 

return self.codomain.submodule(*self.matrix) 

 

def _kernel(self): 

# The domain is either a free module or a quotient thereof. 

# It does not matter if it is a quotient, because that won't increase 

# the kernel. 

# Our generators {e_i} are sent to the matrix entries {b_i}. 

# The kernel is essentially the syzygy module of these {b_i}. 

syz = self.image().syzygy_module() 

return self.domain.submodule(*syz.gens) 

 

 

class SubModuleHomomorphism(MatrixHomomorphism): 

""" 

Concrete class for homomorphism with domain a submodule of a free module 

or a quotient thereof. 

 

Do not instantiate; the constructor does not check that your data is well 

defined. Use the ``homomorphism`` function instead: 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> M = QQ.old_poly_ring(x).free_module(2)*x 

>>> homomorphism(M, M, [[1, 0], [0, 1]]) 

Matrix([ 

[1, 0], : <[x, 0], [0, x]> -> <[x, 0], [0, x]> 

[0, 1]]) 

""" 

 

def _apply(self, elem): 

if isinstance(self.domain, SubQuotientModule): 

elem = elem.data 

return sum(x * e for x, e in zip(elem, self.matrix)) 

 

def _image(self): 

return self.codomain.submodule(*[self(x) for x in self.domain.gens]) 

 

def _kernel(self): 

syz = self.image().syzygy_module() 

return self.domain.submodule( 

*[sum(xi*gi for xi, gi in zip(s, self.domain.gens)) 

for s in syz.gens]) 

 

 

def homomorphism(domain, codomain, matrix): 

r""" 

Create a homomorphism object. 

 

This function tries to build a homomorphism from ``domain`` to ``codomain`` 

via the matrix ``matrix``. 

 

Examples 

======== 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> from sympy.polys.agca import homomorphism 

 

>>> R = QQ.old_poly_ring(x) 

>>> T = R.free_module(2) 

 

If ``domain`` is a free module generated by `e_1, \dots, e_n`, then 

``matrix`` should be an n-element iterable `(b_1, \dots, b_n)` where 

the `b_i` are elements of ``codomain``. The constructed homomorphism is the 

unique homomorphism sending `e_i` to `b_i`. 

 

>>> F = R.free_module(2) 

>>> h = homomorphism(F, T, [[1, x], [x**2, 0]]) 

>>> h 

Matrix([ 

[1, x**2], : QQ[x]**2 -> QQ[x]**2 

[x, 0]]) 

>>> h([1, 0]) 

[1, x] 

>>> h([0, 1]) 

[x**2, 0] 

>>> h([1, 1]) 

[x**2 + 1, x] 

 

If ``domain`` is a submodule of a free module, them ``matrix`` determines 

a homomoprhism from the containing free module to ``codomain``, and the 

homomorphism returned is obtained by restriction to ``domain``. 

 

>>> S = F.submodule([1, 0], [0, x]) 

>>> homomorphism(S, T, [[1, x], [x**2, 0]]) 

Matrix([ 

[1, x**2], : <[1, 0], [0, x]> -> QQ[x]**2 

[x, 0]]) 

 

If ``domain`` is a (sub)quotient `N/K`, then ``matrix`` determines a 

homomorphism from `N` to ``codomain``. If the kernel contains `K`, this 

homomorphism descends to ``domain`` and is returned; otherwise an exception 

is raised. 

 

>>> homomorphism(S/[(1, 0)], T, [0, [x**2, 0]]) 

Matrix([ 

[0, x**2], : <[1, 0] + <[1, 0]>, [0, x] + <[1, 0]>, [1, 0] + <[1, 0]>> -> QQ[x]**2 

[0, 0]]) 

>>> homomorphism(S/[(0, x)], T, [0, [x**2, 0]]) 

Traceback (most recent call last): 

... 

ValueError: kernel <[1, 0], [0, 0]> must contain sm, got <[0,x]> 

 

""" 

def freepres(module): 

""" 

Return a tuple ``(F, S, Q, c)`` where ``F`` is a free module, ``S`` is a 

submodule of ``F``, and ``Q`` a submodule of ``S``, such that 

``module = S/Q``, and ``c`` is a conversion function. 

""" 

if isinstance(module, FreeModule): 

return module, module, module.submodule(), lambda x: module.convert(x) 

if isinstance(module, QuotientModule): 

return (module.base, module.base, module.killed_module, 

lambda x: module.convert(x).data) 

if isinstance(module, SubQuotientModule): 

return (module.base.container, module.base, module.killed_module, 

lambda x: module.container.convert(x).data) 

# an ordinary submodule 

return (module.container, module, module.submodule(), 

lambda x: module.container.convert(x)) 

 

SF, SS, SQ, _ = freepres(domain) 

TF, TS, TQ, c = freepres(codomain) 

# NOTE this is probably a bit inefficient (redundant checks) 

return FreeModuleHomomorphism(SF, TF, [c(x) for x in matrix] 

).restrict_domain(SS).restrict_codomain(TS 

).quotient_codomain(TQ).quotient_domain(SQ)