Coverage for sympy/polys/agca/ideals.py : 46%
        
        
    Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
| 
 """Computations with ideals of polynomial rings.""" 
 
 
 
 
 """ Abstract base class for ideals. 
 Do not instantiate - use explicit constructors in the ring class instead: 
 >>> from sympy import QQ >>> from sympy.abc import x >>> QQ.old_poly_ring(x).ideal(x+1) <x + 1> 
 Attributes 
 - ring - the ring this ideal belongs to 
 Non-implemented methods: 
 - _contains_elem - _contains_ideal - _quotient - _intersect - _union - _product - is_whole_ring - is_zero - is_prime, is_maximal, is_primary, is_radical - is_principal - height, depth - radical 
 Methods that likely should be overridden in subclasses: 
 - reduce_element """ 
 """Implementation of element containment.""" raise NotImplementedError 
 """Implementation of ideal containment.""" raise NotImplementedError 
 """Implementation of ideal quotient.""" raise NotImplementedError 
 """Implementation of ideal intersection.""" raise NotImplementedError 
 """Return True if ``self`` is the whole ring.""" raise NotImplementedError 
 """Return True if ``self`` is the zero ideal.""" raise NotImplementedError 
 """Implementation of ideal equality.""" return self._contains_ideal(J) and J._contains_ideal(self) 
 """Return True if ``self`` is a prime ideal.""" raise NotImplementedError 
 """Return True if ``self`` is a maximal ideal.""" raise NotImplementedError 
 """Return True if ``self`` is a radical ideal.""" raise NotImplementedError 
 """Return True if ``self`` is a primary ideal.""" raise NotImplementedError 
 """Return True if ``self`` is a principal ideal.""" raise NotImplementedError 
 """Compute the radical of ``self``.""" raise NotImplementedError 
 """Compute the depth of ``self``.""" raise NotImplementedError 
 """Compute the height of ``self``.""" raise NotImplementedError 
 # TODO more 
 # non-implemented methods end here 
 self.ring = ring 
 """Helper to check ``J`` is an ideal of our ring.""" if not isinstance(J, Ideal) or J.ring != self.ring: raise ValueError( 'J must be an ideal of %s, got %s' % (self.ring, J)) 
 """ Return True if ``elem`` is an element of this ideal. 
 >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).ideal(x+1, x-1).contains(3) True >>> QQ.old_poly_ring(x).ideal(x**2, x**3).contains(x) False """ return self._contains_elem(self.ring.convert(elem)) 
 """ Returns True if ``other`` is is a subset of ``self``. 
 Here ``other`` may be an ideal. 
 >>> from sympy.abc import x >>> from sympy import QQ >>> I = QQ.old_poly_ring(x).ideal(x+1) >>> I.subset([x**2 - 1, x**2 + 2*x + 1]) True >>> I.subset([x**2 + 1, x + 1]) False >>> I.subset(QQ.old_poly_ring(x).ideal(x**2 - 1)) True """ if isinstance(other, Ideal): return self._contains_ideal(other) return all(self._contains_elem(x) for x in other) 
 r""" Compute the ideal quotient of ``self`` by ``J``. 
 That is, if ``self`` is the ideal `I`, compute the set `I : J = \{x \in R | xJ \subset I \}`. 
 >>> from sympy.abc import x, y >>> from sympy import QQ >>> R = QQ.old_poly_ring(x, y) >>> R.ideal(x*y).quotient(R.ideal(x)) <y> """ self._check_ideal(J) return self._quotient(J, **opts) 
 """ Compute the intersection of self with ideal J. 
 >>> from sympy.abc import x, y >>> from sympy import QQ >>> R = QQ.old_poly_ring(x, y) >>> R.ideal(x).intersect(R.ideal(y)) <x*y> """ self._check_ideal(J) return self._intersect(J) 
 r""" Compute the ideal saturation of ``self`` by ``J``. 
 That is, if ``self`` is the ideal `I`, compute the set `I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}`. """ raise NotImplementedError # Note this can be implemented using repeated quotient 
 """ Compute the ideal generated by the union of ``self`` and ``J``. 
 >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).ideal(x**2 - 1).union(QQ.old_poly_ring(x).ideal((x+1)**2)) == QQ.old_poly_ring(x).ideal(x+1) True """ self._check_ideal(J) return self._union(J) 
 """ Compute the ideal product of ``self`` and ``J``. 
 That is, compute the ideal generated by products `xy`, for `x` an element of ``self`` and `y \in J`. 
 >>> from sympy.abc import x, y >>> from sympy import QQ >>> QQ.old_poly_ring(x, y).ideal(x).product(QQ.old_poly_ring(x, y).ideal(y)) <x*y> """ self._check_ideal(J) return self._product(J) 
 """ Reduce the element ``x`` of our ring modulo the ideal ``self``. 
 Here "reduce" has no specific meaning: it could return a unique normal form, simplify the expression a bit, or just do nothing. """ return x 
 if not isinstance(e, Ideal): R = self.ring.quotient_ring(self) if isinstance(e, R.dtype): return e if isinstance(e, R.ring.dtype): return R(e) return R.convert(e) self._check_ideal(e) return self.union(e) 
 
 if not isinstance(e, Ideal): try: e = self.ring.ideal(e) except CoercionFailed: return NotImplemented self._check_ideal(e) return self.product(e) 
 
 if exp < 0: raise NotImplementedError # TODO exponentiate by squaring return reduce(lambda x, y: x*y, [self]*exp, self.ring.ideal(1)) 
 if not isinstance(e, Ideal) or e.ring != self.ring: return False return self._equals(e) 
 return not (self == e) 
 
 """ Ideal implementation relying on the modules code. 
 Attributes: 
 - _module - the underlying module """ 
 Ideal.__init__(self, ring) self._module = module 
 return self._module.contains([x]) 
 if not isinstance(J, ModuleImplementedIdeal): raise NotImplementedError return self._module.is_submodule(J._module) 
 if not isinstance(J, ModuleImplementedIdeal): raise NotImplementedError return self.__class__(self.ring, self._module.intersect(J._module)) 
 if not isinstance(J, ModuleImplementedIdeal): raise NotImplementedError return self._module.module_quotient(J._module, **opts) 
 if not isinstance(J, ModuleImplementedIdeal): raise NotImplementedError return self.__class__(self.ring, self._module.union(J._module)) 
 def gens(self): """ Return generators for ``self``. 
 >>> from sympy import QQ >>> from sympy.abc import x, y >>> list(QQ.old_poly_ring(x, y).ideal(x, y, x**2 + y).gens) [x, y, x**2 + y] """ return (x[0] for x in self._module.gens) 
 """ Return True if ``self`` is the zero ideal. 
 >>> from sympy.abc import x >>> from sympy import QQ >>> QQ.old_poly_ring(x).ideal(x).is_zero() False >>> QQ.old_poly_ring(x).ideal().is_zero() True """ return self._module.is_zero() 
 """ Return True if ``self`` is the whole ring, i.e. one generator is a unit. 
 >>> from sympy.abc import x >>> from sympy import QQ, ilex >>> QQ.old_poly_ring(x).ideal(x).is_whole_ring() False >>> QQ.old_poly_ring(x).ideal(3).is_whole_ring() True >>> QQ.old_poly_ring(x, order=ilex).ideal(2 + x).is_whole_ring() True """ return self._module.is_full_module() 
 from sympy import sstr return '<' + ','.join(sstr(x) for [x] in self._module.gens) + '>' 
 # NOTE this is the only method using the fact that the module is a SubModule if not isinstance(J, ModuleImplementedIdeal): raise NotImplementedError return self.__class__(self.ring, self._module.submodule( *[[x*y] for [x] in self._module.gens for [y] in J._module.gens])) 
 """ Express ``e`` in terms of the generators of ``self``. 
 >>> from sympy.abc import x >>> from sympy import QQ >>> I = QQ.old_poly_ring(x).ideal(x**2 + 1, x) >>> I.in_terms_of_generators(1) [1, -x] """ return self._module.in_terms_of_generators([e]) 
 return self._module.reduce_element([x], **options)[0]  |