Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

""" 

Computations with modules over polynomial rings. 

 

This module implements various classes that encapsulate groebner basis 

computations for modules. Most of them should not be instantiated by hand. 

Instead, use the constructing routines on objects you already have. 

 

For example, to construct a free module over ``QQ[x, y]``, call 

``QQ[x, y].free_module(rank)`` instead of the ``FreeModule`` constructor. 

In fact ``FreeModule`` is an abstract base class that should not be 

instantiated, the ``free_module`` method instead returns the implementing class 

``FreeModulePolyRing``. 

 

In general, the abstract base classes implement most functionality in terms of 

a few non-implemented methods. The concrete base classes supply only these 

non-implemented methods. They may also supply new implementations of the 

convenience methods, for example if there are faster algorithms available. 

""" 

 

from __future__ import print_function, division 

 

from copy import copy 

 

from sympy.polys.polyerrors import CoercionFailed 

from sympy.polys.orderings import ProductOrder, monomial_key 

from sympy.polys.domains.field import Field 

from sympy.polys.agca.ideals import Ideal 

 

from sympy.core.compatibility import iterable, reduce, range 

 

# TODO 

# - module saturation 

# - module quotient/intersection for quotient rings 

# - free resoltutions / syzygies 

# - finding small/minimal generating sets 

# - ... 

 

########################################################################## 

## Abstract base classes ################################################# 

########################################################################## 

 

 

class Module(object): 

""" 

Abstract base class for modules. 

 

Do not instantiate - use ring explicit constructors instead: 

 

>>> from sympy import QQ 

>>> from sympy.abc import x 

>>> QQ.old_poly_ring(x).free_module(2) 

QQ[x]**2 

 

Attributes: 

 

- dtype - type of elements 

- ring - containing ring 

 

Non-implemented methods: 

 

- submodule 

- quotient_module 

- is_zero 

- is_submodule 

- multiply_ideal 

 

The method convert likely needs to be changed in subclasses. 

""" 

 

def __init__(self, ring): 

self.ring = ring 

 

def convert(self, elem, M=None): 

""" 

Convert ``elem`` into internal representation of this module. 

 

If ``M`` is not None, it should be a module containing it. 

""" 

if not isinstance(elem, self.dtype): 

raise CoercionFailed 

return elem 

 

def submodule(self, *gens): 

"""Generate a submodule.""" 

raise NotImplementedError 

 

def quotient_module(self, other): 

"""Generate a quotient module.""" 

raise NotImplementedError 

 

def __div__(self, e): 

if not isinstance(e, Module): 

e = self.submodule(*e) 

return self.quotient_module(e) 

 

__truediv__ = __div__ 

 

def contains(self, elem): 

"""Return True if ``elem`` is an element of this module.""" 

try: 

self.convert(elem) 

return True 

except CoercionFailed: 

return False 

 

def __contains__(self, elem): 

return self.contains(elem) 

 

def subset(self, other): 

""" 

Returns True if ``other`` is is a subset of ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> F.subset([(1, x), (x, 2)]) 

True 

>>> F.subset([(1/x, x), (x, 2)]) 

False 

""" 

return all(self.contains(x) for x in other) 

 

def __eq__(self, other): 

return self.is_submodule(other) and other.is_submodule(self) 

 

def __ne__(self, other): 

return not (self == other) 

 

def is_zero(self): 

"""Returns True if ``self`` is a zero module.""" 

raise NotImplementedError 

 

def is_submodule(self, other): 

"""Returns True if ``other`` is a submodule of ``self``.""" 

raise NotImplementedError 

 

def multiply_ideal(self, other): 

""" 

Multiply ``self`` by the ideal ``other``. 

""" 

raise NotImplementedError 

 

def __mul__(self, e): 

if not isinstance(e, Ideal): 

try: 

e = self.ring.ideal(e) 

except (CoercionFailed, NotImplementedError): 

return NotImplemented 

return self.multiply_ideal(e) 

 

__rmul__ = __mul__ 

 

def identity_hom(self): 

"""Return the identity homomorphism on ``self``.""" 

raise NotImplementedError 

 

 

class ModuleElement(object): 

""" 

Base class for module element wrappers. 

 

Use this class to wrap primitive data types as module elements. It stores 

a reference to the containing module, and implements all the arithmetic 

operators. 

 

Attributes: 

 

- module - containing module 

- data - internal data 

 

Methods that likely need change in subclasses: 

 

- add 

- mul 

- div 

- eq 

""" 

 

def __init__(self, module, data): 

self.module = module 

self.data = data 

 

def add(self, d1, d2): 

"""Add data ``d1`` and ``d2``.""" 

return d1 + d2 

 

def mul(self, m, d): 

"""Multiply module data ``m`` by coefficient d.""" 

return m * d 

 

def div(self, m, d): 

"""Divide module data ``m`` by coefficient d.""" 

return m / d 

 

def eq(self, d1, d2): 

"""Return true if d1 and d2 represent the same element.""" 

return d1 == d2 

 

def __add__(self, om): 

if not isinstance(om, self.__class__) or om.module != self.module: 

try: 

om = self.module.convert(om) 

except CoercionFailed: 

return NotImplemented 

return self.__class__(self.module, self.add(self.data, om.data)) 

 

__radd__ = __add__ 

 

def __neg__(self): 

return self.__class__(self.module, self.mul(self.data, 

self.module.ring.convert(-1))) 

 

def __sub__(self, om): 

if not isinstance(om, self.__class__) or om.module != self.module: 

try: 

om = self.module.convert(om) 

except CoercionFailed: 

return NotImplemented 

return self.__add__(-om) 

 

def __rsub__(self, om): 

return (-self).__add__(om) 

 

def __mul__(self, o): 

if not isinstance(o, self.module.ring.dtype): 

try: 

o = self.module.ring.convert(o) 

except CoercionFailed: 

return NotImplemented 

return self.__class__(self.module, self.mul(self.data, o)) 

 

__rmul__ = __mul__ 

 

def __div__(self, o): 

if not isinstance(o, self.module.ring.dtype): 

try: 

o = self.module.ring.convert(o) 

except CoercionFailed: 

return NotImplemented 

return self.__class__(self.module, self.div(self.data, o)) 

 

__truediv__ = __div__ 

 

def __eq__(self, om): 

if not isinstance(om, self.__class__) or om.module != self.module: 

try: 

om = self.module.convert(om) 

except CoercionFailed: 

return False 

return self.eq(self.data, om.data) 

 

def __ne__(self, om): 

return not self.__eq__(om) 

 

########################################################################## 

## Free Modules ########################################################## 

########################################################################## 

 

 

class FreeModuleElement(ModuleElement): 

"""Element of a free module. Data stored as a tuple.""" 

 

def add(self, d1, d2): 

return tuple(x + y for x, y in zip(d1, d2)) 

 

def mul(self, d, p): 

return tuple(x * p for x in d) 

 

def div(self, d, p): 

return tuple(x / p for x in d) 

 

def __repr__(self): 

from sympy import sstr 

return '[' + ', '.join(sstr(x) for x in self.data) + ']' 

 

def __iter__(self): 

return self.data.__iter__() 

 

def __getitem__(self, idx): 

return self.data[idx] 

 

 

class FreeModule(Module): 

""" 

Abstract base class for free modules. 

 

Additional attributes: 

 

- rank - rank of the free module 

 

Non-implemented methods: 

 

- submodule 

""" 

 

dtype = FreeModuleElement 

 

def __init__(self, ring, rank): 

Module.__init__(self, ring) 

self.rank = rank 

 

def __repr__(self): 

return repr(self.ring) + "**" + repr(self.rank) 

 

def is_submodule(self, other): 

""" 

Returns True if ``other`` is a submodule of ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> M = F.submodule([2, x]) 

>>> F.is_submodule(F) 

True 

>>> F.is_submodule(M) 

True 

>>> M.is_submodule(F) 

False 

""" 

if isinstance(other, SubModule): 

return other.container == self 

if isinstance(other, FreeModule): 

return other.ring == self.ring and other.rank == self.rank 

return False 

 

def convert(self, elem, M=None): 

""" 

Convert ``elem`` into the internal representation. 

 

This method is called implicitly whenever computations involve elements 

not in the internal representation. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> F.convert([1, 0]) 

[1, 0] 

""" 

if isinstance(elem, FreeModuleElement): 

if elem.module is self: 

return elem 

if elem.module.rank != self.rank: 

raise CoercionFailed 

return FreeModuleElement(self, 

tuple(self.ring.convert(x, elem.module.ring) for x in elem.data)) 

elif iterable(elem): 

tpl = tuple(self.ring.convert(x) for x in elem) 

if len(tpl) != self.rank: 

raise CoercionFailed 

return FreeModuleElement(self, tpl) 

elif elem is 0: 

return FreeModuleElement(self, (self.ring.convert(0),)*self.rank) 

else: 

raise CoercionFailed 

 

def is_zero(self): 

""" 

Returns True if ``self`` is a zero module. 

 

(If, as this implementation assumes, the coefficient ring is not the 

zero ring, then this is equivalent to the rank being zero.) 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> QQ.old_poly_ring(x).free_module(0).is_zero() 

True 

>>> QQ.old_poly_ring(x).free_module(1).is_zero() 

False 

""" 

return self.rank == 0 

 

def basis(self): 

""" 

Return a set of basis elements. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> QQ.old_poly_ring(x).free_module(3).basis() 

([1, 0, 0], [0, 1, 0], [0, 0, 1]) 

""" 

from sympy.matrices import eye 

M = eye(self.rank) 

return tuple(self.convert(M.row(i)) for i in range(self.rank)) 

 

def quotient_module(self, submodule): 

""" 

Return a quotient module. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> M = QQ.old_poly_ring(x).free_module(2) 

>>> M.quotient_module(M.submodule([1, x], [x, 2])) 

QQ[x]**2/<[1, x], [x, 2]> 

 

Or more conicisely, using the overloaded division operator: 

 

>>> QQ.old_poly_ring(x).free_module(2) / [[1, x], [x, 2]] 

QQ[x]**2/<[1, x], [x, 2]> 

""" 

return QuotientModule(self.ring, self, submodule) 

 

def multiply_ideal(self, other): 

""" 

Multiply ``self`` by the ideal ``other``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> I = QQ.old_poly_ring(x).ideal(x) 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> F.multiply_ideal(I) 

<[x, 0], [0, x]> 

""" 

return self.submodule(*self.basis()).multiply_ideal(other) 

 

def identity_hom(self): 

""" 

Return the identity homomorphism on ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> QQ.old_poly_ring(x).free_module(2).identity_hom() 

Matrix([ 

[1, 0], : QQ[x]**2 -> QQ[x]**2 

[0, 1]]) 

""" 

from sympy.polys.agca.homomorphisms import homomorphism 

return homomorphism(self, self, self.basis()) 

 

 

class FreeModulePolyRing(FreeModule): 

""" 

Free module over a generalized polynomial ring. 

 

Do not instantiate this, use the constructor method of the ring instead: 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(3) 

>>> F 

QQ[x]**3 

>>> F.contains([x, 1, 0]) 

True 

>>> F.contains([1/x, 0, 1]) 

False 

""" 

 

def __init__(self, ring, rank): 

from sympy.polys.domains.old_polynomialring import PolynomialRingBase 

FreeModule.__init__(self, ring, rank) 

if not isinstance(ring, PolynomialRingBase): 

raise NotImplementedError('This implementation only works over ' 

+ 'polynomial rings, got %s' % ring) 

if not isinstance(ring.dom, Field): 

raise NotImplementedError('Ground domain must be a field, ' 

+ 'got %s' % ring.dom) 

 

def submodule(self, *gens, **opts): 

""" 

Generate a submodule. 

 

>>> from sympy.abc import x, y 

>>> from sympy import QQ 

>>> M = QQ.old_poly_ring(x, y).free_module(2).submodule([x, x + y]) 

>>> M 

<[x, x + y]> 

>>> M.contains([2*x, 2*x + 2*y]) 

True 

>>> M.contains([x, y]) 

False 

""" 

return SubModulePolyRing(gens, self, **opts) 

 

 

class FreeModuleQuotientRing(FreeModule): 

""" 

Free module over a quotient ring. 

 

Do not instantiate this, use the constructor method of the ring instead: 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(3) 

>>> F 

(QQ[x]/<x**2 + 1>)**3 

 

Attributes 

 

- quot - the quotient module `R^n / IR^n`, where `R/I` is our ring 

""" 

 

def __init__(self, ring, rank): 

from sympy.polys.domains.quotientring import QuotientRing 

FreeModule.__init__(self, ring, rank) 

if not isinstance(ring, QuotientRing): 

raise NotImplementedError('This implementation only works over ' 

+ 'quotient rings, got %s' % ring) 

F = self.ring.ring.free_module(self.rank) 

self.quot = F / (self.ring.base_ideal*F) 

 

def __repr__(self): 

return "(" + repr(self.ring) + ")" + "**" + repr(self.rank) 

 

def submodule(self, *gens, **opts): 

""" 

Generate a submodule. 

 

>>> from sympy.abc import x, y 

>>> from sympy import QQ 

>>> M = (QQ.old_poly_ring(x, y)/[x**2 - y**2]).free_module(2).submodule([x, x + y]) 

>>> M 

<[x + <x**2 - y**2>, x + y + <x**2 - y**2>]> 

>>> M.contains([y**2, x**2 + x*y]) 

True 

>>> M.contains([x, y]) 

False 

""" 

return SubModuleQuotientRing(gens, self, **opts) 

 

def lift(self, elem): 

""" 

Lift the element ``elem`` of self to the module self.quot. 

 

Note that self.quot is the same set as self, just as an R-module 

and not as an R/I-module, so this makes sense. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2) 

>>> e = F.convert([1, 0]) 

>>> e 

[1 + <x**2 + 1>, 0 + <x**2 + 1>] 

>>> L = F.quot 

>>> l = F.lift(e) 

>>> l 

[1, 0] + <[x**2 + 1, 0], [0, x**2 + 1]> 

>>> L.contains(l) 

True 

""" 

return self.quot.convert([x.data for x in elem]) 

 

def unlift(self, elem): 

""" 

Push down an element of self.quot to self. 

 

This undoes ``lift``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2) 

>>> e = F.convert([1, 0]) 

>>> l = F.lift(e) 

>>> e == l 

False 

>>> e == F.unlift(l) 

True 

""" 

return self.convert(elem.data) 

 

########################################################################## 

## Submodules and subquotients ########################################### 

########################################################################## 

 

 

class SubModule(Module): 

""" 

Base class for submodules. 

 

Attributes: 

 

- container - containing module 

- gens - generators (subset of containing module) 

- rank - rank of containing module 

 

Non-implemented methods: 

 

- _contains 

- _syzygies 

- _in_terms_of_generators 

- _intersect 

- _module_quotient 

 

Methods that likely need change in subclasses: 

 

- reduce_element 

""" 

 

def __init__(self, gens, container): 

Module.__init__(self, container.ring) 

self.gens = tuple(container.convert(x) for x in gens) 

self.container = container 

self.rank = container.rank 

self.ring = container.ring 

self.dtype = container.dtype 

 

def __repr__(self): 

return "<" + ", ".join(repr(x) for x in self.gens) + ">" 

 

def _contains(self, other): 

"""Implementation of containment. 

Other is guaranteed to be FreeModuleElement.""" 

raise NotImplementedError 

 

def _syzygies(self): 

"""Implementation of syzygy computation wrt self generators.""" 

raise NotImplementedError 

 

def _in_terms_of_generators(self, e): 

"""Implementation of expression in terms of generators.""" 

raise NotImplementedError 

 

def convert(self, elem, M=None): 

""" 

Convert ``elem`` into the internal represantition. 

 

Mostly called implicitly. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> M = QQ.old_poly_ring(x).free_module(2).submodule([1, x]) 

>>> M.convert([2, 2*x]) 

[2, 2*x] 

""" 

if isinstance(elem, self.container.dtype) and elem.module is self: 

return elem 

r = copy(self.container.convert(elem, M)) 

r.module = self 

if not self._contains(r): 

raise CoercionFailed 

return r 

 

def _intersect(self, other): 

"""Implementation of intersection. 

Other is guaranteed to be a submodule of same free module.""" 

raise NotImplementedError 

 

def _module_quotient(self, other): 

"""Implementation of quotient. 

Other is guaranteed to be a submodule of same free module.""" 

raise NotImplementedError 

 

def intersect(self, other, **options): 

""" 

Returns the intersection of ``self`` with submodule ``other``. 

 

>>> from sympy.abc import x, y 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x, y).free_module(2) 

>>> F.submodule([x, x]).intersect(F.submodule([y, y])) 

<[x*y, x*y]> 

 

Some implementation allow further options to be passed. Currently, to 

only one implemented is ``relations=True``, in which case the function 

will return a triple ``(res, rela, relb)``, where ``res`` is the 

intersection module, and ``rela`` and ``relb`` are lists of coefficient 

vectors, expressing the generators of ``res`` in terms of the 

generators of ``self`` (``rela``) and ``other`` (``relb``). 

 

>>> F.submodule([x, x]).intersect(F.submodule([y, y]), relations=True) 

(<[x*y, x*y]>, [(y,)], [(x,)]) 

 

The above result says: the intersection module is generated by the 

single element `(-xy, -xy) = -y (x, x) = -x (y, y)`, where 

`(x, x)` and `(y, y)` respectively are the unique generators of 

the two modules being intersected. 

""" 

if not isinstance(other, SubModule): 

raise TypeError('%s is not a SubModule' % other) 

if other.container != self.container: 

raise ValueError( 

'%s is contained in a different free module' % other) 

return self._intersect(other, **options) 

 

def module_quotient(self, other, **options): 

r""" 

Returns the module quotient of ``self`` by submodule ``other``. 

 

That is, if ``self`` is the module `M` and ``other`` is `N`, then 

return the ideal `\{f \in R | fN \subset M\}`. 

 

>>> from sympy import QQ 

>>> from sympy.abc import x, y 

>>> F = QQ.old_poly_ring(x, y).free_module(2) 

>>> S = F.submodule([x*y, x*y]) 

>>> T = F.submodule([x, x]) 

>>> S.module_quotient(T) 

<y> 

 

Some implementations allow further options to be passed. Currently, the 

only one implemented is ``relations=True``, which may only be passed 

if ``other`` is prinicipal. In this case the function 

will return a pair ``(res, rel)`` where ``res`` is the ideal, and 

``rel`` is a list of coefficient vectors, expressing the generators of 

the ideal, multiplied by the generator of ``other`` in terms of 

generators of ``self``. 

 

>>> S.module_quotient(T, relations=True) 

(<y>, [[1]]) 

 

This means that the quotient ideal is generated by the single element 

`y`, and that `y (x, x) = 1 (xy, xy)`, `(x, x)` and `(xy, xy)` being 

the generators of `T` and `S`, respectively. 

""" 

if not isinstance(other, SubModule): 

raise TypeError('%s is not a SubModule' % other) 

if other.container != self.container: 

raise ValueError( 

'%s is contained in a different free module' % other) 

return self._module_quotient(other, **options) 

 

def union(self, other): 

""" 

Returns the module generated by the union of ``self`` and ``other``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(1) 

>>> M = F.submodule([x**2 + x]) # <x(x+1)> 

>>> N = F.submodule([x**2 - 1]) # <(x-1)(x+1)> 

>>> M.union(N) == F.submodule([x+1]) 

True 

""" 

if not isinstance(other, SubModule): 

raise TypeError('%s is not a SubModule' % other) 

if other.container != self.container: 

raise ValueError( 

'%s is contained in a different free module' % other) 

return self.__class__(self.gens + other.gens, self.container) 

 

def is_zero(self): 

""" 

Return True if ``self`` is a zero module. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> F.submodule([x, 1]).is_zero() 

False 

>>> F.submodule([0, 0]).is_zero() 

True 

""" 

return all(x == 0 for x in self.gens) 

 

def submodule(self, *gens): 

""" 

Generate a submodule. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> M = QQ.old_poly_ring(x).free_module(2).submodule([x, 1]) 

>>> M.submodule([x**2, x]) 

<[x**2, x]> 

""" 

if not self.subset(gens): 

raise ValueError('%s not a subset of %s' % (gens, self)) 

return self.__class__(gens, self.container) 

 

def is_full_module(self): 

""" 

Return True if ``self`` is the entire free module. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> F.submodule([x, 1]).is_full_module() 

False 

>>> F.submodule([1, 1], [1, 2]).is_full_module() 

True 

""" 

return all(self.contains(x) for x in self.container.basis()) 

 

def is_submodule(self, other): 

""" 

Returns True if ``other`` is a submodule of ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> M = F.submodule([2, x]) 

>>> N = M.submodule([2*x, x**2]) 

>>> M.is_submodule(M) 

True 

>>> M.is_submodule(N) 

True 

>>> N.is_submodule(M) 

False 

""" 

if isinstance(other, SubModule): 

return self.container == other.container and \ 

all(self.contains(x) for x in other.gens) 

if isinstance(other, (FreeModule, QuotientModule)): 

return self.container == other and self.is_full_module() 

return False 

 

def syzygy_module(self, **opts): 

r""" 

Compute the syzygy module of the generators of ``self``. 

 

Suppose `M` is generated by `f_1, \dots, f_n` over the ring 

`R`. Consider the homomorphism `\phi: R^n \to M`, given by 

sending `(r_1, \dots, r_n) \to r_1 f_1 + \dots + r_n f_n`. 

The syzygy module is defined to be the kernel of `\phi`. 

 

The syzygy module is zero iff the generators generate freely a free 

submodule: 

 

>>> from sympy.abc import x, y 

>>> from sympy import QQ 

>>> QQ.old_poly_ring(x).free_module(2).submodule([1, 0], [1, 1]).syzygy_module().is_zero() 

True 

 

A slightly more interesting example: 

 

>>> M = QQ.old_poly_ring(x, y).free_module(2).submodule([x, 2*x], [y, 2*y]) 

>>> S = QQ.old_poly_ring(x, y).free_module(2).submodule([y, -x]) 

>>> M.syzygy_module() == S 

True 

""" 

F = self.ring.free_module(len(self.gens)) 

# NOTE we filter out zero syzygies. This is for convenience of the 

# _syzygies function and not meant to replace any real "generating set 

# reduction" algorithm 

return F.submodule(*[x for x in self._syzygies() if F.convert(x) != 0], 

**opts) 

 

def in_terms_of_generators(self, e): 

""" 

Express element ``e`` of ``self`` in terms of the generators. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> M = F.submodule([1, 0], [1, 1]) 

>>> M.in_terms_of_generators([x, x**2]) 

[-x**2 + x, x**2] 

""" 

try: 

e = self.convert(e) 

except CoercionFailed: 

raise ValueError('%s is not an element of %s' % (e, self)) 

return self._in_terms_of_generators(e) 

 

def reduce_element(self, x): 

""" 

Reduce the element ``x`` of our ring modulo the ideal ``self``. 

 

Here "reduce" has no specific meaning, it could return a unique normal 

form, simplify the expression a bit, or just do nothing. 

""" 

return x 

 

def quotient_module(self, other, **opts): 

""" 

Return a quotient module. 

 

This is the same as taking a submodule of a quotient of the containing 

module. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> S1 = F.submodule([x, 1]) 

>>> S2 = F.submodule([x**2, x]) 

>>> S1.quotient_module(S2) 

<[x, 1] + <[x**2, x]>> 

 

Or more coincisely, using the overloaded division operator: 

 

>>> F.submodule([x, 1]) / [(x**2, x)] 

<[x, 1] + <[x**2, x]>> 

""" 

if not self.is_submodule(other): 

raise ValueError('%s not a submodule of %s' % (other, self)) 

return SubQuotientModule(self.gens, 

self.container.quotient_module(other), **opts) 

 

def __add__(self, oth): 

return self.container.quotient_module(self).convert(oth) 

 

__radd__ = __add__ 

 

def multiply_ideal(self, I): 

""" 

Multiply ``self`` by the ideal ``I``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> I = QQ.old_poly_ring(x).ideal(x**2) 

>>> M = QQ.old_poly_ring(x).free_module(2).submodule([1, 1]) 

>>> I*M 

<[x**2, x**2]> 

""" 

return self.submodule(*[x*g for [x] in I._module.gens for g in self.gens]) 

 

def inclusion_hom(self): 

""" 

Return a homomorphism representing the inclusion map of ``self``. 

 

That is, the natural map from ``self`` to ``self.container``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> QQ.old_poly_ring(x).free_module(2).submodule([x, x]).inclusion_hom() 

Matrix([ 

[1, 0], : <[x, x]> -> QQ[x]**2 

[0, 1]]) 

""" 

return self.container.identity_hom().restrict_domain(self) 

 

def identity_hom(self): 

""" 

Return the identity homomorphism on ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> QQ.old_poly_ring(x).free_module(2).submodule([x, x]).identity_hom() 

Matrix([ 

[1, 0], : <[x, x]> -> <[x, x]> 

[0, 1]]) 

""" 

return self.container.identity_hom().restrict_domain( 

self).restrict_codomain(self) 

 

 

class SubQuotientModule(SubModule): 

""" 

Submodule of a quotient module. 

 

Equivalently, quotient module of a submodule. 

 

Do not instantiate this, instead use the submodule or quotient_module 

constructing methods: 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> S = F.submodule([1, 0], [1, x]) 

>>> Q = F/[(1, 0)] 

>>> S/[(1, 0)] == Q.submodule([5, x]) 

True 

 

Attributes: 

 

- base - base module we are quotient of 

- killed_module - submodule used to form the quotient 

""" 

def __init__(self, gens, container, **opts): 

SubModule.__init__(self, gens, container) 

self.killed_module = self.container.killed_module 

# XXX it is important for some code below that the generators of base 

# are in this particular order! 

self.base = self.container.base.submodule( 

*[x.data for x in self.gens], **opts).union(self.killed_module) 

 

def _contains(self, elem): 

return self.base.contains(elem.data) 

 

def _syzygies(self): 

# let N = self.killed_module be generated by e_1, ..., e_r 

# let F = self.base be generated by f_1, ..., f_s and e_1, ..., e_r 

# Then self = F/N. 

# Let phi: R**s --> self be the evident surjection. 

# Similarly psi: R**(s + r) --> F. 

# We need to find generators for ker(phi). Let chi: R**s --> F be the 

# evident lift of phi. For X in R**s, phi(X) = 0 iff chi(X) is 

# contained in N, iff there exists Y in R**r such that 

# psi(X, Y) = 0. 

# Hence if alpha: R**(s + r) --> R**s is the projection map, then 

# ker(phi) = alpha ker(psi). 

return [X[:len(self.gens)] for X in self.base._syzygies()] 

 

def _in_terms_of_generators(self, e): 

return self.base._in_terms_of_generators(e.data)[:len(self.gens)] 

 

def is_full_module(self): 

""" 

Return True if ``self`` is the entire free module. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> F.submodule([x, 1]).is_full_module() 

False 

>>> F.submodule([1, 1], [1, 2]).is_full_module() 

True 

""" 

return self.base.is_full_module() 

 

def quotient_hom(self): 

""" 

Return the quotient homomorphism to self. 

 

That is, return the natural map from ``self.base`` to ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> M = (QQ.old_poly_ring(x).free_module(2) / [(1, x)]).submodule([1, 0]) 

>>> M.quotient_hom() 

Matrix([ 

[1, 0], : <[1, 0], [1, x]> -> <[1, 0] + <[1, x]>, [1, x] + <[1, x]>> 

[0, 1]]) 

""" 

return self.base.identity_hom().quotient_codomain(self.killed_module) 

 

 

_subs0 = lambda x: x[0] 

_subs1 = lambda x: x[1:] 

 

 

class ModuleOrder(ProductOrder): 

"""A product monomial order with a zeroth term as module index.""" 

 

def __init__(self, o1, o2, TOP): 

if TOP: 

ProductOrder.__init__(self, (o2, _subs1), (o1, _subs0)) 

else: 

ProductOrder.__init__(self, (o1, _subs0), (o2, _subs1)) 

 

 

class SubModulePolyRing(SubModule): 

""" 

Submodule of a free module over a generalized polynomial ring. 

 

Do not instantiate this, use the constructor method of FreeModule instead: 

 

>>> from sympy.abc import x, y 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x, y).free_module(2) 

>>> F.submodule([x, y], [1, 0]) 

<[x, y], [1, 0]> 

 

Attributes: 

 

- order - monomial order used 

""" 

 

#self._gb - cached groebner basis 

#self._gbe - cached groebner basis relations 

 

def __init__(self, gens, container, order="lex", TOP=True): 

SubModule.__init__(self, gens, container) 

if not isinstance(container, FreeModulePolyRing): 

raise NotImplementedError('This implementation is for submodules of ' 

+ 'FreeModulePolyRing, got %s' % container) 

self.order = ModuleOrder(monomial_key(order), self.ring.order, TOP) 

self._gb = None 

self._gbe = None 

 

def __eq__(self, other): 

if isinstance(other, SubModulePolyRing) and self.order != other.order: 

return False 

return SubModule.__eq__(self, other) 

 

def _groebner(self, extended=False): 

"""Returns a standard basis in sdm form.""" 

from sympy.polys.distributedmodules import sdm_groebner, sdm_nf_mora 

if self._gbe is None and extended: 

gb, gbe = sdm_groebner( 

[self.ring._vector_to_sdm(x, self.order) for x in self.gens], 

sdm_nf_mora, self.order, self.ring.dom, extended=True) 

self._gb, self._gbe = tuple(gb), tuple(gbe) 

if self._gb is None: 

self._gb = tuple(sdm_groebner( 

[self.ring._vector_to_sdm(x, self.order) for x in self.gens], 

sdm_nf_mora, self.order, self.ring.dom)) 

if extended: 

return self._gb, self._gbe 

else: 

return self._gb 

 

def _groebner_vec(self, extended=False): 

"""Returns a standard basis in element form.""" 

if not extended: 

return [self.convert(self.ring._sdm_to_vector(x, self.rank)) 

for x in self._groebner()] 

gb, gbe = self._groebner(extended=True) 

return ([self.convert(self.ring._sdm_to_vector(x, self.rank)) 

for x in gb], 

[self.ring._sdm_to_vector(x, len(self.gens)) for x in gbe]) 

 

def _contains(self, x): 

from sympy.polys.distributedmodules import sdm_zero, sdm_nf_mora 

return sdm_nf_mora(self.ring._vector_to_sdm(x, self.order), 

self._groebner(), self.order, self.ring.dom) == \ 

sdm_zero() 

 

def _syzygies(self): 

"""Compute syzygies. See [SCA, algorithm 2.5.4].""" 

# NOTE if self.gens is a standard basis, this can be done more 

# efficiently using Schreyer's theorem 

from sympy.matrices import eye 

 

# First bullet point 

k = len(self.gens) 

r = self.rank 

im = eye(k) 

Rkr = self.ring.free_module(r + k) 

newgens = [] 

for j, f in enumerate(self.gens): 

m = [0]*(r + k) 

for i, v in enumerate(f): 

m[i] = f[i] 

for i in range(k): 

m[r + i] = im[j, i] 

newgens.append(Rkr.convert(m)) 

# Note: we need *descending* order on module index, and TOP=False to 

# get an eliminetaion order 

F = Rkr.submodule(*newgens, order='ilex', TOP=False) 

 

# Second bullet point: standard basis of F 

G = F._groebner_vec() 

 

# Third bullet point: G0 = G intersect the new k components 

G0 = [x[r:] for x in G if all(y == self.ring.convert(0) 

for y in x[:r])] 

 

# Fourth and fifth bullet points: we are done 

return G0 

 

def _in_terms_of_generators(self, e): 

"""Expression in terms of generators. See [SCA, 2.8.1].""" 

# NOTE: if gens is a standard basis, this can be done more efficiently 

M = self.ring.free_module(self.rank).submodule(*((e,) + self.gens)) 

S = M.syzygy_module( 

order="ilex", TOP=False) # We want decreasing order! 

G = S._groebner_vec() 

# This list cannot not be empty since e is an element 

e = [x for x in G if self.ring.is_unit(x[0])][0] 

return [-x/e[0] for x in e[1:]] 

 

def reduce_element(self, x, NF=None): 

""" 

Reduce the element ``x`` of our container modulo ``self``. 

 

This applies the normal form ``NF`` to ``x``. If ``NF`` is passed 

as none, the default Mora normal form is used (which is not unique!). 

""" 

from sympy.polys.distributedmodules import sdm_nf_mora 

if NF is None: 

NF = sdm_nf_mora 

return self.container.convert(self.ring._sdm_to_vector(NF( 

self.ring._vector_to_sdm(x, self.order), self._groebner(), 

self.order, self.ring.dom), 

self.rank)) 

 

def _intersect(self, other, relations=False): 

# See: [SCA, section 2.8.2] 

fi = self.gens 

hi = other.gens 

r = self.rank 

ci = [[0]*(2*r) for _ in range(r)] 

for k in range(r): 

ci[k][k] = 1 

ci[k][r + k] = 1 

di = [list(f) + [0]*r for f in fi] 

ei = [[0]*r + list(h) for h in hi] 

syz = self.ring.free_module(2*r).submodule(*(ci + di + ei))._syzygies() 

nonzero = [x for x in syz if any(y != self.ring.zero for y in x[:r])] 

res = self.container.submodule(*([-y for y in x[:r]] for x in nonzero)) 

reln1 = [x[r:r + len(fi)] for x in nonzero] 

reln2 = [x[r + len(fi):] for x in nonzero] 

if relations: 

return res, reln1, reln2 

return res 

 

def _module_quotient(self, other, relations=False): 

# See: [SCA, section 2.8.4] 

if relations and len(other.gens) != 1: 

raise NotImplementedError 

if len(other.gens) == 0: 

return self.ring.ideal(1) 

elif len(other.gens) == 1: 

# We do some trickery. Let f be the (vector!) generating ``other`` 

# and f1, .., fn be the (vectors) generating self. 

# Consider the submodule of R^{r+1} generated by (f, 1) and 

# {(fi, 0) | i}. Then the intersection with the last module 

# component yields the quotient. 

g1 = list(other.gens[0]) + [1] 

gi = [list(x) + [0] for x in self.gens] 

# NOTE: We *need* to use an elimination order 

M = self.ring.free_module(self.rank + 1).submodule(*([g1] + gi), 

order='ilex', TOP=False) 

if not relations: 

return self.ring.ideal(*[x[-1] for x in M._groebner_vec() if 

all(y == self.ring.zero for y in x[:-1])]) 

else: 

G, R = M._groebner_vec(extended=True) 

indices = [i for i, x in enumerate(G) if 

all(y == self.ring.zero for y in x[:-1])] 

return (self.ring.ideal(*[G[i][-1] for i in indices]), 

[[-x for x in R[i][1:]] for i in indices]) 

# For more generators, we use I : <h1, .., hn> = intersection of 

# {I : <hi> | i} 

# TODO this can be done more efficiently 

return reduce(lambda x, y: x.intersect(y), 

(self._module_quotient(self.container.submodule(x)) for x in other.gens)) 

 

 

class SubModuleQuotientRing(SubModule): 

""" 

Class for submodules of free modules over quotient rings. 

 

Do not instantiate this. Instead use the submodule methods. 

 

>>> from sympy.abc import x, y 

>>> from sympy import QQ 

>>> M = (QQ.old_poly_ring(x, y)/[x**2 - y**2]).free_module(2).submodule([x, x + y]) 

>>> M 

<[x + <x**2 - y**2>, x + y + <x**2 - y**2>]> 

>>> M.contains([y**2, x**2 + x*y]) 

True 

>>> M.contains([x, y]) 

False 

 

Attributes: 

 

- quot - the subquotient of `R^n/IR^n` generated by lifts of our generators 

""" 

 

def __init__(self, gens, container): 

SubModule.__init__(self, gens, container) 

self.quot = self.container.quot.submodule( 

*[self.container.lift(x) for x in self.gens]) 

 

def _contains(self, elem): 

return self.quot._contains(self.container.lift(elem)) 

 

def _syzygies(self): 

return [tuple(self.ring.convert(y, self.quot.ring) for y in x) 

for x in self.quot._syzygies()] 

 

def _in_terms_of_generators(self, elem): 

return [self.ring.convert(x, self.quot.ring) for x in 

self.quot._in_terms_of_generators(self.container.lift(elem))] 

 

########################################################################## 

## Quotient Modules ###################################################### 

########################################################################## 

 

 

class QuotientModuleElement(ModuleElement): 

"""Element of a quotient module.""" 

 

def eq(self, d1, d2): 

"""Equality comparison.""" 

return self.module.killed_module.contains(d1 - d2) 

 

def __repr__(self): 

return repr(self.data) + " + " + repr(self.module.killed_module) 

 

 

class QuotientModule(Module): 

""" 

Class for quotient modules. 

 

Do not instantiate this directly. For subquotients, see the 

SubQuotientModule class. 

 

Attributes: 

 

- base - the base module we are a quotient of 

- killed_module - the submodule used to form the quotient 

- rank of the base 

""" 

 

dtype = QuotientModuleElement 

 

def __init__(self, ring, base, submodule): 

Module.__init__(self, ring) 

if not base.is_submodule(submodule): 

raise ValueError('%s is not a submodule of %s' % (submodule, base)) 

self.base = base 

self.killed_module = submodule 

self.rank = base.rank 

 

def __repr__(self): 

return repr(self.base) + "/" + repr(self.killed_module) 

 

def is_zero(self): 

""" 

Return True if ``self`` is a zero module. 

 

This happens if and only if the base module is the same as the 

submodule being killed. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) 

>>> (F/[(1, 0)]).is_zero() 

False 

>>> (F/[(1, 0), (0, 1)]).is_zero() 

True 

""" 

return self.base == self.killed_module 

 

def is_submodule(self, other): 

""" 

Return True if ``other`` is a submodule of ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> Q = QQ.old_poly_ring(x).free_module(2) / [(x, x)] 

>>> S = Q.submodule([1, 0]) 

>>> Q.is_submodule(S) 

True 

>>> S.is_submodule(Q) 

False 

""" 

if isinstance(other, QuotientModule): 

return self.killed_module == other.killed_module and \ 

self.base.is_submodule(other.base) 

if isinstance(other, SubQuotientModule): 

return other.container == self 

return False 

 

def submodule(self, *gens, **opts): 

""" 

Generate a submodule. 

 

This is the same as taking a quotient of a submodule of the base 

module. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> Q = QQ.old_poly_ring(x).free_module(2) / [(x, x)] 

>>> Q.submodule([x, 0]) 

<[x, 0] + <[x, x]>> 

""" 

return SubQuotientModule(gens, self, **opts) 

 

def convert(self, elem, M=None): 

""" 

Convert ``elem`` into the internal representation. 

 

This method is called implicitly whenever computations involve elements 

not in the internal representation. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> F = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)] 

>>> F.convert([1, 0]) 

[1, 0] + <[1, 2], [1, x]> 

""" 

if isinstance(elem, QuotientModuleElement): 

if elem.module is self: 

return elem 

if self.killed_module.is_submodule(elem.module.killed_module): 

return QuotientModuleElement(self, self.base.convert(elem.data)) 

raise CoercionFailed 

return QuotientModuleElement(self, self.base.convert(elem)) 

 

def identity_hom(self): 

""" 

Return the identity homomorphism on ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> M = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)] 

>>> M.identity_hom() 

Matrix([ 

[1, 0], : QQ[x]**2/<[1, 2], [1, x]> -> QQ[x]**2/<[1, 2], [1, x]> 

[0, 1]]) 

""" 

return self.base.identity_hom().quotient_codomain( 

self.killed_module).quotient_domain(self.killed_module) 

 

def quotient_hom(self): 

""" 

Return the quotient homomorphism to ``self``. 

 

That is, return a homomorphism representing the natural map from 

``self.base`` to ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> M = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)] 

>>> M.quotient_hom() 

Matrix([ 

[1, 0], : QQ[x]**2 -> QQ[x]**2/<[1, 2], [1, x]> 

[0, 1]]) 

""" 

return self.base.identity_hom().quotient_codomain( 

self.killed_module)