Coverage for sympy/polys/domains/domain.py : 26%
        
        
    Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
| 
 """Implementation of :class:`Domain` class. """ 
 from __future__ import print_function, division 
 from sympy.polys.domains.domainelement import DomainElement 
 from sympy.core import Basic, sympify from sympy.core.compatibility import HAS_GMPY, integer_types, is_sequence 
 from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError from sympy.polys.orderings import lex from sympy.polys.polyutils import _unify_gens 
 from sympy.utilities import default_sort_key, public 
 @public class Domain(object): """Represents an abstract domain. """ 
 dtype = None zero = None one = None 
 has_Ring = False has_Field = False 
 has_assoc_Ring = False has_assoc_Field = False 
 is_FiniteField = is_FF = False is_IntegerRing = is_ZZ = False is_RationalField = is_QQ = False is_RealField = is_RR = False is_ComplexField = is_CC = False is_AlgebraicField = is_Algebraic = False is_PolynomialRing = is_Poly = False is_FractionField = is_Frac = False is_SymbolicDomain = is_EX = False 
 is_Exact = True is_Numerical = False 
 is_Simple = False is_Composite = False 
 has_CharacteristicZero = False 
 rep = None alias = None 
 def __init__(self): raise NotImplementedError 
 def __str__(self): return self.rep 
 def __repr__(self): return str(self) 
 def __hash__(self): 
 def new(self, *args): 
 @property def tp(self): 
 def __call__(self, *args): """Construct an element of ``self`` domain from ``args``. """ 
 def normal(self, *args): return self.dtype(*args) 
 def convert_from(self, element, base): """Convert ``element`` to ``self.dtype`` given the base domain. """ else: 
 
 
 
 raise CoercionFailed("can't convert %s of type %s from %s to %s" % (element, type(element), base, self)) 
 def convert(self, element, base=None): """Convert ``element`` to ``self.dtype``. """ 
 
 
 
 integers = GMPYIntegerRing() if isinstance(element, integers.tp): return self.convert_from(element, integers) 
 rationals = GMPYRationalField() if isinstance(element, rationals.tp): return self.convert_from(element, rationals) 
 parent = RealField(tol=False) return self.convert_from(parent(element), parent) 
 parent = ComplexField(tol=False) return self.convert_from(parent(element), parent) 
 
 # TODO: implement this in from_ methods return self.convert(element.LC()) 
 pass else: # TODO: remove this branch if not is_sequence(element): try: element = sympify(element) 
 if isinstance(element, Basic): return self.from_sympy(element) except (TypeError, ValueError): pass 
 raise CoercionFailed("can't convert %s of type %s to %s" % (element, type(element), self)) 
 def of_type(self, element): """Check if ``a`` is of type ``dtype``. """ 
 def __contains__(self, a): """Check if ``a`` belongs to this domain. """ 
 return True 
 def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ raise NotImplementedError 
 def from_sympy(self, a): """Convert a SymPy object to ``dtype``. """ raise NotImplementedError 
 def from_FF_python(K1, a, K0): """Convert ``ModularInteger(int)`` to ``dtype``. """ return None 
 def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return None 
 def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return None 
 def from_FF_gmpy(K1, a, K0): """Convert ``ModularInteger(mpz)`` to ``dtype``. """ return None 
 def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return None 
 def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return None 
 def from_RealField(K1, a, K0): """Convert a real element object to ``dtype``. """ return None 
 def from_ComplexField(K1, a, K0): """Convert a complex element to ``dtype``. """ return None 
 def from_AlgebraicField(K1, a, K0): """Convert an algebraic number to ``dtype``. """ return None 
 def from_PolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ if a.is_ground: return K1.convert(a.LC, K0.dom) 
 def from_FractionField(K1, a, K0): """Convert a rational function to ``dtype``. """ return None 
 def from_ExpressionDomain(K1, a, K0): """Convert a ``EX`` object to ``dtype``. """ return K1.from_sympy(a.ex) 
 def from_GlobalPolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ if a.degree() <= 0: return K1.convert(a.LC(), K0.dom) 
 def from_GeneralizedPolynomialRing(K1, a, K0): return K1.from_FractionField(a, K0) 
 def unify_with_symbols(K0, K1, symbols): raise UnificationFailed("can't unify %s with %s, given %s generators" % (K0, K1, tuple(symbols))) 
 
 def unify(K0, K1, symbols=None): """ Construct a minimal domain that contains elements of ``K0`` and ``K1``. 
 Known domains (from smallest to largest): 
 - ``GF(p)`` - ``ZZ`` - ``QQ`` - ``RR(prec, tol)`` - ``CC(prec, tol)`` - ``ALG(a, b, c)`` - ``K[x, y, z]`` - ``K(x, y, z)`` - ``EX`` 
 """ 
 
 return K0 return K1 
 
 
 
 K1.is_FractionField and K0.is_PolynomialRing) and (not K0_ground.has_Field or not K1_ground.has_Field) and domain.has_Field): domain = domain.get_ring() 
 else: cls = K1.__class__ 
 return cls(domain, symbols) 
 
 def mkinexact(cls, K0, K1): prec = max(K0.precision, K1.precision) tol = max(K0.tolerance, K1.tolerance) return cls(prec=prec, tol=tol) 
 if K0.is_ComplexField and K1.is_ComplexField: return mkinexact(K0.__class__, K0, K1) if K0.is_ComplexField and K1.is_RealField: return mkinexact(K0.__class__, K0, K1) if K0.is_RealField and K1.is_ComplexField: return mkinexact(K1.__class__, K1, K0) if K0.is_RealField and K1.is_RealField: return mkinexact(K0.__class__, K0, K1) if K0.is_ComplexField or K0.is_RealField: return K0 if K1.is_ComplexField or K1.is_RealField: return K1 
 if K0.is_AlgebraicField and K1.is_AlgebraicField: return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext)) elif K0.is_AlgebraicField: return K0 elif K1.is_AlgebraicField: return K1 
 if K0.is_RationalField: return K0 if K1.is_RationalField: return K1 
 if K0.is_IntegerRing: return K0 if K1.is_IntegerRing: return K1 
 if K0.is_FiniteField and K1.is_FiniteField: return K0.__class__(max(K0.mod, K1.mod, key=default_sort_key)) 
 from sympy.polys.domains import EX return EX 
 def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ 
 def __ne__(self, other): """Returns ``False`` if two domains are equivalent. """ 
 def map(self, seq): """Rersively apply ``self`` to all elements of ``seq``. """ 
 result.append(self.map(elt)) else: 
 
 def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self) 
 def get_field(self): """Returns a field associated with ``self``. """ raise DomainError('there is no field associated with %s' % self) 
 def get_exact(self): """Returns an exact domain associated with ``self``. """ return self 
 def __getitem__(self, symbols): """The mathematical way to make a polynomial ring. """ if hasattr(symbols, '__iter__'): return self.poly_ring(*symbols) else: return self.poly_ring(symbols) 
 def poly_ring(self, *symbols, **kwargs): """Returns a polynomial ring, i.e. `K[X]`. """ 
 def frac_field(self, *symbols, **kwargs): """Returns a fraction field, i.e. `K(X)`. """ 
 def old_poly_ring(self, *symbols, **kwargs): """Returns a polynomial ring, i.e. `K[X]`. """ from sympy.polys.domains.old_polynomialring import PolynomialRing return PolynomialRing(self, *symbols, **kwargs) 
 def old_frac_field(self, *symbols, **kwargs): """Returns a fraction field, i.e. `K(X)`. """ from sympy.polys.domains.old_fractionfield import FractionField return FractionField(self, *symbols, **kwargs) 
 def algebraic_field(self, *extension): """Returns an algebraic field, i.e. `K(\\alpha, \dots)`. """ raise DomainError("can't create algebraic field over %s" % self) 
 def inject(self, *symbols): """Inject generators into this domain. """ raise NotImplementedError 
 def is_zero(self, a): """Returns True if ``a`` is zero. """ return not a 
 def is_one(self, a): """Returns True if ``a`` is one. """ 
 def is_positive(self, a): """Returns True if ``a`` is positive. """ return a > 0 
 def is_negative(self, a): """Returns True if ``a`` is negative. """ 
 def is_nonpositive(self, a): """Returns True if ``a`` is non-positive. """ return a <= 0 
 def is_nonnegative(self, a): """Returns True if ``a`` is non-negative. """ 
 def abs(self, a): """Absolute value of ``a``, implies ``__abs__``. """ 
 def neg(self, a): """Returns ``a`` negated, implies ``__neg__``. """ return -a 
 def pos(self, a): """Returns ``a`` positive, implies ``__pos__``. """ return +a 
 def add(self, a, b): """Sum of ``a`` and ``b``, implies ``__add__``. """ return a + b 
 def sub(self, a, b): """Difference of ``a`` and ``b``, implies ``__sub__``. """ return a - b 
 def mul(self, a, b): """Product of ``a`` and ``b``, implies ``__mul__``. """ return a * b 
 def pow(self, a, b): """Raise ``a`` to power ``b``, implies ``__pow__``. """ return a ** b 
 def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies something. """ raise NotImplementedError 
 def quo(self, a, b): """Quotient of ``a`` and ``b``, implies something. """ raise NotImplementedError 
 def rem(self, a, b): """Remainder of ``a`` and ``b``, implies ``__mod__``. """ raise NotImplementedError 
 def div(self, a, b): """Division of ``a`` and ``b``, implies something. """ raise NotImplementedError 
 def invert(self, a, b): """Returns inversion of ``a mod b``, implies something. """ raise NotImplementedError 
 def revert(self, a): """Returns ``a**(-1)`` if possible. """ raise NotImplementedError 
 def numer(self, a): """Returns numerator of ``a``. """ raise NotImplementedError 
 def denom(self, a): """Returns denominator of ``a``. """ raise NotImplementedError 
 def half_gcdex(self, a, b): """Half extended GCD of ``a`` and ``b``. """ s, t, h = self.gcdex(a, b) return s, h 
 def gcdex(self, a, b): """Extended GCD of ``a`` and ``b``. """ raise NotImplementedError 
 def cofactors(self, a, b): """Returns GCD and cofactors of ``a`` and ``b``. """ 
 def gcd(self, a, b): """Returns GCD of ``a`` and ``b``. """ raise NotImplementedError 
 def lcm(self, a, b): """Returns LCM of ``a`` and ``b``. """ raise NotImplementedError 
 def log(self, a, b): """Returns b-base logarithm of ``a``. """ raise NotImplementedError 
 def sqrt(self, a): """Returns square root of ``a``. """ raise NotImplementedError 
 def evalf(self, a, prec=None, **options): """Returns numerical approximation of ``a``. """ return self.to_sympy(a).evalf(prec, **options) 
 n = evalf 
 def real(self, a): return a 
 def imag(self, a): return self.zero 
 def almosteq(self, a, b, tolerance=None): """Check if ``a`` and ``b`` are almost equal. """ return a == b 
 def characteristic(self): """Return the characteristic of this domain. """ raise NotImplementedError('characteristic()')  |