Coverage for sympy/polys/domains/old_fractionfield.py : 41%
        
        
    Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
| 
 """Implementation of :class:`FractionField` class. """ 
 
 
 
 
 """A class for representing rational function fields. """ 
 
 
 if not gens: raise GeneratorsNeeded("generators not specified") 
 lev = len(gens) - 1 self.ngens = len(gens) 
 self.zero = self.dtype.zero(lev, dom, ring=self) self.one = self.dtype.one(lev, dom, ring=self) 
 self.domain = self.dom = dom self.symbols = self.gens = gens 
 return self.dtype(element, self.dom, len(self.gens) - 1, ring=self) 
 return str(self.dom) + '(' + ','.join(map(str, self.gens)) + ')' 
 return hash((self.__class__.__name__, self.dtype, self.dom, self.gens)) 
 """Returns ``True`` if two domains are equivalent. """ return isinstance(other, FractionField) and \ self.dtype == other.dtype and self.dom == other.dom and self.gens == other.gens 
 """Convert ``a`` to a SymPy object. """ return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) / basic_from_dict(a.denom().to_sympy_dict(), *self.gens)) 
 """Convert SymPy's expression to ``dtype``. """ p, q = a.as_numer_denom() 
 num, _ = dict_from_basic(p, gens=self.gens) den, _ = dict_from_basic(q, gens=self.gens) 
 for k, v in num.items(): num[k] = self.dom.from_sympy(v) 
 for k, v in den.items(): den[k] = self.dom.from_sympy(v) 
 return self((num, den)).cancel() 
 """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) 
 """Convert a Python ``Fraction`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) 
 """Convert a GMPY ``mpz`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) 
 """Convert a GMPY ``mpq`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) 
 """Convert a mpmath ``mpf`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) 
 """Convert a ``DMF`` object to ``dtype``. """ if K1.gens == K0.gens: if K1.dom == K0.dom: return K1(a.rep) else: return K1(a.convert(K1.dom).rep) else: monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens) 
 if K1.dom != K0.dom: coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ] 
 return K1(dict(zip(monoms, coeffs))) 
 """ Convert a fraction field element to another fraction field. 
 Examples ======== 
 >>> from sympy.polys.polyclasses import DMF >>> from sympy.polys.domains import ZZ, QQ >>> from sympy.abc import x 
 >>> f = DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(1)]), ZZ) 
 >>> QQx = QQ.old_frac_field(x) >>> ZZx = ZZ.old_frac_field(x) 
 >>> QQx.from_FractionField(f, ZZx) (x + 2)/(x + 1) 
 """ if K1.gens == K0.gens: if K1.dom == K0.dom: return a else: return K1((a.numer().convert(K1.dom).rep, a.denom().convert(K1.dom).rep)) elif set(K0.gens).issubset(K1.gens): nmonoms, ncoeffs = _dict_reorder( a.numer().to_dict(), K0.gens, K1.gens) dmonoms, dcoeffs = _dict_reorder( a.denom().to_dict(), K0.gens, K1.gens) 
 if K1.dom != K0.dom: ncoeffs = [ K1.dom.convert(c, K0.dom) for c in ncoeffs ] dcoeffs = [ K1.dom.convert(c, K0.dom) for c in dcoeffs ] 
 return K1((dict(zip(nmonoms, ncoeffs)), dict(zip(dmonoms, dcoeffs)))) 
 """Returns a ring associated with ``self``. """ from sympy.polys.domains import PolynomialRing return PolynomialRing(self.dom, *self.gens) 
 """Returns a polynomial ring, i.e. `K[X]`. """ raise NotImplementedError('nested domains not allowed') 
 """Returns a fraction field, i.e. `K(X)`. """ raise NotImplementedError('nested domains not allowed') 
 """Returns True if ``a`` is positive. """ return self.dom.is_positive(a.numer().LC()) 
 """Returns True if ``a`` is negative. """ return self.dom.is_negative(a.numer().LC()) 
 """Returns True if ``a`` is non-positive. """ return self.dom.is_nonpositive(a.numer().LC()) 
 """Returns True if ``a`` is non-negative. """ return self.dom.is_nonnegative(a.numer().LC()) 
 """Returns numerator of ``a``. """ return a.numer() 
 """Returns denominator of ``a``. """ return a.denom() 
 """Returns factorial of ``a``. """ return self.dtype(self.dom.factorial(a))  |