Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

"""Implementation of :class:`PolynomialRing` class. """ 

 

from __future__ import print_function, division 

 

from sympy.polys.domains.ring import Ring 

from sympy.polys.domains.compositedomain import CompositeDomain 

from sympy.polys.domains.characteristiczero import CharacteristicZero 

from sympy.polys.domains.old_fractionfield import FractionField 

 

from sympy.polys.polyclasses import DMP, DMF 

from sympy.polys.polyerrors import (GeneratorsNeeded, PolynomialError, 

CoercionFailed, ExactQuotientFailed, NotReversible) 

from sympy.polys.polyutils import dict_from_basic, basic_from_dict, _dict_reorder 

 

from sympy.polys.orderings import monomial_key, build_product_order 

 

from sympy.polys.agca.modules import FreeModulePolyRing 

 

from sympy.core.compatibility import iterable, range 

from sympy.utilities import public 

 

# XXX why does this derive from CharacteristicZero??? 

 

@public 

class PolynomialRingBase(Ring, CharacteristicZero, CompositeDomain): 

""" 

Base class for generalized polynomial rings. 

 

This base class should be used for uniform access to generalized polynomial 

rings. Subclasses only supply information about the element storage etc. 

 

Do not instantiate. 

""" 

 

has_assoc_Ring = True 

has_assoc_Field = True 

 

default_order = "grevlex" 

 

def __init__(self, dom, *gens, **opts): 

if not gens: 

raise GeneratorsNeeded("generators not specified") 

 

lev = len(gens) - 1 

self.ngens = len(gens) 

 

self.zero = self.dtype.zero(lev, dom, ring=self) 

self.one = self.dtype.one(lev, dom, ring=self) 

 

self.domain = self.dom = dom 

self.symbols = self.gens = gens 

# NOTE 'order' may not be set if inject was called through CompositeDomain 

self.order = opts.get('order', monomial_key(self.default_order)) 

 

def new(self, element): 

return self.dtype(element, self.dom, len(self.gens) - 1, ring=self) 

 

def __str__(self): 

s_order = str(self.order) 

orderstr = ( 

" order=" + s_order) if s_order != self.default_order else "" 

return str(self.dom) + '[' + ','.join(map(str, self.gens)) + orderstr + ']' 

 

def __hash__(self): 

return hash((self.__class__.__name__, self.dtype, self.dom, 

self.gens, self.order)) 

 

def __eq__(self, other): 

"""Returns `True` if two domains are equivalent. """ 

return isinstance(other, PolynomialRingBase) and \ 

self.dtype == other.dtype and self.dom == other.dom and \ 

self.gens == other.gens and self.order == other.order 

 

def from_ZZ_python(K1, a, K0): 

"""Convert a Python `int` object to `dtype`. """ 

return K1(K1.dom.convert(a, K0)) 

 

def from_QQ_python(K1, a, K0): 

"""Convert a Python `Fraction` object to `dtype`. """ 

return K1(K1.dom.convert(a, K0)) 

 

def from_ZZ_gmpy(K1, a, K0): 

"""Convert a GMPY `mpz` object to `dtype`. """ 

return K1(K1.dom.convert(a, K0)) 

 

def from_QQ_gmpy(K1, a, K0): 

"""Convert a GMPY `mpq` object to `dtype`. """ 

return K1(K1.dom.convert(a, K0)) 

 

def from_RealField(K1, a, K0): 

"""Convert a mpmath `mpf` object to `dtype`. """ 

return K1(K1.dom.convert(a, K0)) 

 

def from_AlgebraicField(K1, a, K0): 

"""Convert a `ANP` object to `dtype`. """ 

if K1.dom == K0: 

return K1(a) 

 

def from_GlobalPolynomialRing(K1, a, K0): 

"""Convert a `DMP` object to `dtype`. """ 

if K1.gens == K0.gens: 

if K1.dom == K0.dom: 

return K1(a.rep) # set the correct ring 

else: 

return K1(a.convert(K1.dom).rep) 

else: 

monoms, coeffs = _dict_reorder(a.to_dict(), K0.gens, K1.gens) 

 

if K1.dom != K0.dom: 

coeffs = [ K1.dom.convert(c, K0.dom) for c in coeffs ] 

 

return K1(dict(zip(monoms, coeffs))) 

 

def get_field(self): 

"""Returns a field associated with `self`. """ 

return FractionField(self.dom, *self.gens) 

 

def poly_ring(self, *gens): 

"""Returns a polynomial ring, i.e. `K[X]`. """ 

raise NotImplementedError('nested domains not allowed') 

 

def frac_field(self, *gens): 

"""Returns a fraction field, i.e. `K(X)`. """ 

raise NotImplementedError('nested domains not allowed') 

 

def revert(self, a): 

try: 

return 1/a 

except (ExactQuotientFailed, ZeroDivisionError): 

raise NotReversible('%s is not a unit' % a) 

 

def gcdex(self, a, b): 

"""Extended GCD of `a` and `b`. """ 

return a.gcdex(b) 

 

def gcd(self, a, b): 

"""Returns GCD of `a` and `b`. """ 

return a.gcd(b) 

 

def lcm(self, a, b): 

"""Returns LCM of `a` and `b`. """ 

return a.lcm(b) 

 

def factorial(self, a): 

"""Returns factorial of `a`. """ 

return self.dtype(self.dom.factorial(a)) 

 

def _vector_to_sdm(self, v, order): 

""" 

For internal use by the modules class. 

 

Convert an iterable of elements of this ring into a sparse distributed 

module element. 

""" 

raise NotImplementedError 

 

def _sdm_to_dics(self, s, n): 

"""Helper for _sdm_to_vector.""" 

from sympy.polys.distributedmodules import sdm_to_dict 

dic = sdm_to_dict(s) 

res = [{} for _ in range(n)] 

for k, v in dic.items(): 

res[k[0]][k[1:]] = v 

return res 

 

def _sdm_to_vector(self, s, n): 

""" 

For internal use by the modules class. 

 

Convert a sparse distributed module into a list of length ``n``. 

 

>>> from sympy import QQ, ilex 

>>> from sympy.abc import x, y 

>>> R = QQ.old_poly_ring(x, y, order=ilex) 

>>> L = [((1, 1, 1), QQ(1)), ((0, 1, 0), QQ(1)), ((0, 0, 1), QQ(2))] 

>>> R._sdm_to_vector(L, 2) 

[x + 2*y, x*y] 

""" 

dics = self._sdm_to_dics(s, n) 

# NOTE this works for global and local rings! 

return [self(x) for x in dics] 

 

def free_module(self, rank): 

""" 

Generate a free module of rank ``rank`` over ``self``. 

 

>>> from sympy.abc import x 

>>> from sympy import QQ 

>>> QQ.old_poly_ring(x).free_module(2) 

QQ[x]**2 

""" 

return FreeModulePolyRing(self, rank) 

 

 

def _vector_to_sdm_helper(v, order): 

"""Helper method for common code in Global and Local poly rings.""" 

from sympy.polys.distributedmodules import sdm_from_dict 

d = {} 

for i, e in enumerate(v): 

for key, value in e.to_dict().items(): 

d[(i,) + key] = value 

return sdm_from_dict(d, order) 

 

 

@public 

class GlobalPolynomialRing(PolynomialRingBase): 

"""A true polynomial ring, with objects DMP. """ 

 

is_PolynomialRing = is_Poly = True 

dtype = DMP 

 

def from_FractionField(K1, a, K0): 

""" 

Convert a ``DMF`` object to ``DMP``. 

 

Examples 

======== 

 

>>> from sympy.polys.polyclasses import DMP, DMF 

>>> from sympy.polys.domains import ZZ 

>>> from sympy.abc import x 

 

>>> f = DMF(([ZZ(1), ZZ(1)], [ZZ(1)]), ZZ) 

>>> K = ZZ.old_frac_field(x) 

 

>>> F = ZZ.old_poly_ring(x).from_FractionField(f, K) 

 

>>> F == DMP([ZZ(1), ZZ(1)], ZZ) 

True 

>>> type(F) 

<class 'sympy.polys.polyclasses.DMP'> 

 

""" 

if a.denom().is_one: 

return K1.from_GlobalPolynomialRing(a.numer(), K0) 

 

def to_sympy(self, a): 

"""Convert `a` to a SymPy object. """ 

return basic_from_dict(a.to_sympy_dict(), *self.gens) 

 

def from_sympy(self, a): 

"""Convert SymPy's expression to `dtype`. """ 

try: 

rep, _ = dict_from_basic(a, gens=self.gens) 

except PolynomialError: 

raise CoercionFailed("can't convert %s to type %s" % (a, self)) 

 

for k, v in rep.items(): 

rep[k] = self.dom.from_sympy(v) 

 

return self(rep) 

 

def is_positive(self, a): 

"""Returns True if `LC(a)` is positive. """ 

return self.dom.is_positive(a.LC()) 

 

def is_negative(self, a): 

"""Returns True if `LC(a)` is negative. """ 

return self.dom.is_negative(a.LC()) 

 

def is_nonpositive(self, a): 

"""Returns True if `LC(a)` is non-positive. """ 

return self.dom.is_nonpositive(a.LC()) 

 

def is_nonnegative(self, a): 

"""Returns True if `LC(a)` is non-negative. """ 

return self.dom.is_nonnegative(a.LC()) 

 

def _vector_to_sdm(self, v, order): 

""" 

>>> from sympy import lex, QQ 

>>> from sympy.abc import x, y 

>>> R = QQ.old_poly_ring(x, y) 

>>> f = R.convert(x + 2*y) 

>>> g = R.convert(x * y) 

>>> R._vector_to_sdm([f, g], lex) 

[((1, 1, 1), 1), ((0, 1, 0), 1), ((0, 0, 1), 2)] 

""" 

return _vector_to_sdm_helper(v, order) 

 

 

class GeneralizedPolynomialRing(PolynomialRingBase): 

"""A generalized polynomial ring, with objects DMF. """ 

 

dtype = DMF 

 

def new(self, a): 

"""Construct an element of `self` domain from `a`. """ 

res = self.dtype(a, self.dom, len(self.gens) - 1, ring=self) 

 

# make sure res is actually in our ring 

if res.denom().terms(order=self.order)[0][0] != (0,)*len(self.gens): 

from sympy.printing.str import sstr 

raise CoercionFailed("denominator %s not allowed in %s" 

% (sstr(res), self)) 

return res 

 

def __contains__(self, a): 

try: 

a = self.convert(a) 

except CoercionFailed: 

return False 

return a.denom().terms(order=self.order)[0][0] == (0,)*len(self.gens) 

 

def from_FractionField(K1, a, K0): 

dmf = K1.get_field().from_FractionField(a, K0) 

return K1((dmf.num, dmf.den)) 

 

def to_sympy(self, a): 

"""Convert `a` to a SymPy object. """ 

return (basic_from_dict(a.numer().to_sympy_dict(), *self.gens) / 

basic_from_dict(a.denom().to_sympy_dict(), *self.gens)) 

 

def from_sympy(self, a): 

"""Convert SymPy's expression to `dtype`. """ 

p, q = a.as_numer_denom() 

 

num, _ = dict_from_basic(p, gens=self.gens) 

den, _ = dict_from_basic(q, gens=self.gens) 

 

for k, v in num.items(): 

num[k] = self.dom.from_sympy(v) 

 

for k, v in den.items(): 

den[k] = self.dom.from_sympy(v) 

 

return self((num, den)).cancel() 

 

def _vector_to_sdm(self, v, order): 

""" 

Turn an iterable into a sparse distributed module. 

 

Note that the vector is multiplied by a unit first to make all entries 

polynomials. 

 

>>> from sympy import ilex, QQ 

>>> from sympy.abc import x, y 

>>> R = QQ.old_poly_ring(x, y, order=ilex) 

>>> f = R.convert((x + 2*y) / (1 + x)) 

>>> g = R.convert(x * y) 

>>> R._vector_to_sdm([f, g], ilex) 

[((0, 0, 1), 2), ((0, 1, 0), 1), ((1, 1, 1), 1), ((1, 

2, 1), 1)] 

""" 

# NOTE this is quite inefficient... 

u = self.one.numer() 

for x in v: 

u *= x.denom() 

return _vector_to_sdm_helper([x.numer()*u/x.denom() for x in v], order) 

 

 

@public 

def PolynomialRing(dom, *gens, **opts): 

r""" 

Create a generalized multivariate polynomial ring. 

 

A generalized polynomial ring is defined by a ground field `K`, a set 

of generators (typically `x_1, \dots, x_n`) and a monomial order `<`. 

The monomial order can be global, local or mixed. In any case it induces 

a total ordering on the monomials, and there exists for every (non-zero) 

polynomial `f \in K[x_1, \dots, x_n]` a well-defined "leading monomial" 

`LM(f) = LM(f, >)`. One can then define a multiplicative subset 

`S = S_> = \{f \in K[x_1, \dots, x_n] | LM(f) = 1\}`. The generalized 

polynomial ring corresponding to the monomial order is 

`R = S^{-1}K[x_1, \dots, x_n]`. 

 

If `>` is a so-called global order, that is `1` is the smallest monomial, 

then we just have `S = K` and `R = K[x_1, \dots, x_n]`. 

 

Examples 

======== 

 

A few examples may make this clearer. 

 

>>> from sympy.abc import x, y 

>>> from sympy import QQ 

 

Our first ring uses global lexicographic order. 

 

>>> R1 = QQ.old_poly_ring(x, y, order=(("lex", x, y),)) 

 

The second ring uses local lexicographic order. Note that when using a 

single (non-product) order, you can just specify the name and omit the 

variables: 

 

>>> R2 = QQ.old_poly_ring(x, y, order="ilex") 

 

The third and fourth rings use a mixed orders: 

 

>>> o1 = (("ilex", x), ("lex", y)) 

>>> o2 = (("lex", x), ("ilex", y)) 

>>> R3 = QQ.old_poly_ring(x, y, order=o1) 

>>> R4 = QQ.old_poly_ring(x, y, order=o2) 

 

We will investigate what elements of `K(x, y)` are contained in the various 

rings. 

 

>>> L = [x, 1/x, y/(1 + x), 1/(1 + y), 1/(1 + x*y)] 

>>> test = lambda R: [f in R for f in L] 

 

The first ring is just `K[x, y]`: 

 

>>> test(R1) 

[True, False, False, False, False] 

 

The second ring is R1 localised at the maximal ideal (x, y): 

 

>>> test(R2) 

[True, False, True, True, True] 

 

The third ring is R1 localised at the prime ideal (x): 

 

>>> test(R3) 

[True, False, True, False, True] 

 

Finally the fourth ring is R1 localised at `S = K[x, y] \setminus yK[y]`: 

 

>>> test(R4) 

[True, False, False, True, False] 

""" 

 

order = opts.get("order", GeneralizedPolynomialRing.default_order) 

if iterable(order): 

order = build_product_order(order, gens) 

order = monomial_key(order) 

opts['order'] = order 

 

if order.is_global: 

return GlobalPolynomialRing(dom, *gens, **opts) 

else: 

return GeneralizedPolynomialRing(dom, *gens, **opts)