Coverage for sympy/polys/domains/pythonintegerring.py : 29%
        
        
    Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
| 
 """Implementaton of :class:`PythonIntegerRing` class. """ 
 from __future__ import print_function, division 
 from sympy.polys.domains.integerring import IntegerRing from sympy.polys.domains.groundtypes import ( PythonInteger, SymPyInteger, python_sqrt, python_factorial, python_gcdex, python_gcd, python_lcm, ) 
 from sympy.polys.polyerrors import CoercionFailed from sympy.utilities import public 
 @public class PythonIntegerRing(IntegerRing): """Integer ring based on Python's ``int`` type. """ 
 dtype = PythonInteger zero = dtype(0) one = dtype(1) alias = 'ZZ_python' 
 """Allow instantiation of this domain. """ 
 def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ 
 def from_sympy(self, a): """Convert SymPy's Integer to ``dtype``. """ return PythonInteger(int(a)) else: 
 def from_FF_python(K1, a, K0): """Convert ``ModularInteger(int)`` to Python's ``int``. """ return a.to_int() 
 def from_ZZ_python(K1, a, K0): """Convert Python's ``int`` to Python's ``int``. """ 
 def from_QQ_python(K1, a, K0): """Convert Python's ``Fraction`` to Python's ``int``. """ 
 def from_FF_gmpy(K1, a, K0): """Convert ``ModularInteger(mpz)`` to Python's ``int``. """ return PythonInteger(a.to_int()) 
 def from_ZZ_gmpy(K1, a, K0): """Convert GMPY's ``mpz`` to Python's ``int``. """ return PythonInteger(a) 
 def from_QQ_gmpy(K1, a, K0): """Convert GMPY's ``mpq`` to Python's ``int``. """ if a.denom() == 1: return PythonInteger(a.numer()) 
 def from_RealField(K1, a, K0): """Convert mpmath's ``mpf`` to Python's ``int``. """ p, q = K0.to_rational(a) 
 if q == 1: return PythonInteger(p) 
 def gcdex(self, a, b): """Compute extended GCD of ``a`` and ``b``. """ 
 def gcd(self, a, b): """Compute GCD of ``a`` and ``b``. """ 
 def lcm(self, a, b): """Compute LCM of ``a`` and ``b``. """ 
 def sqrt(self, a): """Compute square root of ``a``. """ 
 def factorial(self, a): """Compute factorial of ``a``. """  |