Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

"""Sparse rational function fields. """ 

 

from __future__ import print_function, division 

 

from operator import add, mul, lt, le, gt, ge 

 

from sympy.core.compatibility import is_sequence, reduce, string_types 

from sympy.core.expr import Expr 

from sympy.core.symbol import Symbol 

from sympy.core.sympify import CantSympify, sympify 

from sympy.polys.rings import PolyElement 

from sympy.polys.orderings import lex 

from sympy.polys.polyerrors import CoercionFailed 

from sympy.polys.polyoptions import build_options 

from sympy.polys.polyutils import _parallel_dict_from_expr 

from sympy.polys.domains.domainelement import DomainElement 

from sympy.polys.domains.polynomialring import PolynomialRing 

from sympy.polys.domains.fractionfield import FractionField 

from sympy.polys.constructor import construct_domain 

from sympy.printing.defaults import DefaultPrinting 

from sympy.utilities import public 

from sympy.utilities.magic import pollute 

 

@public 

def field(symbols, domain, order=lex): 

"""Construct new rational function field returning (field, x1, ..., xn). """ 

_field = FracField(symbols, domain, order) 

return (_field,) + _field.gens 

 

@public 

def xfield(symbols, domain, order=lex): 

"""Construct new rational function field returning (field, (x1, ..., xn)). """ 

_field = FracField(symbols, domain, order) 

return (_field, _field.gens) 

 

@public 

def vfield(symbols, domain, order=lex): 

"""Construct new rational function field and inject generators into global namespace. """ 

_field = FracField(symbols, domain, order) 

pollute([ sym.name for sym in _field.symbols ], _field.gens) 

return _field 

 

@public 

def sfield(exprs, *symbols, **options): 

"""Construct a field deriving generators and domain 

from options and input expressions. 

 

Parameters 

---------- 

exprs : :class:`Expr` or sequence of :class:`Expr` (sympifiable) 

symbols : sequence of :class:`Symbol`/:class:`Expr` 

options : keyword arguments understood by :class:`Options` 

 

Examples 

======== 

 

>>> from sympy.core import symbols 

>>> from sympy.functions import exp, log 

>>> from sympy.polys.fields import sfield 

 

>>> x = symbols("x") 

>>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2) 

>>> K 

Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with lex order 

>>> f 

(4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5) 

""" 

single = False 

if not is_sequence(exprs): 

exprs, single = [exprs], True 

 

exprs = list(map(sympify, exprs)) 

opt = build_options(symbols, options) 

numdens = [] 

for expr in exprs: 

numdens.extend(expr.as_numer_denom()) 

reps, opt = _parallel_dict_from_expr(numdens, opt) 

 

if opt.domain is None: 

# NOTE: this is inefficient because construct_domain() automatically 

# performs conversion to the target domain. It shouldn't do this. 

coeffs = sum([list(rep.values()) for rep in reps], []) 

opt.domain, _ = construct_domain(coeffs, opt=opt) 

 

_field = FracField(opt.gens, opt.domain, opt.order) 

fracs = [] 

for i in range(0, len(reps), 2): 

fracs.append(_field(tuple(reps[i:i+2]))) 

 

if single: 

return (_field, fracs[0]) 

else: 

return (_field, fracs) 

 

_field_cache = {} 

 

class FracField(DefaultPrinting): 

"""Multivariate distributed rational function field. """ 

 

def __new__(cls, symbols, domain, order=lex): 

from sympy.polys.rings import PolyRing 

ring = PolyRing(symbols, domain, order) 

symbols = ring.symbols 

ngens = ring.ngens 

domain = ring.domain 

order = ring.order 

 

_hash = hash((cls.__name__, symbols, ngens, domain, order)) 

obj = _field_cache.get(_hash) 

 

if obj is None: 

obj = object.__new__(cls) 

obj._hash = _hash 

obj.ring = ring 

obj.dtype = type("FracElement", (FracElement,), {"field": obj}) 

obj.symbols = symbols 

obj.ngens = ngens 

obj.domain = domain 

obj.order = order 

 

obj.zero = obj.dtype(ring.zero) 

obj.one = obj.dtype(ring.one) 

 

obj.gens = obj._gens() 

 

for symbol, generator in zip(obj.symbols, obj.gens): 

if isinstance(symbol, Symbol): 

name = symbol.name 

 

if not hasattr(obj, name): 

setattr(obj, name, generator) 

 

_field_cache[_hash] = obj 

 

return obj 

 

def _gens(self): 

"""Return a list of polynomial generators. """ 

return tuple([ self.dtype(gen) for gen in self.ring.gens ]) 

 

def __getnewargs__(self): 

return (self.symbols, self.domain, self.order) 

 

def __hash__(self): 

return self._hash 

 

def __eq__(self, other): 

return self is other 

 

def __ne__(self, other): 

return self is not other 

 

def raw_new(self, numer, denom=None): 

return self.dtype(numer, denom) 

def new(self, numer, denom=None): 

if denom is None: denom = self.ring.one 

numer, denom = numer.cancel(denom) 

return self.raw_new(numer, denom) 

 

def domain_new(self, element): 

return self.domain.convert(element) 

 

def ground_new(self, element): 

try: 

return self.new(self.ring.ground_new(element)) 

except CoercionFailed: 

domain = self.domain 

 

if not domain.has_Field and domain.has_assoc_Field: 

ring = self.ring 

ground_field = domain.get_field() 

element = ground_field.convert(element) 

numer = ring.ground_new(ground_field.numer(element)) 

denom = ring.ground_new(ground_field.denom(element)) 

return self.raw_new(numer, denom) 

else: 

raise 

 

def field_new(self, element): 

if isinstance(element, FracElement): 

if self == element.field: 

return element 

else: 

raise NotImplementedError("conversion") 

elif isinstance(element, PolyElement): 

denom, numer = element.clear_denoms() 

numer = numer.set_ring(self.ring) 

denom = self.ring.ground_new(denom) 

return self.raw_new(numer, denom) 

elif isinstance(element, tuple) and len(element) == 2: 

numer, denom = list(map(self.ring.ring_new, element)) 

return self.new(numer, denom) 

elif isinstance(element, string_types): 

raise NotImplementedError("parsing") 

elif isinstance(element, Expr): 

return self.from_expr(element) 

else: 

return self.ground_new(element) 

 

__call__ = field_new 

 

def _rebuild_expr(self, expr, mapping): 

domain = self.domain 

 

def _rebuild(expr): 

generator = mapping.get(expr) 

 

if generator is not None: 

return generator 

elif expr.is_Add: 

return reduce(add, list(map(_rebuild, expr.args))) 

elif expr.is_Mul: 

return reduce(mul, list(map(_rebuild, expr.args))) 

elif expr.is_Pow and expr.exp.is_Integer: 

return _rebuild(expr.base)**int(expr.exp) 

else: 

try: 

return domain.convert(expr) 

except CoercionFailed: 

if not domain.has_Field and domain.has_assoc_Field: 

return domain.get_field().convert(expr) 

else: 

raise 

 

return _rebuild(sympify(expr)) 

 

def from_expr(self, expr): 

mapping = dict(list(zip(self.symbols, self.gens))) 

 

try: 

frac = self._rebuild_expr(expr, mapping) 

except CoercionFailed: 

raise ValueError("expected an expression convertible to a rational function in %s, got %s" % (self, expr)) 

else: 

return self.field_new(frac) 

 

def to_domain(self): 

return FractionField(self) 

 

def to_ring(self): 

from sympy.polys.rings import PolyRing 

return PolyRing(self.symbols, self.domain, self.order) 

 

class FracElement(DomainElement, DefaultPrinting, CantSympify): 

"""Element of multivariate distributed rational function field. """ 

 

def __init__(self, numer, denom=None): 

if denom is None: 

denom = self.field.ring.one 

elif not denom: 

raise ZeroDivisionError("zero denominator") 

 

self.numer = numer 

self.denom = denom 

 

def raw_new(f, numer, denom): 

return f.__class__(numer, denom) 

def new(f, numer, denom): 

return f.raw_new(*numer.cancel(denom)) 

 

def to_poly(f): 

if f.denom != 1: 

raise ValueError("f.denom should be 1") 

return f.numer 

 

def parent(self): 

return self.field.to_domain() 

 

def __getnewargs__(self): 

return (self.field, self.numer, self.denom) 

 

_hash = None 

 

def __hash__(self): 

_hash = self._hash 

if _hash is None: 

self._hash = _hash = hash((self.field, self.numer, self.denom)) 

return _hash 

 

def copy(self): 

return self.raw_new(self.numer.copy(), self.denom.copy()) 

 

def set_field(self, new_field): 

if self.field == new_field: 

return self 

else: 

new_ring = new_field.ring 

numer = self.numer.set_ring(new_ring) 

denom = self.denom.set_ring(new_ring) 

return new_field.new(numer, denom) 

 

def as_expr(self, *symbols): 

return self.numer.as_expr(*symbols)/self.denom.as_expr(*symbols) 

 

def __eq__(f, g): 

if isinstance(g, f.field.dtype): 

return f.numer == g.numer and f.denom == g.denom 

else: 

return f.numer == g and f.denom == f.field.ring.one 

 

def __ne__(f, g): 

return not f.__eq__(g) 

 

def __nonzero__(f): 

return bool(f.numer) 

 

__bool__ = __nonzero__ 

 

def sort_key(self): 

return (self.denom.sort_key(), self.numer.sort_key()) 

 

def _cmp(f1, f2, op): 

if isinstance(f2, f1.field.dtype): 

return op(f1.sort_key(), f2.sort_key()) 

else: 

return NotImplemented 

 

def __lt__(f1, f2): 

return f1._cmp(f2, lt) 

def __le__(f1, f2): 

return f1._cmp(f2, le) 

def __gt__(f1, f2): 

return f1._cmp(f2, gt) 

def __ge__(f1, f2): 

return f1._cmp(f2, ge) 

 

def __pos__(f): 

"""Negate all coefficients in ``f``. """ 

return f.raw_new(f.numer, f.denom) 

 

def __neg__(f): 

"""Negate all coefficients in ``f``. """ 

return f.raw_new(-f.numer, f.denom) 

 

def _extract_ground(self, element): 

domain = self.field.domain 

 

try: 

element = domain.convert(element) 

except CoercionFailed: 

if not domain.has_Field and domain.has_assoc_Field: 

ground_field = domain.get_field() 

 

try: 

element = ground_field.convert(element) 

except CoercionFailed: 

pass 

else: 

return -1, ground_field.numer(element), ground_field.denom(element) 

 

return 0, None, None 

else: 

return 1, element, None 

 

def __add__(f, g): 

"""Add rational functions ``f`` and ``g``. """ 

field = f.field 

 

if not g: 

return f 

elif not f: 

return g 

elif isinstance(g, field.dtype): 

if f.denom == g.denom: 

return f.new(f.numer + g.numer, f.denom) 

else: 

return f.new(f.numer*g.denom + f.denom*g.numer, f.denom*g.denom) 

elif isinstance(g, field.ring.dtype): 

return f.new(f.numer + f.denom*g, f.denom) 

else: 

if isinstance(g, FracElement): 

if isinstance(field.domain, FractionField) and field.domain.field == g.field: 

pass 

elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field: 

return g.__radd__(f) 

else: 

return NotImplemented 

elif isinstance(g, PolyElement): 

if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring: 

pass 

else: 

return g.__radd__(f) 

 

return f.__radd__(g) 

 

def __radd__(f, c): 

if isinstance(c, f.field.ring.dtype): 

return f.new(f.numer + f.denom*c, f.denom) 

 

op, g_numer, g_denom = f._extract_ground(c) 

 

if op == 1: 

return f.new(f.numer + f.denom*g_numer, f.denom) 

elif not op: 

return NotImplemented 

else: 

return f.new(f.numer*g_denom + f.denom*g_numer, f.denom*g_denom) 

 

def __sub__(f, g): 

"""Subtract rational functions ``f`` and ``g``. """ 

field = f.field 

 

if not g: 

return f 

elif not f: 

return -g 

elif isinstance(g, field.dtype): 

if f.denom == g.denom: 

return f.new(f.numer - g.numer, f.denom) 

else: 

return f.new(f.numer*g.denom - f.denom*g.numer, f.denom*g.denom) 

elif isinstance(g, field.ring.dtype): 

return f.new(f.numer - f.denom*g, f.denom) 

else: 

if isinstance(g, FracElement): 

if isinstance(field.domain, FractionField) and field.domain.field == g.field: 

pass 

elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field: 

return g.__rsub__(f) 

else: 

return NotImplemented 

elif isinstance(g, PolyElement): 

if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring: 

pass 

else: 

return g.__rsub__(f) 

 

op, g_numer, g_denom = f._extract_ground(g) 

 

if op == 1: 

return f.new(f.numer - f.denom*g_numer, f.denom) 

elif not op: 

return NotImplemented 

else: 

return f.new(f.numer*g_denom - f.denom*g_numer, f.denom*g_denom) 

 

def __rsub__(f, c): 

if isinstance(c, f.field.ring.dtype): 

return f.new(-f.numer + f.denom*c, f.denom) 

 

op, g_numer, g_denom = f._extract_ground(c) 

 

if op == 1: 

return f.new(-f.numer + f.denom*g_numer, f.denom) 

elif not op: 

return NotImplemented 

else: 

return f.new(-f.numer*g_denom + f.denom*g_numer, f.denom*g_denom) 

 

def __mul__(f, g): 

"""Multiply rational functions ``f`` and ``g``. """ 

field = f.field 

 

if not f or not g: 

return field.zero 

elif isinstance(g, field.dtype): 

return f.new(f.numer*g.numer, f.denom*g.denom) 

elif isinstance(g, field.ring.dtype): 

return f.new(f.numer*g, f.denom) 

else: 

if isinstance(g, FracElement): 

if isinstance(field.domain, FractionField) and field.domain.field == g.field: 

pass 

elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field: 

return g.__rmul__(f) 

else: 

return NotImplemented 

elif isinstance(g, PolyElement): 

if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring: 

pass 

else: 

return g.__rmul__(f) 

 

return f.__rmul__(g) 

 

def __rmul__(f, c): 

if isinstance(c, f.field.ring.dtype): 

return f.new(f.numer*c, f.denom) 

 

op, g_numer, g_denom = f._extract_ground(c) 

 

if op == 1: 

return f.new(f.numer*g_numer, f.denom) 

elif not op: 

return NotImplemented 

else: 

return f.new(f.numer*g_numer, f.denom*g_denom) 

 

def __truediv__(f, g): 

"""Computes quotient of fractions ``f`` and ``g``. """ 

field = f.field 

 

if not g: 

raise ZeroDivisionError 

elif isinstance(g, field.dtype): 

return f.new(f.numer*g.denom, f.denom*g.numer) 

elif isinstance(g, field.ring.dtype): 

return f.new(f.numer, f.denom*g) 

else: 

if isinstance(g, FracElement): 

if isinstance(field.domain, FractionField) and field.domain.field == g.field: 

pass 

elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field: 

return g.__rtruediv__(f) 

else: 

return NotImplemented 

elif isinstance(g, PolyElement): 

if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring: 

pass 

else: 

return g.__rtruediv__(f) 

 

op, g_numer, g_denom = f._extract_ground(g) 

 

if op == 1: 

return f.new(f.numer, f.denom*g_numer) 

elif not op: 

return NotImplemented 

else: 

return f.new(f.numer*g_denom, f.denom*g_numer) 

 

__div__ = __truediv__ 

 

def __rtruediv__(f, c): 

if not f: 

raise ZeroDivisionError 

elif isinstance(c, f.field.ring.dtype): 

return f.new(f.denom*c, f.numer) 

 

op, g_numer, g_denom = f._extract_ground(c) 

 

if op == 1: 

return f.new(f.denom*g_numer, f.numer) 

elif not op: 

return NotImplemented 

else: 

return f.new(f.denom*g_numer, f.numer*g_denom) 

 

__rdiv__ = __rtruediv__ 

 

def __pow__(f, n): 

"""Raise ``f`` to a non-negative power ``n``. """ 

if n >= 0: 

return f.raw_new(f.numer**n, f.denom**n) 

elif not f: 

raise ZeroDivisionError 

else: 

return f.raw_new(f.denom**-n, f.numer**-n) 

 

def diff(f, x): 

"""Computes partial derivative in ``x``. 

 

Examples 

======== 

 

>>> from sympy.polys.fields import field 

>>> from sympy.polys.domains import ZZ 

 

>>> _, x, y, z = field("x,y,z", ZZ) 

>>> ((x**2 + y)/(z + 1)).diff(x) 

2*x/(z + 1) 

 

""" 

x = x.to_poly() 

return f.new(f.numer.diff(x)*f.denom - f.numer*f.denom.diff(x), f.denom**2) 

 

def __call__(f, *values): 

if 0 < len(values) <= f.field.ngens: 

return f.evaluate(list(zip(f.field.gens, values))) 

else: 

raise ValueError("expected at least 1 and at most %s values, got %s" % (f.field.ngens, len(values))) 

 

def evaluate(f, x, a=None): 

if isinstance(x, list) and a is None: 

x = [ (X.to_poly(), a) for X, a in x ] 

numer, denom = f.numer.evaluate(x), f.denom.evaluate(x) 

else: 

x = x.to_poly() 

numer, denom = f.numer.evaluate(x, a), f.denom.evaluate(x, a) 

 

field = numer.ring.to_field() 

return field.new(numer, denom) 

 

def subs(f, x, a=None): 

if isinstance(x, list) and a is None: 

x = [ (X.to_poly(), a) for X, a in x ] 

numer, denom = f.numer.subs(x), f.denom.subs(x) 

else: 

x = x.to_poly() 

numer, denom = f.numer.subs(x, a), f.denom.subs(x, a) 

 

return f.new(numer, denom) 

 

def compose(f, x, a=None): 

raise NotImplementedError