Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

"""Groebner bases algorithms. """ 

 

from __future__ import print_function, division 

 

from sympy.polys.monomials import monomial_mul, monomial_lcm, monomial_divides, term_div 

from sympy.polys.orderings import lex 

from sympy.polys.polyerrors import DomainError 

from sympy.polys.polyconfig import query 

from sympy.core.symbol import Dummy 

from sympy.core.compatibility import range 

 

def groebner(seq, ring, method=None): 

""" 

Computes Groebner basis for a set of polynomials in `K[X]`. 

 

Wrapper around the (default) improved Buchberger and the other algorithms 

for computing Groebner bases. The choice of algorithm can be changed via 

``method`` argument or :func:`setup` from :mod:`sympy.polys.polyconfig`, 

where ``method`` can be either ``buchberger`` or ``f5b``. 

 

""" 

if method is None: 

method = query('groebner') 

 

_groebner_methods = { 

'buchberger': _buchberger, 

'f5b': _f5b, 

} 

 

try: 

_groebner = _groebner_methods[method] 

except KeyError: 

raise ValueError("'%s' is not a valid Groebner bases algorithm (valid are 'buchberger' and 'f5b')" % method) 

 

domain, orig = ring.domain, None 

 

if not domain.has_Field or not domain.has_assoc_Field: 

try: 

orig, ring = ring, ring.clone(domain=domain.get_field()) 

except DomainError: 

raise DomainError("can't compute a Groebner basis over %s" % domain) 

else: 

seq = [ s.set_ring(ring) for s in seq ] 

 

G = _groebner(seq, ring) 

 

if orig is not None: 

G = [ g.clear_denoms()[1].set_ring(orig) for g in G ] 

 

return G 

 

def _buchberger(f, ring): 

""" 

Computes Groebner basis for a set of polynomials in `K[X]`. 

 

Given a set of multivariate polynomials `F`, finds another 

set `G`, such that Ideal `F = Ideal G` and `G` is a reduced 

Groebner basis. 

 

The resulting basis is unique and has monic generators if the 

ground domains is a field. Otherwise the result is non-unique 

but Groebner bases over e.g. integers can be computed (if the 

input polynomials are monic). 

 

Groebner bases can be used to choose specific generators for a 

polynomial ideal. Because these bases are unique you can check 

for ideal equality by comparing the Groebner bases. To see if 

one polynomial lies in an ideal, divide by the elements in the 

base and see if the remainder vanishes. 

 

They can also be used to solve systems of polynomial equations 

as, by choosing lexicographic ordering, you can eliminate one 

variable at a time, provided that the ideal is zero-dimensional 

(finite number of solutions). 

 

References 

========== 

 

1. [Bose03]_ 

2. [Giovini91]_ 

3. [Ajwa95]_ 

4. [Cox97]_ 

 

Algorithm used: an improved version of Buchberger's algorithm 

as presented in T. Becker, V. Weispfenning, Groebner Bases: A 

Computational Approach to Commutative Algebra, Springer, 1993, 

page 232. 

 

""" 

order = ring.order 

domain = ring.domain 

 

monomial_mul = ring.monomial_mul 

monomial_div = ring.monomial_div 

monomial_lcm = ring.monomial_lcm 

 

def select(P): 

# normal selection strategy 

# select the pair with minimum LCM(LM(f), LM(g)) 

pr = min(P, key=lambda pair: order(monomial_lcm(f[pair[0]].LM, f[pair[1]].LM))) 

return pr 

 

def normal(g, J): 

h = g.rem([ f[j] for j in J ]) 

 

if not h: 

return None 

else: 

h = h.monic() 

 

if not h in I: 

I[h] = len(f) 

f.append(h) 

 

return h.LM, I[h] 

 

def update(G, B, ih): 

# update G using the set of critical pairs B and h 

# [BW] page 230 

h = f[ih] 

mh = h.LM 

 

# filter new pairs (h, g), g in G 

C = G.copy() 

D = set() 

 

while C: 

# select a pair (h, g) by popping an element from C 

ig = C.pop() 

g = f[ig] 

mg = g.LM 

LCMhg = monomial_lcm(mh, mg) 

 

def lcm_divides(ip): 

# LCM(LM(h), LM(p)) divides LCM(LM(h), LM(g)) 

m = monomial_lcm(mh, f[ip].LM) 

return monomial_div(LCMhg, m) 

 

# HT(h) and HT(g) disjoint: mh*mg == LCMhg 

if monomial_mul(mh, mg) == LCMhg or ( 

not any(lcm_divides(ipx) for ipx in C) and 

not any(lcm_divides(pr[1]) for pr in D)): 

D.add((ih, ig)) 

 

E = set() 

 

while D: 

# select h, g from D (h the same as above) 

ih, ig = D.pop() 

mg = f[ig].LM 

LCMhg = monomial_lcm(mh, mg) 

 

if not monomial_mul(mh, mg) == LCMhg: 

E.add((ih, ig)) 

 

# filter old pairs 

B_new = set() 

 

while B: 

# select g1, g2 from B (-> CP) 

ig1, ig2 = B.pop() 

mg1 = f[ig1].LM 

mg2 = f[ig2].LM 

LCM12 = monomial_lcm(mg1, mg2) 

 

# if HT(h) does not divide lcm(HT(g1), HT(g2)) 

if not monomial_div(LCM12, mh) or \ 

monomial_lcm(mg1, mh) == LCM12 or \ 

monomial_lcm(mg2, mh) == LCM12: 

B_new.add((ig1, ig2)) 

 

B_new |= E 

 

# filter polynomials 

G_new = set() 

 

while G: 

ig = G.pop() 

mg = f[ig].LM 

 

if not monomial_div(mg, mh): 

G_new.add(ig) 

 

G_new.add(ih) 

 

return G_new, B_new 

# end of update ################################ 

 

if not f: 

return [] 

 

# replace f with a reduced list of initial polynomials; see [BW] page 203 

f1 = f[:] 

 

while True: 

f = f1[:] 

f1 = [] 

 

for i in range(len(f)): 

p = f[i] 

r = p.rem(f[:i]) 

 

if r: 

f1.append(r.monic()) 

 

if f == f1: 

break 

 

I = {} # ip = I[p]; p = f[ip] 

F = set() # set of indices of polynomials 

G = set() # set of indices of intermediate would-be Groebner basis 

CP = set() # set of pairs of indices of critical pairs 

 

for i, h in enumerate(f): 

I[h] = i 

F.add(i) 

 

##################################### 

# algorithm GROEBNERNEWS2 in [BW] page 232 

 

while F: 

# select p with minimum monomial according to the monomial ordering 

h = min([f[x] for x in F], key=lambda f: order(f.LM)) 

ih = I[h] 

F.remove(ih) 

G, CP = update(G, CP, ih) 

 

# count the number of critical pairs which reduce to zero 

reductions_to_zero = 0 

 

while CP: 

ig1, ig2 = select(CP) 

CP.remove((ig1, ig2)) 

 

h = spoly(f[ig1], f[ig2], ring) 

# ordering divisors is on average more efficient [Cox] page 111 

G1 = sorted(G, key=lambda g: order(f[g].LM)) 

ht = normal(h, G1) 

 

if ht: 

G, CP = update(G, CP, ht[1]) 

else: 

reductions_to_zero += 1 

 

###################################### 

# now G is a Groebner basis; reduce it 

Gr = set() 

 

for ig in G: 

ht = normal(f[ig], G - set([ig])) 

 

if ht: 

Gr.add(ht[1]) 

 

Gr = [f[ig] for ig in Gr] 

 

# order according to the monomial ordering 

Gr = sorted(Gr, key=lambda f: order(f.LM), reverse=True) 

 

return Gr 

 

def spoly(p1, p2, ring): 

""" 

Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2 

This is the S-poly provided p1 and p2 are monic 

""" 

LM1 = p1.LM 

LM2 = p2.LM 

LCM12 = ring.monomial_lcm(LM1, LM2) 

m1 = ring.monomial_div(LCM12, LM1) 

m2 = ring.monomial_div(LCM12, LM2) 

s1 = p1.mul_monom(m1) 

s2 = p2.mul_monom(m2) 

s = s1 - s2 

return s 

 

# F5B 

 

# convenience functions 

 

 

def Sign(f): 

return f[0] 

 

 

def Polyn(f): 

return f[1] 

 

 

def Num(f): 

return f[2] 

 

 

def sig(monomial, index): 

return (monomial, index) 

 

 

def lbp(signature, polynomial, number): 

return (signature, polynomial, number) 

 

# signature functions 

 

 

def sig_cmp(u, v, order): 

""" 

Compare two signatures by extending the term order to K[X]^n. 

 

u < v iff 

- the index of v is greater than the index of u 

or 

- the index of v is equal to the index of u and u[0] < v[0] w.r.t. order 

 

u > v otherwise 

""" 

if u[1] > v[1]: 

return -1 

if u[1] == v[1]: 

#if u[0] == v[0]: 

# return 0 

if order(u[0]) < order(v[0]): 

return -1 

return 1 

 

 

def sig_key(s, order): 

""" 

Key for comparing two signatures. 

 

s = (m, k), t = (n, l) 

 

s < t iff [k > l] or [k == l and m < n] 

s > t otherwise 

""" 

return (-s[1], order(s[0])) 

 

 

def sig_mult(s, m): 

""" 

Multiply a signature by a monomial. 

 

The product of a signature (m, i) and a monomial n is defined as 

(m * t, i). 

""" 

return sig(monomial_mul(s[0], m), s[1]) 

 

# labeled polynomial functions 

 

 

def lbp_sub(f, g): 

""" 

Subtract labeled polynomial g from f. 

 

The signature and number of the difference of f and g are signature 

and number of the maximum of f and g, w.r.t. lbp_cmp. 

""" 

if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) < 0: 

max_poly = g 

else: 

max_poly = f 

 

ret = Polyn(f) - Polyn(g) 

 

return lbp(Sign(max_poly), ret, Num(max_poly)) 

 

 

def lbp_mul_term(f, cx): 

""" 

Multiply a labeled polynomial with a term. 

 

The product of a labeled polynomial (s, p, k) by a monomial is 

defined as (m * s, m * p, k). 

""" 

return lbp(sig_mult(Sign(f), cx[0]), Polyn(f).mul_term(cx), Num(f)) 

 

 

def lbp_cmp(f, g): 

""" 

Compare two labeled polynomials. 

 

f < g iff 

- Sign(f) < Sign(g) 

or 

- Sign(f) == Sign(g) and Num(f) > Num(g) 

 

f > g otherwise 

""" 

if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) == -1: 

return -1 

if Sign(f) == Sign(g): 

if Num(f) > Num(g): 

return -1 

#if Num(f) == Num(g): 

# return 0 

return 1 

 

 

def lbp_key(f): 

""" 

Key for comparing two labeled polynomials. 

""" 

return (sig_key(Sign(f), Polyn(f).ring.order), -Num(f)) 

 

# algorithm and helper functions 

 

 

def critical_pair(f, g, ring): 

""" 

Compute the critical pair corresponding to two labeled polynomials. 

 

A critical pair is a tuple (um, f, vm, g), where um and vm are 

terms such that um * f - vm * g is the S-polynomial of f and g (so, 

wlog assume um * f > vm * g). 

For performance sake, a critical pair is represented as a tuple 

(Sign(um * f), um, f, Sign(vm * g), vm, g), since um * f creates 

a new, relatively expensive object in memory, whereas Sign(um * 

f) and um are lightweight and f (in the tuple) is a reference to 

an already existing object in memory. 

""" 

domain = ring.domain 

 

ltf = Polyn(f).LT 

ltg = Polyn(g).LT 

lt = (monomial_lcm(ltf[0], ltg[0]), domain.one) 

 

um = term_div(lt, ltf, domain) 

vm = term_div(lt, ltg, domain) 

 

# The full information is not needed (now), so only the product 

# with the leading term is considered: 

fr = lbp_mul_term(lbp(Sign(f), Polyn(f).leading_term(), Num(f)), um) 

gr = lbp_mul_term(lbp(Sign(g), Polyn(g).leading_term(), Num(g)), vm) 

 

# return in proper order, such that the S-polynomial is just 

# u_first * f_first - u_second * f_second: 

if lbp_cmp(fr, gr) == -1: 

return (Sign(gr), vm, g, Sign(fr), um, f) 

else: 

return (Sign(fr), um, f, Sign(gr), vm, g) 

 

 

def cp_cmp(c, d): 

""" 

Compare two critical pairs c and d. 

 

c < d iff 

- lbp(c[0], _, Num(c[2]) < lbp(d[0], _, Num(d[2])) (this 

corresponds to um_c * f_c and um_d * f_d) 

or 

- lbp(c[0], _, Num(c[2]) >< lbp(d[0], _, Num(d[2])) and 

lbp(c[3], _, Num(c[5])) < lbp(d[3], _, Num(d[5])) (this 

corresponds to vm_c * g_c and vm_d * g_d) 

 

c > d otherwise 

""" 

zero = Polyn(c[2]).ring.zero 

 

c0 = lbp(c[0], zero, Num(c[2])) 

d0 = lbp(d[0], zero, Num(d[2])) 

 

r = lbp_cmp(c0, d0) 

 

if r == -1: 

return -1 

if r == 0: 

c1 = lbp(c[3], zero, Num(c[5])) 

d1 = lbp(d[3], zero, Num(d[5])) 

 

r = lbp_cmp(c1, d1) 

 

if r == -1: 

return -1 

#if r == 0: 

# return 0 

return 1 

 

 

def cp_key(c, ring): 

""" 

Key for comparing critical pairs. 

""" 

return (lbp_key(lbp(c[0], ring.zero, Num(c[2]))), lbp_key(lbp(c[3], ring.zero, Num(c[5])))) 

 

 

def s_poly(cp): 

""" 

Compute the S-polynomial of a critical pair. 

 

The S-polynomial of a critical pair cp is cp[1] * cp[2] - cp[4] * cp[5]. 

""" 

return lbp_sub(lbp_mul_term(cp[2], cp[1]), lbp_mul_term(cp[5], cp[4])) 

 

 

def is_rewritable_or_comparable(sign, num, B): 

""" 

Check if a labeled polynomial is redundant by checking if its 

signature and number imply rewritability or comparability. 

 

(sign, num) is comparable if there exists a labeled polynomial 

h in B, such that sign[1] (the index) is less than Sign(h)[1] 

and sign[0] is divisible by the leading monomial of h. 

 

(sign, num) is rewritable if there exists a labeled polynomial 

h in B, such thatsign[1] is equal to Sign(h)[1], num < Num(h) 

and sign[0] is divisible by Sign(h)[0]. 

""" 

for h in B: 

# comparable 

if sign[1] < Sign(h)[1]: 

if monomial_divides(Polyn(h).LM, sign[0]): 

return True 

 

# rewritable 

if sign[1] == Sign(h)[1]: 

if num < Num(h): 

if monomial_divides(Sign(h)[0], sign[0]): 

return True 

return False 

 

 

def f5_reduce(f, B): 

""" 

F5-reduce a labeled polynomial f by B. 

 

Continously searches for non-zero labeled polynomial h in B, such 

that the leading term lt_h of h divides the leading term lt_f of 

f and Sign(lt_h * h) < Sign(f). If such a labeled polynomial h is 

found, f gets replaced by f - lt_f / lt_h * h. If no such h can be 

found or f is 0, f is no further F5-reducible and f gets returned. 

 

A polynomial that is reducible in the usual sense need not be 

F5-reducible, e.g.: 

 

>>> from sympy.polys.groebnertools import lbp, sig, f5_reduce, Polyn 

>>> from sympy.polys import ring, QQ, lex 

 

>>> R, x,y,z = ring("x,y,z", QQ, lex) 

 

>>> f = lbp(sig((1, 1, 1), 4), x, 3) 

>>> g = lbp(sig((0, 0, 0), 2), x, 2) 

 

>>> Polyn(f).rem([Polyn(g)]) 

0 

>>> f5_reduce(f, [g]) 

(((1, 1, 1), 4), x, 3) 

 

""" 

order = Polyn(f).ring.order 

domain = Polyn(f).ring.domain 

 

if not Polyn(f): 

return f 

 

while True: 

g = f 

 

for h in B: 

if Polyn(h): 

if monomial_divides(Polyn(h).LM, Polyn(f).LM): 

t = term_div(Polyn(f).LT, Polyn(h).LT, domain) 

if sig_cmp(sig_mult(Sign(h), t[0]), Sign(f), order) < 0: 

# The following check need not be done and is in general slower than without. 

#if not is_rewritable_or_comparable(Sign(gp), Num(gp), B): 

hp = lbp_mul_term(h, t) 

f = lbp_sub(f, hp) 

break 

 

if g == f or not Polyn(f): 

return f 

 

 

def _f5b(F, ring): 

""" 

Computes a reduced Groebner basis for the ideal generated by F. 

 

f5b is an implementation of the F5B algorithm by Yao Sun and 

Dingkang Wang. Similarly to Buchberger's algorithm, the algorithm 

proceeds by computing critical pairs, computing the S-polynomial, 

reducing it and adjoining the reduced S-polynomial if it is not 0. 

 

Unlike Buchberger's algorithm, each polynomial contains additional 

information, namely a signature and a number. The signature 

specifies the path of computation (i.e. from which polynomial in 

the original basis was it derived and how), the number says when 

the polynomial was added to the basis. With this information it 

is (often) possible to decide if an S-polynomial will reduce to 

0 and can be discarded. 

 

Optimizations include: Reducing the generators before computing 

a Groebner basis, removing redundant critical pairs when a new 

polynomial enters the basis and sorting the critical pairs and 

the current basis. 

 

Once a Groebner basis has been found, it gets reduced. 

 

** References ** 

Yao Sun, Dingkang Wang: "A New Proof for the Correctness of F5 

(F5-Like) Algorithm", http://arxiv.org/abs/1004.0084 (specifically 

v4) 

 

Thomas Becker, Volker Weispfenning, Groebner bases: A computational 

approach to commutative algebra, 1993, p. 203, 216 

""" 

order = ring.order 

domain = ring.domain 

 

# reduce polynomials (like in Mario Pernici's implementation) (Becker, Weispfenning, p. 203) 

B = F 

while True: 

F = B 

B = [] 

 

for i in range(len(F)): 

p = F[i] 

r = p.rem(F[:i]) 

 

if r: 

B.append(r) 

 

if F == B: 

break 

 

# basis 

B = [lbp(sig(ring.zero_monom, i + 1), F[i], i + 1) for i in range(len(F))] 

B.sort(key=lambda f: order(Polyn(f).LM), reverse=True) 

 

# critical pairs 

CP = [critical_pair(B[i], B[j], ring) for i in range(len(B)) for j in range(i + 1, len(B))] 

CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True) 

 

k = len(B) 

 

reductions_to_zero = 0 

 

while len(CP): 

cp = CP.pop() 

 

# discard redundant critical pairs: 

if is_rewritable_or_comparable(cp[0], Num(cp[2]), B): 

continue 

if is_rewritable_or_comparable(cp[3], Num(cp[5]), B): 

continue 

 

s = s_poly(cp) 

 

p = f5_reduce(s, B) 

 

p = lbp(Sign(p), Polyn(p).monic(), k + 1) 

 

if Polyn(p): 

# remove old critical pairs, that become redundant when adding p: 

indices = [] 

for i, cp in enumerate(CP): 

if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]): 

indices.append(i) 

elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]): 

indices.append(i) 

 

for i in reversed(indices): 

del CP[i] 

 

# only add new critical pairs that are not made redundant by p: 

for g in B: 

if Polyn(g): 

cp = critical_pair(p, g, ring) 

if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]): 

continue 

elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]): 

continue 

 

CP.append(cp) 

 

# sort (other sorting methods/selection strategies were not as successful) 

CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True) 

 

# insert p into B: 

m = Polyn(p).LM 

if order(m) <= order(Polyn(B[-1]).LM): 

B.append(p) 

else: 

for i, q in enumerate(B): 

if order(m) > order(Polyn(q).LM): 

B.insert(i, p) 

break 

 

k += 1 

 

#print(len(B), len(CP), "%d critical pairs removed" % len(indices)) 

else: 

reductions_to_zero += 1 

 

# reduce Groebner basis: 

H = [Polyn(g).monic() for g in B] 

H = red_groebner(H, ring) 

 

return sorted(H, key=lambda f: order(f.LM), reverse=True) 

 

 

def red_groebner(G, ring): 

""" 

Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216 

 

Selects a subset of generators, that already generate the ideal 

and computes a reduced Groebner basis for them. 

""" 

def reduction(P): 

""" 

The actual reduction algorithm. 

""" 

Q = [] 

for i, p in enumerate(P): 

h = p.rem(P[:i] + P[i + 1:]) 

if h: 

Q.append(h) 

 

return [p.monic() for p in Q] 

 

F = G 

H = [] 

 

while F: 

f0 = F.pop() 

 

if not any(monomial_divides(f.LM, f0.LM) for f in F + H): 

H.append(f0) 

 

# Becker, Weispfenning, p. 217: H is Groebner basis of the ideal generated by G. 

return reduction(H) 

 

 

def is_groebner(G, ring): 

""" 

Check if G is a Groebner basis. 

""" 

for i in range(len(G)): 

for j in range(i + 1, len(G)): 

s = spoly(G[i], G[j]) 

s = s.rem(G) 

if s: 

return False 

 

return True 

 

 

def is_minimal(G, ring): 

""" 

Checks if G is a minimal Groebner basis. 

""" 

order = ring.order 

domain = ring.domain 

 

G.sort(key=lambda g: order(g.LM)) 

 

for i, g in enumerate(G): 

if g.LC != domain.one: 

return False 

 

for h in G[:i] + G[i + 1:]: 

if monomial_divides(h.LM, g.LM): 

return False 

 

return True 

 

 

def is_reduced(G, ring): 

""" 

Checks if G is a reduced Groebner basis. 

""" 

order = ring.order 

domain = ring.domain 

 

G.sort(key=lambda g: order(g.LM)) 

 

for i, g in enumerate(G): 

if g.LC != domain.one: 

return False 

 

for term in g: 

for h in G[:i] + G[i + 1:]: 

if monomial_divides(h.LM, term[0]): 

return False 

 

return True 

 

def groebner_lcm(f, g): 

""" 

Computes LCM of two polynomials using Groebner bases. 

 

The LCM is computed as the unique generater of the intersection 

of the two ideals generated by `f` and `g`. The approach is to 

compute a Groebner basis with respect to lexicographic ordering 

of `t*f` and `(1 - t)*g`, where `t` is an unrelated variable and 

then filtering out the solution that doesn't contain `t`. 

 

References 

========== 

 

1. [Cox97]_ 

 

""" 

if f.ring != g.ring: 

raise ValueError("Values should be equal") 

 

ring = f.ring 

domain = ring.domain 

 

if not f or not g: 

return ring.zero 

 

if len(f) <= 1 and len(g) <= 1: 

monom = monomial_lcm(f.LM, g.LM) 

coeff = domain.lcm(f.LC, g.LC) 

return ring.term_new(monom, coeff) 

 

fc, f = f.primitive() 

gc, g = g.primitive() 

 

lcm = domain.lcm(fc, gc) 

 

f_terms = [ ((1,) + monom, coeff) for monom, coeff in f.terms() ] 

g_terms = [ ((0,) + monom, coeff) for monom, coeff in g.terms() ] \ 

+ [ ((1,) + monom,-coeff) for monom, coeff in g.terms() ] 

 

t = Dummy("t") 

t_ring = ring.clone(symbols=(t,) + ring.symbols, order=lex) 

 

F = t_ring.from_terms(f_terms) 

G = t_ring.from_terms(g_terms) 

 

basis = groebner([F, G], t_ring) 

 

def is_independent(h, j): 

return all(not monom[j] for monom in h.monoms()) 

 

H = [ h for h in basis if is_independent(h, 0) ] 

 

h_terms = [ (monom[1:], coeff*lcm) for monom, coeff in H[0].terms() ] 

h = ring.from_terms(h_terms) 

 

return h 

 

def groebner_gcd(f, g): 

"""Computes GCD of two polynomials using Groebner bases. """ 

if f.ring != g.ring: 

raise ValueError("Values should be equal") 

domain = f.ring.domain 

 

if not domain.has_Field: 

fc, f = f.primitive() 

gc, g = g.primitive() 

gcd = domain.gcd(fc, gc) 

 

H = (f*g).quo([groebner_lcm(f, g)]) 

 

if len(H) != 1: 

raise ValueError("Length should be 1") 

h = H[0] 

 

if not domain.has_Field: 

return gcd*h 

else: 

return h.monic()