Coverage for sympy/polys/monomials.py : 37%
        
        
    Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
| 
 """Tools and arithmetics for monomials of distributed polynomials. """ 
 from __future__ import print_function, division 
 from textwrap import dedent 
 from sympy.core import S, Mul, Tuple, sympify from sympy.core.compatibility import exec_, iterable, range from sympy.polys.polyutils import PicklableWithSlots, dict_from_expr from sympy.polys.polyerrors import ExactQuotientFailed from sympy.utilities import public 
 @public def itermonomials(variables, degree): r""" Generate a set of monomials of the given total degree or less. 
 Given a set of variables `V` and a total degree `N` generate a set of monomials of degree at most `N`. The total number of monomials is huge and is given by the following formula: 
 .. math:: 
 \frac{(\#V + N)!}{\#V! N!} 
 For example if we would like to generate a dense polynomial of a total degree `N = 50` in 5 variables, assuming that exponents and all of coefficients are 32-bit long and stored in an array we would need almost 80 GiB of memory! Fortunately most polynomials, that we will encounter, are sparse. 
 Examples ======== 
 Consider monomials in variables `x` and `y`:: 
 >>> from sympy.polys.monomials import itermonomials >>> from sympy.polys.orderings import monomial_key >>> from sympy.abc import x, y 
 >>> sorted(itermonomials([x, y], 2), key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2] 
 >>> sorted(itermonomials([x, y], 3), key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2, x**3, x**2*y, x*y**2, y**3] 
 """ if not variables: return set([S.One]) else: x, tail = variables[0], variables[1:] 
 monoms = itermonomials(tail, degree) 
 for i in range(1, degree + 1): monoms |= set([ x**i * m for m in itermonomials(tail, degree - i) ]) 
 return monoms 
 def monomial_count(V, N): r""" Computes the number of monomials. 
 The number of monomials is given by the following formula: 
 .. math:: 
 \frac{(\#V + N)!}{\#V! N!} 
 where `N` is a total degree and `V` is a set of variables. 
 Examples ======== 
 >>> from sympy.polys.monomials import itermonomials, monomial_count >>> from sympy.polys.orderings import monomial_key >>> from sympy.abc import x, y 
 >>> monomial_count(2, 2) 6 
 >>> M = itermonomials([x, y], 2) 
 >>> sorted(M, key=monomial_key('grlex', [y, x])) [1, x, y, x**2, x*y, y**2] >>> len(M) 6 
 """ from sympy import factorial return factorial(V + N) / factorial(V) / factorial(N) 
 def monomial_mul(A, B): """ Multiplication of tuples representing monomials. 
 Lets multiply `x**3*y**4*z` with `x*y**2`:: 
 >>> from sympy.polys.monomials import monomial_mul 
 >>> monomial_mul((3, 4, 1), (1, 2, 0)) (4, 6, 1) 
 which gives `x**4*y**5*z`. 
 """ 
 def monomial_div(A, B): """ Division of tuples representing monomials. 
 Lets divide `x**3*y**4*z` by `x*y**2`:: 
 >>> from sympy.polys.monomials import monomial_div 
 >>> monomial_div((3, 4, 1), (1, 2, 0)) (2, 2, 1) 
 which gives `x**2*y**2*z`. However:: 
 >>> monomial_div((3, 4, 1), (1, 2, 2)) is None True 
 `x*y**2*z**2` does not divide `x**3*y**4*z`. 
 """ 
 else: return None 
 def monomial_ldiv(A, B): """ Division of tuples representing monomials. 
 Lets divide `x**3*y**4*z` by `x*y**2`:: 
 >>> from sympy.polys.monomials import monomial_ldiv 
 >>> monomial_ldiv((3, 4, 1), (1, 2, 0)) (2, 2, 1) 
 which gives `x**2*y**2*z`. 
 >>> monomial_ldiv((3, 4, 1), (1, 2, 2)) (2, 2, -1) 
 which gives `x**2*y**2*z**-1`. 
 """ 
 def monomial_pow(A, n): """Return the n-th pow of the monomial. """ return tuple([ a*n for a in A ]) 
 def monomial_gcd(A, B): """ Greatest common divisor of tuples representing monomials. 
 Lets compute GCD of `x*y**4*z` and `x**3*y**2`:: 
 >>> from sympy.polys.monomials import monomial_gcd 
 >>> monomial_gcd((1, 4, 1), (3, 2, 0)) (1, 2, 0) 
 which gives `x*y**2`. 
 """ return tuple([ min(a, b) for a, b in zip(A, B) ]) 
 def monomial_lcm(A, B): """ Least common multiple of tuples representing monomials. 
 Lets compute LCM of `x*y**4*z` and `x**3*y**2`:: 
 >>> from sympy.polys.monomials import monomial_lcm 
 >>> monomial_lcm((1, 4, 1), (3, 2, 0)) (3, 4, 1) 
 which gives `x**3*y**4*z`. 
 """ return tuple([ max(a, b) for a, b in zip(A, B) ]) 
 def monomial_divides(A, B): """ Does there exist a monomial X such that XA == B? 
 >>> from sympy.polys.monomials import monomial_divides >>> monomial_divides((1, 2), (3, 4)) True >>> monomial_divides((1, 2), (0, 2)) False """ return all(a <= b for a, b in zip(A, B)) 
 def monomial_max(*monoms): """ Returns maximal degree for each variable in a set of monomials. 
 Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`. We wish to find out what is the maximal degree for each of `x`, `y` and `z` variables:: 
 >>> from sympy.polys.monomials import monomial_max 
 >>> monomial_max((3,4,5), (0,5,1), (6,3,9)) (6, 5, 9) 
 """ M = list(monoms[0]) 
 for N in monoms[1:]: for i, n in enumerate(N): M[i] = max(M[i], n) 
 return tuple(M) 
 def monomial_min(*monoms): """ Returns minimal degree for each variable in a set of monomials. 
 Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`. We wish to find out what is the minimal degree for each of `x`, `y` and `z` variables:: 
 >>> from sympy.polys.monomials import monomial_min 
 >>> monomial_min((3,4,5), (0,5,1), (6,3,9)) (0, 3, 1) 
 """ 
 
 
 def monomial_deg(M): """ Returns the total degree of a monomial. 
 For example, the total degree of `xy^2` is 3: 
 >>> from sympy.polys.monomials import monomial_deg >>> monomial_deg((1, 2)) 3 """ return sum(M) 
 def term_div(a, b, domain): """Division of two terms in over a ring/field. """ a_lm, a_lc = a b_lm, b_lc = b 
 monom = monomial_div(a_lm, b_lm) 
 if domain.has_Field: if monom is not None: return monom, domain.quo(a_lc, b_lc) else: return None else: if not (monom is None or a_lc % b_lc): return monom, domain.quo(a_lc, b_lc) else: return None 
 class MonomialOps(object): """Code generator of fast monomial arithmetic functions. """ 
 def __init__(self, ngens): 
 def _build(self, code, name): 
 def _vars(self, name): 
 def mul(self): def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B return (%(AB)s,) """) 
 def pow(self): def %(name)s(A, k): (%(A)s,) = A return (%(Ak)s,) """) 
 def mulpow(self): def %(name)s(A, B, k): (%(A)s,) = A (%(B)s,) = B return (%(ABk)s,) """) 
 def ldiv(self): def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B return (%(AB)s,) """) 
 def div(self): def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B %(RAB)s return (%(R)s,) """) 
 def lcm(self): def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B return (%(AB)s,) """) 
 def gcd(self): def %(name)s(A, B): (%(A)s,) = A (%(B)s,) = B return (%(AB)s,) """) 
 @public class Monomial(PicklableWithSlots): """Class representing a monomial, i.e. a product of powers. """ 
 __slots__ = ['exponents', 'gens'] 
 def __init__(self, monom, gens=None): else: raise ValueError("Expected a monomial got %s" % monom) 
 
 def rebuild(self, exponents, gens=None): 
 def __len__(self): 
 def __iter__(self): 
 def __getitem__(self, item): return self.exponents[item] 
 def __hash__(self): return hash((self.__class__.__name__, self.exponents, self.gens)) 
 def __str__(self): if self.gens: return "*".join([ "%s**%s" % (gen, exp) for gen, exp in zip(self.gens, self.exponents) ]) else: return "%s(%s)" % (self.__class__.__name__, self.exponents) 
 def as_expr(self, *gens): """Convert a monomial instance to a SymPy expression. """ gens = gens or self.gens 
 if not gens: raise ValueError( "can't convert %s to an expression without generators" % self) 
 return Mul(*[ gen**exp for gen, exp in zip(gens, self.exponents) ]) 
 def __eq__(self, other): if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: return False 
 return self.exponents == exponents 
 def __ne__(self, other): return not self.__eq__(other) 
 def __mul__(self, other): elif isinstance(other, (tuple, Tuple)): exponents = other else: return NotImplementedError 
 
 def __div__(self, other): if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: return NotImplementedError 
 result = monomial_div(self.exponents, exponents) 
 if result is not None: return self.rebuild(result) else: raise ExactQuotientFailed(self, Monomial(other)) 
 __floordiv__ = __truediv__ = __div__ 
 def __pow__(self, other): n = int(other) 
 if not n: return self.rebuild([0]*len(self)) elif n > 0: exponents = self.exponents 
 for i in range(1, n): exponents = monomial_mul(exponents, self.exponents) 
 return self.rebuild(exponents) else: raise ValueError("a non-negative integer expected, got %s" % other) 
 def gcd(self, other): """Greatest common divisor of monomials. """ if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: raise TypeError( "an instance of Monomial class expected, got %s" % other) 
 return self.rebuild(monomial_gcd(self.exponents, exponents)) 
 def lcm(self, other): """Least common multiple of monomials. """ if isinstance(other, Monomial): exponents = other.exponents elif isinstance(other, (tuple, Tuple)): exponents = other else: raise TypeError( "an instance of Monomial class expected, got %s" % other) 
 return self.rebuild(monomial_lcm(self.exponents, exponents))  |