Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

"""Tools and arithmetics for monomials of distributed polynomials. """ 

 

from __future__ import print_function, division 

 

from textwrap import dedent 

 

from sympy.core import S, Mul, Tuple, sympify 

from sympy.core.compatibility import exec_, iterable, range 

from sympy.polys.polyutils import PicklableWithSlots, dict_from_expr 

from sympy.polys.polyerrors import ExactQuotientFailed 

from sympy.utilities import public 

 

@public 

def itermonomials(variables, degree): 

r""" 

Generate a set of monomials of the given total degree or less. 

 

Given a set of variables `V` and a total degree `N` generate 

a set of monomials of degree at most `N`. The total number of 

monomials is huge and is given by the following formula: 

 

.. math:: 

 

\frac{(\#V + N)!}{\#V! N!} 

 

For example if we would like to generate a dense polynomial of 

a total degree `N = 50` in 5 variables, assuming that exponents 

and all of coefficients are 32-bit long and stored in an array we 

would need almost 80 GiB of memory! Fortunately most polynomials, 

that we will encounter, are sparse. 

 

Examples 

======== 

 

Consider monomials in variables `x` and `y`:: 

 

>>> from sympy.polys.monomials import itermonomials 

>>> from sympy.polys.orderings import monomial_key 

>>> from sympy.abc import x, y 

 

>>> sorted(itermonomials([x, y], 2), key=monomial_key('grlex', [y, x])) 

[1, x, y, x**2, x*y, y**2] 

 

>>> sorted(itermonomials([x, y], 3), key=monomial_key('grlex', [y, x])) 

[1, x, y, x**2, x*y, y**2, x**3, x**2*y, x*y**2, y**3] 

 

""" 

if not variables: 

return set([S.One]) 

else: 

x, tail = variables[0], variables[1:] 

 

monoms = itermonomials(tail, degree) 

 

for i in range(1, degree + 1): 

monoms |= set([ x**i * m for m in itermonomials(tail, degree - i) ]) 

 

return monoms 

 

def monomial_count(V, N): 

r""" 

Computes the number of monomials. 

 

The number of monomials is given by the following formula: 

 

.. math:: 

 

\frac{(\#V + N)!}{\#V! N!} 

 

where `N` is a total degree and `V` is a set of variables. 

 

Examples 

======== 

 

>>> from sympy.polys.monomials import itermonomials, monomial_count 

>>> from sympy.polys.orderings import monomial_key 

>>> from sympy.abc import x, y 

 

>>> monomial_count(2, 2) 

6 

 

>>> M = itermonomials([x, y], 2) 

 

>>> sorted(M, key=monomial_key('grlex', [y, x])) 

[1, x, y, x**2, x*y, y**2] 

>>> len(M) 

6 

 

""" 

from sympy import factorial 

return factorial(V + N) / factorial(V) / factorial(N) 

 

def monomial_mul(A, B): 

""" 

Multiplication of tuples representing monomials. 

 

Lets multiply `x**3*y**4*z` with `x*y**2`:: 

 

>>> from sympy.polys.monomials import monomial_mul 

 

>>> monomial_mul((3, 4, 1), (1, 2, 0)) 

(4, 6, 1) 

 

which gives `x**4*y**5*z`. 

 

""" 

return tuple([ a + b for a, b in zip(A, B) ]) 

 

def monomial_div(A, B): 

""" 

Division of tuples representing monomials. 

 

Lets divide `x**3*y**4*z` by `x*y**2`:: 

 

>>> from sympy.polys.monomials import monomial_div 

 

>>> monomial_div((3, 4, 1), (1, 2, 0)) 

(2, 2, 1) 

 

which gives `x**2*y**2*z`. However:: 

 

>>> monomial_div((3, 4, 1), (1, 2, 2)) is None 

True 

 

`x*y**2*z**2` does not divide `x**3*y**4*z`. 

 

""" 

C = monomial_ldiv(A, B) 

 

if all(c >= 0 for c in C): 

return tuple(C) 

else: 

return None 

 

def monomial_ldiv(A, B): 

""" 

Division of tuples representing monomials. 

 

Lets divide `x**3*y**4*z` by `x*y**2`:: 

 

>>> from sympy.polys.monomials import monomial_ldiv 

 

>>> monomial_ldiv((3, 4, 1), (1, 2, 0)) 

(2, 2, 1) 

 

which gives `x**2*y**2*z`. 

 

>>> monomial_ldiv((3, 4, 1), (1, 2, 2)) 

(2, 2, -1) 

 

which gives `x**2*y**2*z**-1`. 

 

""" 

return tuple([ a - b for a, b in zip(A, B) ]) 

 

def monomial_pow(A, n): 

"""Return the n-th pow of the monomial. """ 

return tuple([ a*n for a in A ]) 

 

def monomial_gcd(A, B): 

""" 

Greatest common divisor of tuples representing monomials. 

 

Lets compute GCD of `x*y**4*z` and `x**3*y**2`:: 

 

>>> from sympy.polys.monomials import monomial_gcd 

 

>>> monomial_gcd((1, 4, 1), (3, 2, 0)) 

(1, 2, 0) 

 

which gives `x*y**2`. 

 

""" 

return tuple([ min(a, b) for a, b in zip(A, B) ]) 

 

def monomial_lcm(A, B): 

""" 

Least common multiple of tuples representing monomials. 

 

Lets compute LCM of `x*y**4*z` and `x**3*y**2`:: 

 

>>> from sympy.polys.monomials import monomial_lcm 

 

>>> monomial_lcm((1, 4, 1), (3, 2, 0)) 

(3, 4, 1) 

 

which gives `x**3*y**4*z`. 

 

""" 

return tuple([ max(a, b) for a, b in zip(A, B) ]) 

 

def monomial_divides(A, B): 

""" 

Does there exist a monomial X such that XA == B? 

 

>>> from sympy.polys.monomials import monomial_divides 

>>> monomial_divides((1, 2), (3, 4)) 

True 

>>> monomial_divides((1, 2), (0, 2)) 

False 

""" 

return all(a <= b for a, b in zip(A, B)) 

 

def monomial_max(*monoms): 

""" 

Returns maximal degree for each variable in a set of monomials. 

 

Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`. 

We wish to find out what is the maximal degree for each of `x`, `y` 

and `z` variables:: 

 

>>> from sympy.polys.monomials import monomial_max 

 

>>> monomial_max((3,4,5), (0,5,1), (6,3,9)) 

(6, 5, 9) 

 

""" 

M = list(monoms[0]) 

 

for N in monoms[1:]: 

for i, n in enumerate(N): 

M[i] = max(M[i], n) 

 

return tuple(M) 

 

def monomial_min(*monoms): 

""" 

Returns minimal degree for each variable in a set of monomials. 

 

Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`. 

We wish to find out what is the minimal degree for each of `x`, `y` 

and `z` variables:: 

 

>>> from sympy.polys.monomials import monomial_min 

 

>>> monomial_min((3,4,5), (0,5,1), (6,3,9)) 

(0, 3, 1) 

 

""" 

M = list(monoms[0]) 

 

for N in monoms[1:]: 

for i, n in enumerate(N): 

M[i] = min(M[i], n) 

 

return tuple(M) 

 

def monomial_deg(M): 

""" 

Returns the total degree of a monomial. 

 

For example, the total degree of `xy^2` is 3: 

 

>>> from sympy.polys.monomials import monomial_deg 

>>> monomial_deg((1, 2)) 

3 

""" 

return sum(M) 

 

def term_div(a, b, domain): 

"""Division of two terms in over a ring/field. """ 

a_lm, a_lc = a 

b_lm, b_lc = b 

 

monom = monomial_div(a_lm, b_lm) 

 

if domain.has_Field: 

if monom is not None: 

return monom, domain.quo(a_lc, b_lc) 

else: 

return None 

else: 

if not (monom is None or a_lc % b_lc): 

return monom, domain.quo(a_lc, b_lc) 

else: 

return None 

 

class MonomialOps(object): 

"""Code generator of fast monomial arithmetic functions. """ 

 

def __init__(self, ngens): 

self.ngens = ngens 

 

def _build(self, code, name): 

ns = {} 

exec_(code, ns) 

return ns[name] 

 

def _vars(self, name): 

return [ "%s%s" % (name, i) for i in range(self.ngens) ] 

 

def mul(self): 

name = "monomial_mul" 

template = dedent("""\ 

def %(name)s(A, B): 

(%(A)s,) = A 

(%(B)s,) = B 

return (%(AB)s,) 

""") 

A = self._vars("a") 

B = self._vars("b") 

AB = [ "%s + %s" % (a, b) for a, b in zip(A, B) ] 

code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB)) 

return self._build(code, name) 

 

def pow(self): 

name = "monomial_pow" 

template = dedent("""\ 

def %(name)s(A, k): 

(%(A)s,) = A 

return (%(Ak)s,) 

""") 

A = self._vars("a") 

Ak = [ "%s*k" % a for a in A ] 

code = template % dict(name=name, A=", ".join(A), Ak=", ".join(Ak)) 

return self._build(code, name) 

 

def mulpow(self): 

name = "monomial_mulpow" 

template = dedent("""\ 

def %(name)s(A, B, k): 

(%(A)s,) = A 

(%(B)s,) = B 

return (%(ABk)s,) 

""") 

A = self._vars("a") 

B = self._vars("b") 

ABk = [ "%s + %s*k" % (a, b) for a, b in zip(A, B) ] 

code = template % dict(name=name, A=", ".join(A), B=", ".join(B), ABk=", ".join(ABk)) 

return self._build(code, name) 

 

def ldiv(self): 

name = "monomial_ldiv" 

template = dedent("""\ 

def %(name)s(A, B): 

(%(A)s,) = A 

(%(B)s,) = B 

return (%(AB)s,) 

""") 

A = self._vars("a") 

B = self._vars("b") 

AB = [ "%s - %s" % (a, b) for a, b in zip(A, B) ] 

code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB)) 

return self._build(code, name) 

 

def div(self): 

name = "monomial_div" 

template = dedent("""\ 

def %(name)s(A, B): 

(%(A)s,) = A 

(%(B)s,) = B 

%(RAB)s 

return (%(R)s,) 

""") 

A = self._vars("a") 

B = self._vars("b") 

RAB = [ "r%(i)s = a%(i)s - b%(i)s\n if r%(i)s < 0: return None" % dict(i=i) for i in range(self.ngens) ] 

R = self._vars("r") 

code = template % dict(name=name, A=", ".join(A), B=", ".join(B), RAB="\n ".join(RAB), R=", ".join(R)) 

return self._build(code, name) 

 

def lcm(self): 

name = "monomial_lcm" 

template = dedent("""\ 

def %(name)s(A, B): 

(%(A)s,) = A 

(%(B)s,) = B 

return (%(AB)s,) 

""") 

A = self._vars("a") 

B = self._vars("b") 

AB = [ "%s if %s >= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ] 

code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB)) 

return self._build(code, name) 

 

def gcd(self): 

name = "monomial_gcd" 

template = dedent("""\ 

def %(name)s(A, B): 

(%(A)s,) = A 

(%(B)s,) = B 

return (%(AB)s,) 

""") 

A = self._vars("a") 

B = self._vars("b") 

AB = [ "%s if %s <= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ] 

code = template % dict(name=name, A=", ".join(A), B=", ".join(B), AB=", ".join(AB)) 

return self._build(code, name) 

 

@public 

class Monomial(PicklableWithSlots): 

"""Class representing a monomial, i.e. a product of powers. """ 

 

__slots__ = ['exponents', 'gens'] 

 

def __init__(self, monom, gens=None): 

if not iterable(monom): 

rep, gens = dict_from_expr(sympify(monom), gens=gens) 

if len(rep) == 1 and list(rep.values())[0] == 1: 

monom = list(rep.keys())[0] 

else: 

raise ValueError("Expected a monomial got %s" % monom) 

 

self.exponents = tuple(map(int, monom)) 

self.gens = gens 

 

def rebuild(self, exponents, gens=None): 

return self.__class__(exponents, gens or self.gens) 

 

def __len__(self): 

return len(self.exponents) 

 

def __iter__(self): 

return iter(self.exponents) 

 

def __getitem__(self, item): 

return self.exponents[item] 

 

def __hash__(self): 

return hash((self.__class__.__name__, self.exponents, self.gens)) 

 

def __str__(self): 

if self.gens: 

return "*".join([ "%s**%s" % (gen, exp) for gen, exp in zip(self.gens, self.exponents) ]) 

else: 

return "%s(%s)" % (self.__class__.__name__, self.exponents) 

 

def as_expr(self, *gens): 

"""Convert a monomial instance to a SymPy expression. """ 

gens = gens or self.gens 

 

if not gens: 

raise ValueError( 

"can't convert %s to an expression without generators" % self) 

 

return Mul(*[ gen**exp for gen, exp in zip(gens, self.exponents) ]) 

 

def __eq__(self, other): 

if isinstance(other, Monomial): 

exponents = other.exponents 

elif isinstance(other, (tuple, Tuple)): 

exponents = other 

else: 

return False 

 

return self.exponents == exponents 

 

def __ne__(self, other): 

return not self.__eq__(other) 

 

def __mul__(self, other): 

if isinstance(other, Monomial): 

exponents = other.exponents 

elif isinstance(other, (tuple, Tuple)): 

exponents = other 

else: 

return NotImplementedError 

 

return self.rebuild(monomial_mul(self.exponents, exponents)) 

 

def __div__(self, other): 

if isinstance(other, Monomial): 

exponents = other.exponents 

elif isinstance(other, (tuple, Tuple)): 

exponents = other 

else: 

return NotImplementedError 

 

result = monomial_div(self.exponents, exponents) 

 

if result is not None: 

return self.rebuild(result) 

else: 

raise ExactQuotientFailed(self, Monomial(other)) 

 

__floordiv__ = __truediv__ = __div__ 

 

def __pow__(self, other): 

n = int(other) 

 

if not n: 

return self.rebuild([0]*len(self)) 

elif n > 0: 

exponents = self.exponents 

 

for i in range(1, n): 

exponents = monomial_mul(exponents, self.exponents) 

 

return self.rebuild(exponents) 

else: 

raise ValueError("a non-negative integer expected, got %s" % other) 

 

def gcd(self, other): 

"""Greatest common divisor of monomials. """ 

if isinstance(other, Monomial): 

exponents = other.exponents 

elif isinstance(other, (tuple, Tuple)): 

exponents = other 

else: 

raise TypeError( 

"an instance of Monomial class expected, got %s" % other) 

 

return self.rebuild(monomial_gcd(self.exponents, exponents)) 

 

def lcm(self, other): 

"""Least common multiple of monomials. """ 

if isinstance(other, Monomial): 

exponents = other.exponents 

elif isinstance(other, (tuple, Tuple)): 

exponents = other 

else: 

raise TypeError( 

"an instance of Monomial class expected, got %s" % other) 

 

return self.rebuild(monomial_lcm(self.exponents, exponents))