Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

"""Computational algebraic field theory. """ 

 

from __future__ import print_function, division 

 

from sympy import ( 

S, Rational, AlgebraicNumber, 

Add, Mul, sympify, Dummy, expand_mul, I, pi 

) 

 

from sympy.functions.elementary.exponential import exp 

from sympy.functions.elementary.trigonometric import cos, sin 

 

from sympy.polys.polytools import ( 

Poly, PurePoly, sqf_norm, invert, factor_list, groebner, resultant, 

degree, poly_from_expr, parallel_poly_from_expr, lcm 

) 

 

from sympy.polys.polyerrors import ( 

IsomorphismFailed, 

CoercionFailed, 

NotAlgebraic, 

GeneratorsError, 

) 

 

from sympy.polys.rootoftools import CRootOf 

 

from sympy.polys.specialpolys import cyclotomic_poly 

 

from sympy.polys.polyutils import dict_from_expr, expr_from_dict 

 

from sympy.polys.domains import ZZ, QQ 

 

from sympy.polys.orthopolys import dup_chebyshevt 

 

from sympy.polys.rings import ring 

 

from sympy.polys.ring_series import rs_compose_add 

 

from sympy.printing.lambdarepr import LambdaPrinter 

 

from sympy.utilities import ( 

numbered_symbols, variations, lambdify, public, sift 

) 

 

from sympy.core.exprtools import Factors 

from sympy.core.function import _mexpand 

from sympy.simplify.radsimp import _split_gcd 

from sympy.simplify.simplify import _is_sum_surds 

from sympy.ntheory import sieve 

from sympy.ntheory.factor_ import divisors 

from mpmath import pslq, mp 

 

from sympy.core.compatibility import reduce 

from sympy.core.compatibility import range 

 

 

def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5): 

""" 

Return a factor having root ``v`` 

It is assumed that one of the factors has root ``v``. 

""" 

if isinstance(factors[0], tuple): 

factors = [f[0] for f in factors] 

if len(factors) == 1: 

return factors[0] 

 

points = {x:v} 

symbols = dom.symbols if hasattr(dom, 'symbols') else [] 

t = QQ(1, 10) 

 

for n in range(bound**len(symbols)): 

prec1 = 10 

n_temp = n 

for s in symbols: 

points[s] = n_temp % bound 

n_temp = n_temp // bound 

 

while True: 

candidates = [] 

eps = t**(prec1 // 2) 

for f in factors: 

if abs(f.as_expr().evalf(prec1, points)) < eps: 

candidates.append(f) 

if candidates: 

factors = candidates 

if len(factors) == 1: 

return factors[0] 

if prec1 > prec: 

break 

prec1 *= 2 

 

raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v) 

 

 

def _separate_sq(p): 

""" 

helper function for ``_minimal_polynomial_sq`` 

 

It selects a rational ``g`` such that the polynomial ``p`` 

consists of a sum of terms whose surds squared have gcd equal to ``g`` 

and a sum of terms with surds squared prime with ``g``; 

then it takes the field norm to eliminate ``sqrt(g)`` 

 

See simplify.simplify.split_surds and polytools.sqf_norm. 

 

Examples 

======== 

 

>>> from sympy import sqrt 

>>> from sympy.abc import x 

>>> from sympy.polys.numberfields import _separate_sq 

>>> p= -x + sqrt(2) + sqrt(3) + sqrt(7) 

>>> p = _separate_sq(p); p 

-x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8 

>>> p = _separate_sq(p); p 

-x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20 

>>> p = _separate_sq(p); p 

-x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400 

 

""" 

from sympy.utilities.iterables import sift 

def is_sqrt(expr): 

return expr.is_Pow and expr.exp is S.Half 

# p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)] 

a = [] 

for y in p.args: 

if not y.is_Mul: 

if is_sqrt(y): 

a.append((S.One, y**2)) 

elif y.is_Atom: 

a.append((y, S.One)) 

elif y.is_Pow and y.exp.is_integer: 

a.append((y, S.One)) 

else: 

raise NotImplementedError 

continue 

sifted = sift(y.args, is_sqrt) 

a.append((Mul(*sifted[False]), Mul(*sifted[True])**2)) 

a.sort(key=lambda z: z[1]) 

if a[-1][1] is S.One: 

# there are no surds 

return p 

surds = [z for y, z in a] 

for i in range(len(surds)): 

if surds[i] != 1: 

break 

g, b1, b2 = _split_gcd(*surds[i:]) 

a1 = [] 

a2 = [] 

for y, z in a: 

if z in b1: 

a1.append(y*z**S.Half) 

else: 

a2.append(y*z**S.Half) 

p1 = Add(*a1) 

p2 = Add(*a2) 

p = _mexpand(p1**2) - _mexpand(p2**2) 

return p 

 

def _minimal_polynomial_sq(p, n, x): 

""" 

Returns the minimal polynomial for the ``nth-root`` of a sum of surds 

or ``None`` if it fails. 

 

Parameters 

========== 

 

p : sum of surds 

n : positive integer 

x : variable of the returned polynomial 

 

Examples 

======== 

 

>>> from sympy.polys.numberfields import _minimal_polynomial_sq 

>>> from sympy import sqrt 

>>> from sympy.abc import x 

>>> q = 1 + sqrt(2) + sqrt(3) 

>>> _minimal_polynomial_sq(q, 3, x) 

x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8 

 

""" 

from sympy.simplify.simplify import _is_sum_surds 

 

p = sympify(p) 

n = sympify(n) 

r = _is_sum_surds(p) 

if not n.is_Integer or not n > 0 or not _is_sum_surds(p): 

return None 

pn = p**Rational(1, n) 

# eliminate the square roots 

p -= x 

while 1: 

p1 = _separate_sq(p) 

if p1 is p: 

p = p1.subs({x:x**n}) 

break 

else: 

p = p1 

 

# _separate_sq eliminates field extensions in a minimal way, so that 

# if n = 1 then `p = constant*(minimal_polynomial(p))` 

# if n > 1 it contains the minimal polynomial as a factor. 

if n == 1: 

p1 = Poly(p) 

if p.coeff(x**p1.degree(x)) < 0: 

p = -p 

p = p.primitive()[1] 

return p 

# by construction `p` has root `pn` 

# the minimal polynomial is the factor vanishing in x = pn 

factors = factor_list(p)[1] 

 

result = _choose_factor(factors, x, pn) 

return result 

 

def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None): 

""" 

return the minimal polynomial for ``op(ex1, ex2)`` 

 

Parameters 

========== 

 

op : operation ``Add`` or ``Mul`` 

ex1, ex2 : expressions for the algebraic elements 

x : indeterminate of the polynomials 

dom: ground domain 

mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None 

 

Examples 

======== 

 

>>> from sympy import sqrt, Add, Mul, QQ 

>>> from sympy.polys.numberfields import _minpoly_op_algebraic_element 

>>> from sympy.abc import x, y 

>>> p1 = sqrt(sqrt(2) + 1) 

>>> p2 = sqrt(sqrt(2) - 1) 

>>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ) 

x - 1 

>>> q1 = sqrt(y) 

>>> q2 = 1 / y 

>>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y)) 

x**2*y**2 - 2*x*y - y**3 + 1 

 

References 

========== 

 

[1] http://en.wikipedia.org/wiki/Resultant 

[2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638 

"Degrees of sums in a separable field extension". 

""" 

y = Dummy(str(x)) 

if mp1 is None: 

mp1 = _minpoly_compose(ex1, x, dom) 

if mp2 is None: 

mp2 = _minpoly_compose(ex2, y, dom) 

else: 

mp2 = mp2.subs({x: y}) 

 

if op is Add: 

# mp1a = mp1.subs({x: x - y}) 

if dom == QQ: 

R, X = ring('X', QQ) 

p1 = R(dict_from_expr(mp1)[0]) 

p2 = R(dict_from_expr(mp2)[0]) 

else: 

(p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y) 

r = p1.compose(p2) 

mp1a = r.as_expr() 

 

elif op is Mul: 

mp1a = _muly(mp1, x, y) 

else: 

raise NotImplementedError('option not available') 

 

if op is Mul or dom != QQ: 

r = resultant(mp1a, mp2, gens=[y, x]) 

else: 

r = rs_compose_add(p1, p2) 

r = expr_from_dict(r.as_expr_dict(), x) 

 

deg1 = degree(mp1, x) 

deg2 = degree(mp2, y) 

if op is Mul and deg1 == 1 or deg2 == 1: 

# if deg1 = 1, then mp1 = x - a; mp1a = x - y - a; 

# r = mp2(x - a), so that `r` is irreducible 

return r 

 

r = Poly(r, x, domain=dom) 

_, factors = r.factor_list() 

res = _choose_factor(factors, x, op(ex1, ex2), dom) 

return res.as_expr() 

 

 

def _invertx(p, x): 

""" 

Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))`` 

""" 

p1 = poly_from_expr(p, x)[0] 

 

n = degree(p1) 

a = [c * x**(n - i) for (i,), c in p1.terms()] 

return Add(*a) 

 

 

def _muly(p, x, y): 

""" 

Returns ``_mexpand(y**deg*p.subs({x:x / y}))`` 

""" 

p1 = poly_from_expr(p, x)[0] 

 

n = degree(p1) 

a = [c * x**i * y**(n - i) for (i,), c in p1.terms()] 

return Add(*a) 

 

 

def _minpoly_pow(ex, pw, x, dom, mp=None): 

""" 

Returns ``minpoly(ex**pw, x)`` 

 

Parameters 

========== 

 

ex : algebraic element 

pw : rational number 

x : indeterminate of the polynomial 

dom: ground domain 

mp : minimal polynomial of ``p`` 

 

Examples 

======== 

 

>>> from sympy import sqrt, QQ, Rational 

>>> from sympy.polys.numberfields import _minpoly_pow, minpoly 

>>> from sympy.abc import x, y 

>>> p = sqrt(1 + sqrt(2)) 

>>> _minpoly_pow(p, 2, x, QQ) 

x**2 - 2*x - 1 

>>> minpoly(p**2, x) 

x**2 - 2*x - 1 

>>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y)) 

x**3 - y 

>>> minpoly(y**Rational(1, 3), x) 

x**3 - y 

 

""" 

pw = sympify(pw) 

if not mp: 

mp = _minpoly_compose(ex, x, dom) 

if not pw.is_rational: 

raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) 

if pw < 0: 

if mp == x: 

raise ZeroDivisionError('%s is zero' % ex) 

mp = _invertx(mp, x) 

if pw == -1: 

return mp 

pw = -pw 

ex = 1/ex 

 

y = Dummy(str(x)) 

mp = mp.subs({x: y}) 

n, d = pw.as_numer_denom() 

res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom) 

_, factors = res.factor_list() 

res = _choose_factor(factors, x, ex**pw, dom) 

return res.as_expr() 

 

 

def _minpoly_add(x, dom, *a): 

""" 

returns ``minpoly(Add(*a), dom, x)`` 

""" 

mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom) 

p = a[0] + a[1] 

for px in a[2:]: 

mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp) 

p = p + px 

return mp 

 

 

def _minpoly_mul(x, dom, *a): 

""" 

returns ``minpoly(Mul(*a), dom, x)`` 

""" 

mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom) 

p = a[0] * a[1] 

for px in a[2:]: 

mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp) 

p = p * px 

return mp 

 

 

def _minpoly_sin(ex, x): 

""" 

Returns the minimal polynomial of ``sin(ex)`` 

see http://mathworld.wolfram.com/TrigonometryAngles.html 

""" 

c, a = ex.args[0].as_coeff_Mul() 

if a is pi: 

if c.is_rational: 

n = c.q 

q = sympify(n) 

if q.is_prime: 

# for a = pi*p/q with q odd prime, using chebyshevt 

# write sin(q*a) = mp(sin(a))*sin(a); 

# the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1 

a = dup_chebyshevt(n, ZZ) 

return Add(*[x**(n - i - 1)*a[i] for i in range(n)]) 

if c.p == 1: 

if q == 9: 

return 64*x**6 - 96*x**4 + 36*x**2 - 3 

 

if n % 2 == 1: 

# for a = pi*p/q with q odd, use 

# sin(q*a) = 0 to see that the minimal polynomial must be 

# a factor of dup_chebyshevt(n, ZZ) 

a = dup_chebyshevt(n, ZZ) 

a = [x**(n - i)*a[i] for i in range(n + 1)] 

r = Add(*a) 

_, factors = factor_list(r) 

res = _choose_factor(factors, x, ex) 

return res 

 

expr = ((1 - cos(2*c*pi))/2)**S.Half 

res = _minpoly_compose(expr, x, QQ) 

return res 

 

raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) 

 

 

def _minpoly_cos(ex, x): 

""" 

Returns the minimal polynomial of ``cos(ex)`` 

see http://mathworld.wolfram.com/TrigonometryAngles.html 

""" 

from sympy import sqrt 

c, a = ex.args[0].as_coeff_Mul() 

if a is pi: 

if c.is_rational: 

if c.p == 1: 

if c.q == 7: 

return 8*x**3 - 4*x**2 - 4*x + 1 

if c.q == 9: 

return 8*x**3 - 6*x + 1 

elif c.p == 2: 

q = sympify(c.q) 

if q.is_prime: 

s = _minpoly_sin(ex, x) 

return _mexpand(s.subs({x:sqrt((1 - x)/2)})) 

 

# for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p 

n = int(c.q) 

a = dup_chebyshevt(n, ZZ) 

a = [x**(n - i)*a[i] for i in range(n + 1)] 

r = Add(*a) - (-1)**c.p 

_, factors = factor_list(r) 

res = _choose_factor(factors, x, ex) 

return res 

 

raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) 

 

 

def _minpoly_exp(ex, x): 

""" 

Returns the minimal polynomial of ``exp(ex)`` 

""" 

c, a = ex.args[0].as_coeff_Mul() 

p = sympify(c.p) 

q = sympify(c.q) 

if a == I*pi: 

if c.is_rational: 

if c.p == 1 or c.p == -1: 

if q == 3: 

return x**2 - x + 1 

if q == 4: 

return x**4 + 1 

if q == 6: 

return x**4 - x**2 + 1 

if q == 8: 

return x**8 + 1 

if q == 9: 

return x**6 - x**3 + 1 

if q == 10: 

return x**8 - x**6 + x**4 - x**2 + 1 

if q.is_prime: 

s = 0 

for i in range(q): 

s += (-x)**i 

return s 

 

# x**(2*q) = product(factors) 

factors = [cyclotomic_poly(i, x) for i in divisors(2*q)] 

mp = _choose_factor(factors, x, ex) 

return mp 

else: 

raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) 

raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) 

 

 

def _minpoly_rootof(ex, x): 

""" 

Returns the minimal polynomial of a ``CRootOf`` object. 

""" 

p = ex.expr 

p = p.subs({ex.poly.gens[0]:x}) 

_, factors = factor_list(p, x) 

result = _choose_factor(factors, x, ex) 

return result 

 

 

def _minpoly_compose(ex, x, dom): 

""" 

Computes the minimal polynomial of an algebraic element 

using operations on minimal polynomials 

 

Examples 

======== 

 

>>> from sympy import minimal_polynomial, sqrt, Rational 

>>> from sympy.abc import x, y 

>>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True) 

x**2 - 2*x - 1 

>>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True) 

x**2*y**2 - 2*x*y - y**3 + 1 

 

""" 

if ex.is_Rational: 

return ex.q*x - ex.p 

if ex is I: 

return x**2 + 1 

if hasattr(dom, 'symbols') and ex in dom.symbols: 

return x - ex 

 

if dom.is_QQ and _is_sum_surds(ex): 

# eliminate the square roots 

ex -= x 

while 1: 

ex1 = _separate_sq(ex) 

if ex1 is ex: 

return ex 

else: 

ex = ex1 

 

if ex.is_Add: 

res = _minpoly_add(x, dom, *ex.args) 

elif ex.is_Mul: 

f = Factors(ex).factors 

r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational) 

if r[True] and dom == QQ: 

ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]]) 

r1 = r[True] 

dens = [y.q for _, y in r1] 

lcmdens = reduce(lcm, dens, 1) 

nums = [base**(y.p*lcmdens // y.q) for base, y in r1] 

ex2 = Mul(*nums) 

mp1 = minimal_polynomial(ex1, x) 

# use the fact that in SymPy canonicalization products of integers 

# raised to rational powers are organized in relatively prime 

# bases, and that in ``base**(n/d)`` a perfect power is 

# simplified with the root 

mp2 = ex2.q*x**lcmdens - ex2.p 

ex2 = ex2**Rational(1, lcmdens) 

res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2) 

else: 

res = _minpoly_mul(x, dom, *ex.args) 

elif ex.is_Pow: 

res = _minpoly_pow(ex.base, ex.exp, x, dom) 

elif ex.__class__ is sin: 

res = _minpoly_sin(ex, x) 

elif ex.__class__ is cos: 

res = _minpoly_cos(ex, x) 

elif ex.__class__ is exp: 

res = _minpoly_exp(ex, x) 

elif ex.__class__ is CRootOf: 

res = _minpoly_rootof(ex, x) 

else: 

raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) 

return res 

 

 

@public 

def minimal_polynomial(ex, x=None, **args): 

""" 

Computes the minimal polynomial of an algebraic element. 

 

Parameters 

========== 

 

ex : algebraic element expression 

x : independent variable of the minimal polynomial 

 

Options 

======= 

 

compose : if ``True`` ``_minpoly_compose`` is used, if ``False`` the ``groebner`` algorithm 

polys : if ``True`` returns a ``Poly`` object 

domain : ground domain 

 

Notes 

===== 

 

By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex`` 

are computed, then the arithmetic operations on them are performed using the resultant 

and factorization. 

If ``compose=False``, a bottom-up algorithm is used with ``groebner``. 

The default algorithm stalls less frequently. 

 

If no ground domain is given, it will be generated automatically from the expression. 

 

Examples 

======== 

 

>>> from sympy import minimal_polynomial, sqrt, solve, QQ 

>>> from sympy.abc import x, y 

 

>>> minimal_polynomial(sqrt(2), x) 

x**2 - 2 

>>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2))) 

x - sqrt(2) 

>>> minimal_polynomial(sqrt(2) + sqrt(3), x) 

x**4 - 10*x**2 + 1 

>>> minimal_polynomial(solve(x**3 + x + 3)[0], x) 

x**3 + x + 3 

>>> minimal_polynomial(sqrt(y), x) 

x**2 - y 

 

""" 

from sympy.polys.polytools import degree 

from sympy.polys.domains import FractionField 

from sympy.core.basic import preorder_traversal 

 

compose = args.get('compose', True) 

polys = args.get('polys', False) 

dom = args.get('domain', None) 

 

ex = sympify(ex) 

if ex.is_number: 

# not sure if it's always needed but try it for numbers (issue 8354) 

ex = _mexpand(ex, recursive=True) 

for expr in preorder_traversal(ex): 

if expr.is_AlgebraicNumber: 

compose = False 

break 

 

if x is not None: 

x, cls = sympify(x), Poly 

else: 

x, cls = Dummy('x'), PurePoly 

 

if not dom: 

dom = FractionField(QQ, list(ex.free_symbols)) if ex.free_symbols else QQ 

if hasattr(dom, 'symbols') and x in dom.symbols: 

raise GeneratorsError("the variable %s is an element of the ground domain %s" % (x, dom)) 

 

if compose: 

result = _minpoly_compose(ex, x, dom) 

result = result.primitive()[1] 

c = result.coeff(x**degree(result, x)) 

if c.is_negative: 

result = expand_mul(-result) 

return cls(result, x, field=True) if polys else result.collect(x) 

 

if not dom.is_QQ: 

raise NotImplementedError("groebner method only works for QQ") 

 

result = _minpoly_groebner(ex, x, cls) 

return cls(result, x, field=True) if polys else result.collect(x) 

 

 

def _minpoly_groebner(ex, x, cls): 

""" 

Computes the minimal polynomial of an algebraic number 

using Groebner bases 

 

Examples 

======== 

 

>>> from sympy import minimal_polynomial, sqrt, Rational 

>>> from sympy.abc import x 

>>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False) 

x**2 - 2*x - 1 

 

""" 

from sympy.polys.polytools import degree 

from sympy.core.function import expand_multinomial 

 

generator = numbered_symbols('a', cls=Dummy) 

mapping, symbols, replace = {}, {}, [] 

 

def update_mapping(ex, exp, base=None): 

a = next(generator) 

symbols[ex] = a 

 

if base is not None: 

mapping[ex] = a**exp + base 

else: 

mapping[ex] = exp.as_expr(a) 

 

return a 

 

def bottom_up_scan(ex): 

if ex.is_Atom: 

if ex is S.ImaginaryUnit: 

if ex not in mapping: 

return update_mapping(ex, 2, 1) 

else: 

return symbols[ex] 

elif ex.is_Rational: 

return ex 

elif ex.is_Add: 

return Add(*[ bottom_up_scan(g) for g in ex.args ]) 

elif ex.is_Mul: 

return Mul(*[ bottom_up_scan(g) for g in ex.args ]) 

elif ex.is_Pow: 

if ex.exp.is_Rational: 

if ex.exp < 0 and ex.base.is_Add: 

coeff, terms = ex.base.as_coeff_add() 

elt, _ = primitive_element(terms, polys=True) 

 

alg = ex.base - coeff 

 

# XXX: turn this into eval() 

inverse = invert(elt.gen + coeff, elt).as_expr() 

base = inverse.subs(elt.gen, alg).expand() 

 

if ex.exp == -1: 

return bottom_up_scan(base) 

else: 

ex = base**(-ex.exp) 

if not ex.exp.is_Integer: 

base, exp = ( 

ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q) 

else: 

base, exp = ex.base, ex.exp 

base = bottom_up_scan(base) 

expr = base**exp 

 

if expr not in mapping: 

return update_mapping(expr, 1/exp, -base) 

else: 

return symbols[expr] 

elif ex.is_AlgebraicNumber: 

if ex.root not in mapping: 

return update_mapping(ex.root, ex.minpoly) 

else: 

return symbols[ex.root] 

 

raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex) 

 

def simpler_inverse(ex): 

""" 

Returns True if it is more likely that the minimal polynomial 

algorithm works better with the inverse 

""" 

if ex.is_Pow: 

if (1/ex.exp).is_integer and ex.exp < 0: 

if ex.base.is_Add: 

return True 

if ex.is_Mul: 

hit = True 

a = [] 

for p in ex.args: 

if p.is_Add: 

return False 

if p.is_Pow: 

if p.base.is_Add and p.exp > 0: 

return False 

 

if hit: 

return True 

return False 

 

inverted = False 

ex = expand_multinomial(ex) 

if ex.is_AlgebraicNumber: 

return ex.minpoly.as_expr(x) 

elif ex.is_Rational: 

result = ex.q*x - ex.p 

else: 

inverted = simpler_inverse(ex) 

if inverted: 

ex = ex**-1 

res = None 

if ex.is_Pow and (1/ex.exp).is_Integer: 

n = 1/ex.exp 

res = _minimal_polynomial_sq(ex.base, n, x) 

 

elif _is_sum_surds(ex): 

res = _minimal_polynomial_sq(ex, S.One, x) 

 

if res is not None: 

result = res 

 

if res is None: 

bus = bottom_up_scan(ex) 

F = [x - bus] + list(mapping.values()) 

G = groebner(F, list(symbols.values()) + [x], order='lex') 

 

_, factors = factor_list(G[-1]) 

# by construction G[-1] has root `ex` 

result = _choose_factor(factors, x, ex) 

if inverted: 

result = _invertx(result, x) 

if result.coeff(x**degree(result, x)) < 0: 

result = expand_mul(-result) 

 

return result 

 

 

minpoly = minimal_polynomial 

__all__.append('minpoly') 

 

def _coeffs_generator(n): 

"""Generate coefficients for `primitive_element()`. """ 

for coeffs in variations([1, -1], n, repetition=True): 

yield list(coeffs) 

 

 

@public 

def primitive_element(extension, x=None, **args): 

"""Construct a common number field for all extensions. """ 

if not extension: 

raise ValueError("can't compute primitive element for empty extension") 

 

if x is not None: 

x, cls = sympify(x), Poly 

else: 

x, cls = Dummy('x'), PurePoly 

if not args.get('ex', False): 

extension = [ AlgebraicNumber(ext, gen=x) for ext in extension ] 

 

g, coeffs = extension[0].minpoly.replace(x), [1] 

 

for ext in extension[1:]: 

s, _, g = sqf_norm(g, x, extension=ext) 

coeffs = [ s*c for c in coeffs ] + [1] 

 

if not args.get('polys', False): 

return g.as_expr(), coeffs 

else: 

return cls(g), coeffs 

 

generator = numbered_symbols('y', cls=Dummy) 

 

F, Y = [], [] 

 

for ext in extension: 

y = next(generator) 

 

if ext.is_Poly: 

if ext.is_univariate: 

f = ext.as_expr(y) 

else: 

raise ValueError("expected minimal polynomial, got %s" % ext) 

else: 

f = minpoly(ext, y) 

 

F.append(f) 

Y.append(y) 

 

coeffs_generator = args.get('coeffs', _coeffs_generator) 

 

for coeffs in coeffs_generator(len(Y)): 

f = x - sum([ c*y for c, y in zip(coeffs, Y)]) 

G = groebner(F + [f], Y + [x], order='lex', field=True) 

 

H, g = G[:-1], cls(G[-1], x, domain='QQ') 

 

for i, (h, y) in enumerate(zip(H, Y)): 

try: 

H[i] = Poly(y - h, x, 

domain='QQ').all_coeffs() # XXX: composite=False 

except CoercionFailed: # pragma: no cover 

break # G is not a triangular set 

else: 

break 

else: # pragma: no cover 

raise RuntimeError("run out of coefficient configurations") 

 

_, g = g.clear_denoms() 

 

if not args.get('polys', False): 

return g.as_expr(), coeffs, H 

else: 

return g, coeffs, H 

 

 

def is_isomorphism_possible(a, b): 

"""Returns `True` if there is a chance for isomorphism. """ 

n = a.minpoly.degree() 

m = b.minpoly.degree() 

 

if m % n != 0: 

return False 

 

if n == m: 

return True 

 

da = a.minpoly.discriminant() 

db = b.minpoly.discriminant() 

 

i, k, half = 1, m//n, db//2 

 

while True: 

p = sieve[i] 

P = p**k 

 

if P > half: 

break 

 

if ((da % p) % 2) and not (db % P): 

return False 

 

i += 1 

 

return True 

 

 

def field_isomorphism_pslq(a, b): 

"""Construct field isomorphism using PSLQ algorithm. """ 

if not a.root.is_real or not b.root.is_real: 

raise NotImplementedError("PSLQ doesn't support complex coefficients") 

 

f = a.minpoly 

g = b.minpoly.replace(f.gen) 

 

n, m, prev = 100, b.minpoly.degree(), None 

 

for i in range(1, 5): 

A = a.root.evalf(n) 

B = b.root.evalf(n) 

 

basis = [1, B] + [ B**i for i in range(2, m) ] + [A] 

 

dps, mp.dps = mp.dps, n 

coeffs = pslq(basis, maxcoeff=int(1e10), maxsteps=1000) 

mp.dps = dps 

 

if coeffs is None: 

break 

 

if coeffs != prev: 

prev = coeffs 

else: 

break 

 

coeffs = [S(c)/coeffs[-1] for c in coeffs[:-1]] 

 

while not coeffs[-1]: 

coeffs.pop() 

 

coeffs = list(reversed(coeffs)) 

h = Poly(coeffs, f.gen, domain='QQ') 

 

if f.compose(h).rem(g).is_zero: 

d, approx = len(coeffs) - 1, 0 

 

for i, coeff in enumerate(coeffs): 

approx += coeff*B**(d - i) 

 

if A*approx < 0: 

return [ -c for c in coeffs ] 

else: 

return coeffs 

elif f.compose(-h).rem(g).is_zero: 

return [ -c for c in coeffs ] 

else: 

n *= 2 

 

return None 

 

 

def field_isomorphism_factor(a, b): 

"""Construct field isomorphism via factorization. """ 

_, factors = factor_list(a.minpoly, extension=b) 

 

for f, _ in factors: 

if f.degree() == 1: 

coeffs = f.rep.TC().to_sympy_list() 

d, terms = len(coeffs) - 1, [] 

 

for i, coeff in enumerate(coeffs): 

terms.append(coeff*b.root**(d - i)) 

 

root = Add(*terms) 

 

if (a.root - root).evalf(chop=True) == 0: 

return coeffs 

 

if (a.root + root).evalf(chop=True) == 0: 

return [ -c for c in coeffs ] 

else: 

return None 

 

 

@public 

def field_isomorphism(a, b, **args): 

"""Construct an isomorphism between two number fields. """ 

a, b = sympify(a), sympify(b) 

 

if not a.is_AlgebraicNumber: 

a = AlgebraicNumber(a) 

 

if not b.is_AlgebraicNumber: 

b = AlgebraicNumber(b) 

 

if a == b: 

return a.coeffs() 

 

n = a.minpoly.degree() 

m = b.minpoly.degree() 

 

if n == 1: 

return [a.root] 

 

if m % n != 0: 

return None 

 

if args.get('fast', True): 

try: 

result = field_isomorphism_pslq(a, b) 

 

if result is not None: 

return result 

except NotImplementedError: 

pass 

 

return field_isomorphism_factor(a, b) 

 

 

@public 

def to_number_field(extension, theta=None, **args): 

"""Express `extension` in the field generated by `theta`. """ 

gen = args.get('gen') 

 

if hasattr(extension, '__iter__'): 

extension = list(extension) 

else: 

extension = [extension] 

 

if len(extension) == 1 and type(extension[0]) is tuple: 

return AlgebraicNumber(extension[0]) 

 

minpoly, coeffs = primitive_element(extension, gen, polys=True) 

root = sum([ coeff*ext for coeff, ext in zip(coeffs, extension) ]) 

 

if theta is None: 

return AlgebraicNumber((minpoly, root)) 

else: 

theta = sympify(theta) 

 

if not theta.is_AlgebraicNumber: 

theta = AlgebraicNumber(theta, gen=gen) 

 

coeffs = field_isomorphism(root, theta) 

 

if coeffs is not None: 

return AlgebraicNumber(theta, coeffs) 

else: 

raise IsomorphismFailed( 

"%s is not in a subfield of %s" % (root, theta.root)) 

 

 

class IntervalPrinter(LambdaPrinter): 

"""Use ``lambda`` printer but print numbers as ``mpi`` intervals. """ 

 

def _print_Integer(self, expr): 

return "mpi('%s')" % super(IntervalPrinter, self)._print_Integer(expr) 

 

def _print_Rational(self, expr): 

return "mpi('%s')" % super(IntervalPrinter, self)._print_Rational(expr) 

 

def _print_Pow(self, expr): 

return super(IntervalPrinter, self)._print_Pow(expr, rational=True) 

 

 

@public 

def isolate(alg, eps=None, fast=False): 

"""Give a rational isolating interval for an algebraic number. """ 

alg = sympify(alg) 

 

if alg.is_Rational: 

return (alg, alg) 

elif not alg.is_real: 

raise NotImplementedError( 

"complex algebraic numbers are not supported") 

 

func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter()) 

 

poly = minpoly(alg, polys=True) 

intervals = poly.intervals(sqf=True) 

 

dps, done = mp.dps, False 

 

try: 

while not done: 

alg = func() 

 

for a, b in intervals: 

if a <= alg.a and alg.b <= b: 

done = True 

break 

else: 

mp.dps *= 2 

finally: 

mp.dps = dps 

 

if eps is not None: 

a, b = poly.refine_root(a, b, eps=eps, fast=fast) 

 

return (a, b)