Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

"""Definitions of monomial orderings. """ 

 

from __future__ import print_function, division 

 

__all__ = ["lex", "grlex", "grevlex", "ilex", "igrlex", "igrevlex"] 

 

from sympy.core import Symbol 

from sympy.core.compatibility import iterable 

 

class MonomialOrder(object): 

"""Base class for monomial orderings. """ 

 

alias = None 

is_global = None 

is_default = False 

 

def __repr__(self): 

return self.__class__.__name__ + "()" 

 

def __str__(self): 

return self.alias 

 

def __call__(self, monomial): 

raise NotImplementedError 

 

def __eq__(self, other): 

return self.__class__ == other.__class__ 

 

def __hash__(self): 

return hash(self.__class__) 

 

def __ne__(self, other): 

return not (self == other) 

 

class LexOrder(MonomialOrder): 

"""Lexicographic order of monomials. """ 

 

alias = 'lex' 

is_global = True 

is_default = True 

 

def __call__(self, monomial): 

return monomial 

 

class GradedLexOrder(MonomialOrder): 

"""Graded lexicographic order of monomials. """ 

 

alias = 'grlex' 

is_global = True 

 

def __call__(self, monomial): 

return (sum(monomial), monomial) 

 

class ReversedGradedLexOrder(MonomialOrder): 

"""Reversed graded lexicographic order of monomials. """ 

 

alias = 'grevlex' 

is_global = True 

 

def __call__(self, monomial): 

return (sum(monomial), tuple(reversed([-m for m in monomial]))) 

 

class ProductOrder(MonomialOrder): 

""" 

A product order built from other monomial orders. 

 

Given (not necessarily total) orders O1, O2, ..., On, their product order 

P is defined as M1 > M2 iff there exists i such that O1(M1) = O2(M2), 

..., Oi(M1) = Oi(M2), O{i+1}(M1) > O{i+1}(M2). 

 

Product orders are typically built from monomial orders on different sets 

of variables. 

 

ProductOrder is constructed by passing a list of pairs 

[(O1, L1), (O2, L2), ...] where Oi are MonomialOrders and Li are callables. 

Upon comparison, the Li are passed the total monomial, and should filter 

out the part of the monomial to pass to Oi. 

 

Examples 

======== 

 

We can use a lexicographic order on x_1, x_2 and also on 

y_1, y_2, y_3, and their product on {x_i, y_i} as follows: 

 

>>> from sympy.polys.orderings import lex, grlex, ProductOrder 

>>> P = ProductOrder( 

... (lex, lambda m: m[:2]), # lex order on x_1 and x_2 of monomial 

... (grlex, lambda m: m[2:]) # grlex on y_1, y_2, y_3 

... ) 

>>> P((2, 1, 1, 0, 0)) > P((1, 10, 0, 2, 0)) 

True 

 

Here the exponent `2` of `x_1` in the first monomial 

(`x_1^2 x_2 y_1`) is bigger than the exponent `1` of `x_1` in the 

second monomial (`x_1 x_2^10 y_2^2`), so the first monomial is greater 

in the product ordering. 

 

>>> P((2, 1, 1, 0, 0)) < P((2, 1, 0, 2, 0)) 

True 

 

Here the exponents of `x_1` and `x_2` agree, so the grlex order on 

`y_1, y_2, y_3` is used to decide the ordering. In this case the monomial 

`y_2^2` is ordered larger than `y_1`, since for the grlex order the degree 

of the monomial is most important. 

""" 

 

def __init__(self, *args): 

self.args = args 

 

def __call__(self, monomial): 

return tuple(O(lamda(monomial)) for (O, lamda) in self.args) 

 

def __repr__(self): 

from sympy.core import Tuple 

return self.__class__.__name__ + repr(Tuple(*[x[0] for x in self.args])) 

 

def __str__(self): 

from sympy.core import Tuple 

return self.__class__.__name__ + str(Tuple(*[x[0] for x in self.args])) 

 

def __eq__(self, other): 

if not isinstance(other, ProductOrder): 

return False 

return self.args == other.args 

 

def __hash__(self): 

return hash((self.__class__, self.args)) 

 

@property 

def is_global(self): 

if all(o.is_global is True for o, _ in self.args): 

return True 

if all(o.is_global is False for o, _ in self.args): 

return False 

return None 

 

class InverseOrder(MonomialOrder): 

""" 

The "inverse" of another monomial order. 

 

If O is any monomial order, we can construct another monomial order iO 

such that `A >_{iO} B` if and only if `B >_O A`. This is useful for 

constructing local orders. 

 

Note that many algorithms only work with *global* orders. 

 

For example, in the inverse lexicographic order on a single variable `x`, 

high powers of `x` count as small: 

 

>>> from sympy.polys.orderings import lex, InverseOrder 

>>> ilex = InverseOrder(lex) 

>>> ilex((5,)) < ilex((0,)) 

True 

""" 

 

def __init__(self, O): 

self.O = O 

 

def __str__(self): 

return "i" + str(self.O) 

 

def __call__(self, monomial): 

def inv(l): 

if iterable(l): 

return tuple(inv(x) for x in l) 

return -l 

return inv(self.O(monomial)) 

 

@property 

def is_global(self): 

if self.O.is_global is True: 

return False 

if self.O.is_global is False: 

return True 

return None 

 

def __eq__(self, other): 

return isinstance(other, InverseOrder) and other.O == self.O 

 

def __hash__(self): 

return hash((self.__class__, self.O)) 

 

lex = LexOrder() 

grlex = GradedLexOrder() 

grevlex = ReversedGradedLexOrder() 

ilex = InverseOrder(lex) 

igrlex = InverseOrder(grlex) 

igrevlex = InverseOrder(grevlex) 

 

_monomial_key = { 

'lex': lex, 

'grlex': grlex, 

'grevlex': grevlex, 

'ilex': ilex, 

'igrlex': igrlex, 

'igrevlex': igrevlex 

} 

 

def monomial_key(order=None, gens=None): 

""" 

Return a function defining admissible order on monomials. 

 

The result of a call to :func:`monomial_key` is a function which should 

be used as a key to :func:`sorted` built-in function, to provide order 

in a set of monomials of the same length. 

 

Currently supported monomial orderings are: 

 

1. lex - lexicographic order (default) 

2. grlex - graded lexicographic order 

3. grevlex - reversed graded lexicographic order 

4. ilex, igrlex, igrevlex - the corresponding inverse orders 

 

If the ``order`` input argument is not a string but has ``__call__`` 

attribute, then it will pass through with an assumption that the 

callable object defines an admissible order on monomials. 

 

If the ``gens`` input argument contains a list of generators, the 

resulting key function can be used to sort SymPy ``Expr`` objects. 

 

""" 

if order is None: 

order = lex 

 

if isinstance(order, Symbol): 

order = str(order) 

 

if isinstance(order, str): 

try: 

order = _monomial_key[order] 

except KeyError: 

raise ValueError("supported monomial orderings are 'lex', 'grlex' and 'grevlex', got %r" % order) 

if hasattr(order, '__call__'): 

if gens is not None: 

def _order(expr): 

return order(expr.as_poly(*gens).degree_list()) 

return _order 

return order 

else: 

raise ValueError("monomial ordering specification must be a string or a callable, got %s" % order) 

 

class _ItemGetter(object): 

"""Helper class to return a subsequence of values.""" 

 

def __init__(self, seq): 

self.seq = tuple(seq) 

 

def __call__(self, m): 

return tuple(m[idx] for idx in self.seq) 

 

def __eq__(self, other): 

if not isinstance(other, _ItemGetter): 

return False 

return self.seq == other.seq 

 

def build_product_order(arg, gens): 

""" 

Build a monomial order on ``gens``. 

 

``arg`` should be a tuple of iterables. The first element of each iterable 

should be a string or monomial order (will be passed to monomial_key), 

the others should be subsets of the generators. This function will build 

the corresponding product order. 

 

For example, build a product of two grlex orders: 

 

>>> from sympy.polys.orderings import grlex, build_product_order 

>>> from sympy.abc import x, y, z, t 

 

>>> O = build_product_order((("grlex", x, y), ("grlex", z, t)), [x, y, z, t]) 

>>> O((1, 2, 3, 4)) 

((3, (1, 2)), (7, (3, 4))) 

 

""" 

gens2idx = {} 

for i, g in enumerate(gens): 

gens2idx[g] = i 

order = [] 

for expr in arg: 

name = expr[0] 

var = expr[1:] 

 

def makelambda(var): 

return _ItemGetter(gens2idx[g] for g in var) 

order.append((monomial_key(name), makelambda(var))) 

return ProductOrder(*order)