Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

"""Efficient functions for generating orthogonal polynomials. """ 

 

from __future__ import print_function, division 

 

from sympy import Dummy 

 

from sympy.utilities import public 

 

from sympy.polys.constructor import construct_domain 

from sympy.polys.polytools import Poly, PurePoly 

from sympy.polys.polyclasses import DMP 

 

from sympy.polys.densearith import ( 

dup_mul, dup_mul_ground, dup_lshift, dup_sub, dup_add 

) 

 

from sympy.polys.domains import ZZ, QQ 

 

from sympy.core.compatibility import range 

 

 

def dup_jacobi(n, a, b, K): 

"""Low-level implementation of Jacobi polynomials. """ 

seq = [[K.one], [(a + b + K(2))/K(2), (a - b)/K(2)]] 

 

for i in range(2, n + 1): 

den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2)) 

f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den) 

f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den) 

f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den 

p0 = dup_mul_ground(seq[-1], f0, K) 

p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K) 

p2 = dup_mul_ground(seq[-2], f2, K) 

seq.append(dup_sub(dup_add(p0, p1, K), p2, K)) 

 

return seq[n] 

 

 

@public 

def jacobi_poly(n, a, b, x=None, **args): 

"""Generates Jacobi polynomial of degree `n` in `x`. """ 

if n < 0: 

raise ValueError("can't generate Jacobi polynomial of degree %s" % n) 

 

K, v = construct_domain([a, b], field=True) 

poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K) 

 

if x is not None: 

poly = Poly.new(poly, x) 

else: 

poly = PurePoly.new(poly, Dummy('x')) 

 

if not args.get('polys', False): 

return poly.as_expr() 

else: 

return poly 

 

 

def dup_gegenbauer(n, a, K): 

"""Low-level implementation of Gegenbauer polynomials. """ 

seq = [[K.one], [K(2)*a, K.zero]] 

 

for i in range(2, n + 1): 

f1 = K(2) * (i + a - K.one) / i 

f2 = (i + K(2)*a - K(2)) / i 

p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K) 

p2 = dup_mul_ground(seq[-2], f2, K) 

seq.append(dup_sub(p1, p2, K)) 

 

return seq[n] 

 

 

def gegenbauer_poly(n, a, x=None, **args): 

"""Generates Gegenbauer polynomial of degree `n` in `x`. """ 

if n < 0: 

raise ValueError( 

"can't generate Gegenbauer polynomial of degree %s" % n) 

 

K, a = construct_domain(a, field=True) 

poly = DMP(dup_gegenbauer(int(n), a, K), K) 

 

if x is not None: 

poly = Poly.new(poly, x) 

else: 

poly = PurePoly.new(poly, Dummy('x')) 

 

if not args.get('polys', False): 

return poly.as_expr() 

else: 

return poly 

 

 

def dup_chebyshevt(n, K): 

"""Low-level implementation of Chebyshev polynomials of the 1st kind. """ 

seq = [[K.one], [K.one, K.zero]] 

 

for i in range(2, n + 1): 

a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K) 

seq.append(dup_sub(a, seq[-2], K)) 

 

return seq[n] 

 

 

@public 

def chebyshevt_poly(n, x=None, **args): 

"""Generates Chebyshev polynomial of the first kind of degree `n` in `x`. """ 

if n < 0: 

raise ValueError( 

"can't generate 1st kind Chebyshev polynomial of degree %s" % n) 

 

poly = DMP(dup_chebyshevt(int(n), ZZ), ZZ) 

 

if x is not None: 

poly = Poly.new(poly, x) 

else: 

poly = PurePoly.new(poly, Dummy('x')) 

 

if not args.get('polys', False): 

return poly.as_expr() 

else: 

return poly 

 

 

def dup_chebyshevu(n, K): 

"""Low-level implementation of Chebyshev polynomials of the 2nd kind. """ 

seq = [[K.one], [K(2), K.zero]] 

 

for i in range(2, n + 1): 

a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K) 

seq.append(dup_sub(a, seq[-2], K)) 

 

return seq[n] 

 

 

@public 

def chebyshevu_poly(n, x=None, **args): 

"""Generates Chebyshev polynomial of the second kind of degree `n` in `x`. """ 

if n < 0: 

raise ValueError( 

"can't generate 2nd kind Chebyshev polynomial of degree %s" % n) 

 

poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ) 

 

if x is not None: 

poly = Poly.new(poly, x) 

else: 

poly = PurePoly.new(poly, Dummy('x')) 

 

if not args.get('polys', False): 

return poly.as_expr() 

else: 

return poly 

 

 

def dup_hermite(n, K): 

"""Low-level implementation of Hermite polynomials. """ 

seq = [[K.one], [K(2), K.zero]] 

 

for i in range(2, n + 1): 

a = dup_lshift(seq[-1], 1, K) 

b = dup_mul_ground(seq[-2], K(i - 1), K) 

 

c = dup_mul_ground(dup_sub(a, b, K), K(2), K) 

 

seq.append(c) 

 

return seq[n] 

 

 

@public 

def hermite_poly(n, x=None, **args): 

"""Generates Hermite polynomial of degree `n` in `x`. """ 

if n < 0: 

raise ValueError("can't generate Hermite polynomial of degree %s" % n) 

 

poly = DMP(dup_hermite(int(n), ZZ), ZZ) 

 

if x is not None: 

poly = Poly.new(poly, x) 

else: 

poly = PurePoly.new(poly, Dummy('x')) 

 

if not args.get('polys', False): 

return poly.as_expr() 

else: 

return poly 

 

 

def dup_legendre(n, K): 

"""Low-level implementation of Legendre polynomials. """ 

seq = [[K.one], [K.one, K.zero]] 

 

for i in range(2, n + 1): 

a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1, i), K) 

b = dup_mul_ground(seq[-2], K(i - 1, i), K) 

 

seq.append(dup_sub(a, b, K)) 

 

return seq[n] 

 

 

@public 

def legendre_poly(n, x=None, **args): 

"""Generates Legendre polynomial of degree `n` in `x`. """ 

if n < 0: 

raise ValueError("can't generate Legendre polynomial of degree %s" % n) 

 

poly = DMP(dup_legendre(int(n), QQ), QQ) 

 

if x is not None: 

poly = Poly.new(poly, x) 

else: 

poly = PurePoly.new(poly, Dummy('x')) 

 

if not args.get('polys', False): 

return poly.as_expr() 

else: 

return poly 

 

 

def dup_laguerre(n, alpha, K): 

"""Low-level implementation of Laguerre polynomials. """ 

seq = [[K.zero], [K.one]] 

 

for i in range(1, n + 1): 

a = dup_mul(seq[-1], [-K.one/i, alpha/i + K(2*i - 1)/i], K) 

b = dup_mul_ground(seq[-2], alpha/i + K(i - 1)/i, K) 

 

seq.append(dup_sub(a, b, K)) 

 

return seq[-1] 

 

 

@public 

def laguerre_poly(n, x=None, alpha=None, **args): 

"""Generates Laguerre polynomial of degree `n` in `x`. """ 

if n < 0: 

raise ValueError("can't generate Laguerre polynomial of degree %s" % n) 

 

if alpha is not None: 

K, alpha = construct_domain( 

alpha, field=True) # XXX: ground_field=True 

else: 

K, alpha = QQ, QQ(0) 

 

poly = DMP(dup_laguerre(int(n), alpha, K), K) 

 

if x is not None: 

poly = Poly.new(poly, x) 

else: 

poly = PurePoly.new(poly, Dummy('x')) 

 

if not args.get('polys', False): 

return poly.as_expr() 

else: 

return poly 

 

 

def dup_spherical_bessel_fn(n, K): 

""" Low-level implementation of fn(n, x) """ 

seq = [[K.one], [K.one, K.zero]] 

 

for i in range(2, n + 1): 

a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1), K) 

seq.append(dup_sub(a, seq[-2], K)) 

 

return dup_lshift(seq[n], 1, K) 

 

 

def dup_spherical_bessel_fn_minus(n, K): 

""" Low-level implementation of fn(-n, x) """ 

seq = [[K.one, K.zero], [K.zero]] 

 

for i in range(2, n + 1): 

a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(3 - 2*i), K) 

seq.append(dup_sub(a, seq[-2], K)) 

 

return seq[n] 

 

 

def spherical_bessel_fn(n, x=None, **args): 

""" 

Coefficients for the spherical Bessel functions. 

 

Those are only needed in the jn() function. 

 

The coefficients are calculated from: 

 

fn(0, z) = 1/z 

fn(1, z) = 1/z**2 

fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z) 

 

Examples 

======== 

 

>>> from sympy.polys.orthopolys import spherical_bessel_fn as fn 

>>> from sympy import Symbol 

>>> z = Symbol("z") 

>>> fn(1, z) 

z**(-2) 

>>> fn(2, z) 

-1/z + 3/z**3 

>>> fn(3, z) 

-6/z**2 + 15/z**4 

>>> fn(4, z) 

1/z - 45/z**3 + 105/z**5 

 

""" 

 

if n < 0: 

dup = dup_spherical_bessel_fn_minus(-int(n), ZZ) 

else: 

dup = dup_spherical_bessel_fn(int(n), ZZ) 

 

poly = DMP(dup, ZZ) 

 

if x is not None: 

poly = Poly.new(poly, 1/x) 

else: 

poly = PurePoly.new(poly, 1/Dummy('x')) 

 

if not args.get('polys', False): 

return poly.as_expr() 

else: 

return poly