Coverage for sympy/polys/orthopolys.py : 5%
        
        
    Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
| 
 """Efficient functions for generating orthogonal polynomials. """ 
 from __future__ import print_function, division 
 from sympy import Dummy 
 from sympy.utilities import public 
 from sympy.polys.constructor import construct_domain from sympy.polys.polytools import Poly, PurePoly from sympy.polys.polyclasses import DMP 
 from sympy.polys.densearith import ( dup_mul, dup_mul_ground, dup_lshift, dup_sub, dup_add ) 
 from sympy.polys.domains import ZZ, QQ 
 from sympy.core.compatibility import range 
 
 def dup_jacobi(n, a, b, K): """Low-level implementation of Jacobi polynomials. """ seq = [[K.one], [(a + b + K(2))/K(2), (a - b)/K(2)]] 
 for i in range(2, n + 1): den = K(i)*(a + b + i)*(a + b + K(2)*i - K(2)) f0 = (a + b + K(2)*i - K.one) * (a*a - b*b) / (K(2)*den) f1 = (a + b + K(2)*i - K.one) * (a + b + K(2)*i - K(2)) * (a + b + K(2)*i) / (K(2)*den) f2 = (a + i - K.one)*(b + i - K.one)*(a + b + K(2)*i) / den p0 = dup_mul_ground(seq[-1], f0, K) p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K) p2 = dup_mul_ground(seq[-2], f2, K) seq.append(dup_sub(dup_add(p0, p1, K), p2, K)) 
 return seq[n] 
 
 @public def jacobi_poly(n, a, b, x=None, **args): """Generates Jacobi polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Jacobi polynomial of degree %s" % n) 
 K, v = construct_domain([a, b], field=True) poly = DMP(dup_jacobi(int(n), v[0], v[1], K), K) 
 if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) 
 if not args.get('polys', False): return poly.as_expr() else: return poly 
 
 def dup_gegenbauer(n, a, K): """Low-level implementation of Gegenbauer polynomials. """ seq = [[K.one], [K(2)*a, K.zero]] 
 for i in range(2, n + 1): f1 = K(2) * (i + a - K.one) / i f2 = (i + K(2)*a - K(2)) / i p1 = dup_mul_ground(dup_lshift(seq[-1], 1, K), f1, K) p2 = dup_mul_ground(seq[-2], f2, K) seq.append(dup_sub(p1, p2, K)) 
 return seq[n] 
 
 def gegenbauer_poly(n, a, x=None, **args): """Generates Gegenbauer polynomial of degree `n` in `x`. """ if n < 0: raise ValueError( "can't generate Gegenbauer polynomial of degree %s" % n) 
 K, a = construct_domain(a, field=True) poly = DMP(dup_gegenbauer(int(n), a, K), K) 
 if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) 
 if not args.get('polys', False): return poly.as_expr() else: return poly 
 
 def dup_chebyshevt(n, K): """Low-level implementation of Chebyshev polynomials of the 1st kind. """ 
 a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K) seq.append(dup_sub(a, seq[-2], K)) 
 
 
 @public def chebyshevt_poly(n, x=None, **args): """Generates Chebyshev polynomial of the first kind of degree `n` in `x`. """ raise ValueError( "can't generate 1st kind Chebyshev polynomial of degree %s" % n) 
 
 else: poly = PurePoly.new(poly, Dummy('x')) 
 else: return poly 
 
 def dup_chebyshevu(n, K): """Low-level implementation of Chebyshev polynomials of the 2nd kind. """ seq = [[K.one], [K(2), K.zero]] 
 for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2), K) seq.append(dup_sub(a, seq[-2], K)) 
 return seq[n] 
 
 @public def chebyshevu_poly(n, x=None, **args): """Generates Chebyshev polynomial of the second kind of degree `n` in `x`. """ if n < 0: raise ValueError( "can't generate 2nd kind Chebyshev polynomial of degree %s" % n) 
 poly = DMP(dup_chebyshevu(int(n), ZZ), ZZ) 
 if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) 
 if not args.get('polys', False): return poly.as_expr() else: return poly 
 
 def dup_hermite(n, K): """Low-level implementation of Hermite polynomials. """ seq = [[K.one], [K(2), K.zero]] 
 for i in range(2, n + 1): a = dup_lshift(seq[-1], 1, K) b = dup_mul_ground(seq[-2], K(i - 1), K) 
 c = dup_mul_ground(dup_sub(a, b, K), K(2), K) 
 seq.append(c) 
 return seq[n] 
 
 @public def hermite_poly(n, x=None, **args): """Generates Hermite polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Hermite polynomial of degree %s" % n) 
 poly = DMP(dup_hermite(int(n), ZZ), ZZ) 
 if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) 
 if not args.get('polys', False): return poly.as_expr() else: return poly 
 
 def dup_legendre(n, K): """Low-level implementation of Legendre polynomials. """ seq = [[K.one], [K.one, K.zero]] 
 for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1, i), K) b = dup_mul_ground(seq[-2], K(i - 1, i), K) 
 seq.append(dup_sub(a, b, K)) 
 return seq[n] 
 
 @public def legendre_poly(n, x=None, **args): """Generates Legendre polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Legendre polynomial of degree %s" % n) 
 poly = DMP(dup_legendre(int(n), QQ), QQ) 
 if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) 
 if not args.get('polys', False): return poly.as_expr() else: return poly 
 
 def dup_laguerre(n, alpha, K): """Low-level implementation of Laguerre polynomials. """ seq = [[K.zero], [K.one]] 
 for i in range(1, n + 1): a = dup_mul(seq[-1], [-K.one/i, alpha/i + K(2*i - 1)/i], K) b = dup_mul_ground(seq[-2], alpha/i + K(i - 1)/i, K) 
 seq.append(dup_sub(a, b, K)) 
 return seq[-1] 
 
 @public def laguerre_poly(n, x=None, alpha=None, **args): """Generates Laguerre polynomial of degree `n` in `x`. """ if n < 0: raise ValueError("can't generate Laguerre polynomial of degree %s" % n) 
 if alpha is not None: K, alpha = construct_domain( alpha, field=True) # XXX: ground_field=True else: K, alpha = QQ, QQ(0) 
 poly = DMP(dup_laguerre(int(n), alpha, K), K) 
 if x is not None: poly = Poly.new(poly, x) else: poly = PurePoly.new(poly, Dummy('x')) 
 if not args.get('polys', False): return poly.as_expr() else: return poly 
 
 def dup_spherical_bessel_fn(n, K): """ Low-level implementation of fn(n, x) """ seq = [[K.one], [K.one, K.zero]] 
 for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(2*i - 1), K) seq.append(dup_sub(a, seq[-2], K)) 
 return dup_lshift(seq[n], 1, K) 
 
 def dup_spherical_bessel_fn_minus(n, K): """ Low-level implementation of fn(-n, x) """ seq = [[K.one, K.zero], [K.zero]] 
 for i in range(2, n + 1): a = dup_mul_ground(dup_lshift(seq[-1], 1, K), K(3 - 2*i), K) seq.append(dup_sub(a, seq[-2], K)) 
 return seq[n] 
 
 def spherical_bessel_fn(n, x=None, **args): """ Coefficients for the spherical Bessel functions. 
 Those are only needed in the jn() function. 
 The coefficients are calculated from: 
 fn(0, z) = 1/z fn(1, z) = 1/z**2 fn(n-1, z) + fn(n+1, z) == (2*n+1)/z * fn(n, z) 
 Examples ======== 
 >>> from sympy.polys.orthopolys import spherical_bessel_fn as fn >>> from sympy import Symbol >>> z = Symbol("z") >>> fn(1, z) z**(-2) >>> fn(2, z) -1/z + 3/z**3 >>> fn(3, z) -6/z**2 + 15/z**4 >>> fn(4, z) 1/z - 45/z**3 + 105/z**5 
 """ 
 if n < 0: dup = dup_spherical_bessel_fn_minus(-int(n), ZZ) else: dup = dup_spherical_bessel_fn(int(n), ZZ) 
 poly = DMP(dup, ZZ) 
 if x is not None: poly = Poly.new(poly, 1/x) else: poly = PurePoly.new(poly, 1/Dummy('x')) 
 if not args.get('polys', False): return poly.as_expr() else: return poly  |