Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

"""Algorithms for computing symbolic roots of polynomials. """ 

 

from __future__ import print_function, division 

 

import math 

 

from sympy.core.symbol import Dummy, Symbol, symbols 

from sympy.core import S, I, pi 

from sympy.core.compatibility import ordered 

from sympy.core.mul import expand_2arg, Mul 

from sympy.core.power import Pow 

from sympy.core.relational import Eq 

from sympy.core.sympify import sympify 

from sympy.core.numbers import Rational, igcd, comp 

from sympy.core.exprtools import factor_terms 

from sympy.core.logic import fuzzy_not 

 

from sympy.ntheory import divisors, isprime, nextprime 

from sympy.functions import exp, sqrt, im, cos, acos, Piecewise 

from sympy.functions.elementary.miscellaneous import root 

 

from sympy.polys.polytools import Poly, cancel, factor, gcd_list, discriminant 

from sympy.polys.specialpolys import cyclotomic_poly 

from sympy.polys.polyerrors import (PolynomialError, GeneratorsNeeded, 

DomainError) 

from sympy.polys.polyquinticconst import PolyQuintic 

from sympy.polys.rationaltools import together 

 

from sympy.simplify import simplify, powsimp 

from sympy.utilities import public 

 

from sympy.core.compatibility import reduce, range 

 

 

def roots_linear(f): 

"""Returns a list of roots of a linear polynomial.""" 

r = -f.nth(0)/f.nth(1) 

dom = f.get_domain() 

 

if not dom.is_Numerical: 

if dom.is_Composite: 

r = factor(r) 

else: 

r = simplify(r) 

 

return [r] 

 

 

def roots_quadratic(f): 

"""Returns a list of roots of a quadratic polynomial. If the domain is ZZ 

then the roots will be sorted with negatives coming before positives. 

The ordering will be the same for any numerical coefficients as long as 

the assumptions tested are correct, otherwise the ordering will not be 

sorted (but will be canonical). 

""" 

 

a, b, c = f.all_coeffs() 

dom = f.get_domain() 

 

def _sqrt(d): 

# remove squares from square root since both will be represented 

# in the results; a similar thing is happening in roots() but 

# must be duplicated here because not all quadratics are binomials 

co = [] 

other = [] 

for di in Mul.make_args(d): 

if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0: 

co.append(Pow(di.base, di.exp//2)) 

else: 

other.append(di) 

if co: 

d = Mul(*other) 

co = Mul(*co) 

return co*sqrt(d) 

return sqrt(d) 

 

def _simplify(expr): 

if dom.is_Composite: 

return factor(expr) 

else: 

return simplify(expr) 

 

if c is S.Zero: 

r0, r1 = S.Zero, -b/a 

 

if not dom.is_Numerical: 

r1 = _simplify(r1) 

elif r1.is_negative: 

r0, r1 = r1, r0 

elif b is S.Zero: 

r = -c/a 

if not dom.is_Numerical: 

r = _simplify(r) 

 

R = _sqrt(r) 

r0 = -R 

r1 = R 

else: 

d = b**2 - 4*a*c 

A = 2*a 

B = -b/A 

 

if not dom.is_Numerical: 

d = _simplify(d) 

B = _simplify(B) 

 

D = factor_terms(_sqrt(d)/A) 

r0 = B - D 

r1 = B + D 

if a.is_negative: 

r0, r1 = r1, r0 

elif not dom.is_Numerical: 

r0, r1 = [expand_2arg(i) for i in (r0, r1)] 

 

return [r0, r1] 

 

 

def roots_cubic(f, trig=False): 

"""Returns a list of roots of a cubic polynomial. 

 

References 

========== 

[1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots, 

(accessed November 17, 2014). 

""" 

if trig: 

a, b, c, d = f.all_coeffs() 

p = (3*a*c - b**2)/3/a**2 

q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3) 

D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2 

if (D > 0) == True: 

rv = [] 

for k in range(3): 

rv.append(2*sqrt(-p/3)*cos(acos(3*q/2/p*sqrt(-3/p))/3 - k*2*pi/3)) 

return [i - b/3/a for i in rv] 

 

_, a, b, c = f.monic().all_coeffs() 

 

if c is S.Zero: 

x1, x2 = roots([1, a, b], multiple=True) 

return [x1, S.Zero, x2] 

 

p = b - a**2/3 

q = c - a*b/3 + 2*a**3/27 

 

pon3 = p/3 

aon3 = a/3 

 

u1 = None 

if p is S.Zero: 

if q is S.Zero: 

return [-aon3]*3 

if q.is_real: 

if q.is_positive: 

u1 = -root(q, 3) 

elif q.is_negative: 

u1 = root(-q, 3) 

elif q is S.Zero: 

y1, y2 = roots([1, 0, p], multiple=True) 

return [tmp - aon3 for tmp in [y1, S.Zero, y2]] 

elif q.is_real and q.is_negative: 

u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3) 

 

coeff = I*sqrt(3)/2 

if u1 is None: 

u1 = S(1) 

u2 = -S.Half + coeff 

u3 = -S.Half - coeff 

a, b, c, d = S(1), a, b, c 

D0 = b**2 - 3*a*c 

D1 = 2*b**3 - 9*a*b*c + 27*a**2*d 

C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3) 

return [-(b + uk*C + D0/C/uk)/3/a for uk in [u1, u2, u3]] 

 

u2 = u1*(-S.Half + coeff) 

u3 = u1*(-S.Half - coeff) 

 

if p is S.Zero: 

return [u1 - aon3, u2 - aon3, u3 - aon3] 

 

soln = [ 

-u1 + pon3/u1 - aon3, 

-u2 + pon3/u2 - aon3, 

-u3 + pon3/u3 - aon3 

] 

 

return soln 

 

def _roots_quartic_euler(p, q, r, a): 

""" 

Descartes-Euler solution of the quartic equation 

 

Parameters 

========== 

 

p, q, r: coefficients of ``x**4 + p*x**2 + q*x + r`` 

a: shift of the roots 

 

Notes 

===== 

 

This is a helper function for ``roots_quartic``. 

 

Look for solutions of the form :: 

 

``x1 = sqrt(R) - sqrt(A + B*sqrt(R))`` 

``x2 = -sqrt(R) - sqrt(A - B*sqrt(R))`` 

``x3 = -sqrt(R) + sqrt(A - B*sqrt(R))`` 

``x4 = sqrt(R) + sqrt(A + B*sqrt(R))`` 

 

To satisfy the quartic equation one must have 

``p = -2*(R + A); q = -4*B*R; r = (R - A)**2 - B**2*R`` 

so that ``R`` must satisfy the Descartes-Euler resolvent equation 

``64*R**3 + 32*p*R**2 + (4*p**2 - 16*r)*R - q**2 = 0`` 

 

If the resolvent does not have a rational solution, return None; 

in that case it is likely that the Ferrari method gives a simpler 

solution. 

 

Examples 

======== 

 

>>> from sympy import S 

>>> from sympy.polys.polyroots import _roots_quartic_euler 

>>> p, q, r = -S(64)/5, -S(512)/125, -S(1024)/3125 

>>> _roots_quartic_euler(p, q, r, S(0))[0] 

-sqrt(32*sqrt(5)/125 + 16/5) + 4*sqrt(5)/5 

""" 

# solve the resolvent equation 

x = Symbol('x') 

eq = 64*x**3 + 32*p*x**2 + (4*p**2 - 16*r)*x - q**2 

xsols = list(roots(Poly(eq, x), cubics=False).keys()) 

xsols = [sol for sol in xsols if sol.is_rational] 

if not xsols: 

return None 

R = max(xsols) 

c1 = sqrt(R) 

B = -q*c1/(4*R) 

A = -R - p/2 

c2 = sqrt(A + B) 

c3 = sqrt(A - B) 

return [c1 - c2 - a, -c1 - c3 - a, -c1 + c3 - a, c1 + c2 - a] 

 

 

def roots_quartic(f): 

r""" 

Returns a list of roots of a quartic polynomial. 

 

There are many references for solving quartic expressions available [1-5]. 

This reviewer has found that many of them require one to select from among 

2 or more possible sets of solutions and that some solutions work when one 

is searching for real roots but don't work when searching for complex roots 

(though this is not always stated clearly). The following routine has been 

tested and found to be correct for 0, 2 or 4 complex roots. 

 

The quasisymmetric case solution [6] looks for quartics that have the form 

`x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`. 

 

Although no general solution that is always applicable for all 

coefficients is known to this reviewer, certain conditions are tested 

to determine the simplest 4 expressions that can be returned: 

 

1) `f = c + a*(a**2/8 - b/2) == 0` 

2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0` 

3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then 

a) `p == 0` 

b) `p != 0` 

 

Examples 

======== 

 

>>> from sympy import Poly, symbols, I 

>>> from sympy.polys.polyroots import roots_quartic 

 

>>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20')) 

 

>>> # 4 complex roots: 1+-I*sqrt(3), 2+-I 

>>> sorted(str(tmp.evalf(n=2)) for tmp in r) 

['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I'] 

 

References 

========== 

 

1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html 

2. http://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method 

3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html 

4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf 

5. http://www.albmath.org/files/Math_5713.pdf 

6. http://www.statemaster.com/encyclopedia/Quartic-equation 

7. eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf 

""" 

_, a, b, c, d = f.monic().all_coeffs() 

 

if not d: 

return [S.Zero] + roots([1, a, b, c], multiple=True) 

elif (c/a)**2 == d: 

x, m = f.gen, c/a 

 

g = Poly(x**2 + a*x + b - 2*m, x) 

 

z1, z2 = roots_quadratic(g) 

 

h1 = Poly(x**2 - z1*x + m, x) 

h2 = Poly(x**2 - z2*x + m, x) 

 

r1 = roots_quadratic(h1) 

r2 = roots_quadratic(h2) 

 

return r1 + r2 

else: 

a2 = a**2 

e = b - 3*a2/8 

f = c + a*(a2/8 - b/2) 

g = d - a*(a*(3*a2/256 - b/16) + c/4) 

aon4 = a/4 

 

if f is S.Zero: 

y1, y2 = [sqrt(tmp) for tmp in 

roots([1, e, g], multiple=True)] 

return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]] 

if g is S.Zero: 

y = [S.Zero] + roots([1, 0, e, f], multiple=True) 

return [tmp - aon4 for tmp in y] 

else: 

# Descartes-Euler method, see [7] 

sols = _roots_quartic_euler(e, f, g, aon4) 

if sols: 

return sols 

# Ferrari method, see [1, 2] 

a2 = a**2 

e = b - 3*a2/8 

f = c + a*(a2/8 - b/2) 

g = d - a*(a*(3*a2/256 - b/16) + c/4) 

p = -e**2/12 - g 

q = -e**3/108 + e*g/3 - f**2/8 

TH = Rational(1, 3) 

 

def _ans(y): 

w = sqrt(e + 2*y) 

arg1 = 3*e + 2*y 

arg2 = 2*f/w 

ans = [] 

for s in [-1, 1]: 

root = sqrt(-(arg1 + s*arg2)) 

for t in [-1, 1]: 

ans.append((s*w - t*root)/2 - aon4) 

return ans 

 

# p == 0 case 

y1 = -5*e/6 - q**TH 

if p.is_zero: 

return _ans(y1) 

 

# if p != 0 then u below is not 0 

root = sqrt(q**2/4 + p**3/27) 

r = -q/2 + root # or -q/2 - root 

u = r**TH # primary root of solve(x**3 - r, x) 

y2 = -5*e/6 + u - p/u/3 

if fuzzy_not(p.is_zero): 

return _ans(y2) 

 

# sort it out once they know the values of the coefficients 

return [Piecewise((a1, Eq(p, 0)), (a2, True)) 

for a1, a2 in zip(_ans(y1), _ans(y2))] 

 

 

def roots_binomial(f): 

"""Returns a list of roots of a binomial polynomial. If the domain is ZZ 

then the roots will be sorted with negatives coming before positives. 

The ordering will be the same for any numerical coefficients as long as 

the assumptions tested are correct, otherwise the ordering will not be 

sorted (but will be canonical). 

""" 

n = f.degree() 

 

a, b = f.nth(n), f.nth(0) 

base = -cancel(b/a) 

alpha = root(base, n) 

 

if alpha.is_number: 

alpha = alpha.expand(complex=True) 

 

# define some parameters that will allow us to order the roots. 

# If the domain is ZZ this is guaranteed to return roots sorted 

# with reals before non-real roots and non-real sorted according 

# to real part and imaginary part, e.g. -1, 1, -1 + I, 2 - I 

neg = base.is_negative 

even = n % 2 == 0 

if neg: 

if even == True and (base + 1).is_positive: 

big = True 

else: 

big = False 

 

# get the indices in the right order so the computed 

# roots will be sorted when the domain is ZZ 

ks = [] 

imax = n//2 

if even: 

ks.append(imax) 

imax -= 1 

if not neg: 

ks.append(0) 

for i in range(imax, 0, -1): 

if neg: 

ks.extend([i, -i]) 

else: 

ks.extend([-i, i]) 

if neg: 

ks.append(0) 

if big: 

for i in range(0, len(ks), 2): 

pair = ks[i: i + 2] 

pair = list(reversed(pair)) 

 

# compute the roots 

roots, d = [], 2*I*pi/n 

for k in ks: 

zeta = exp(k*d).expand(complex=True) 

roots.append((alpha*zeta).expand(power_base=False)) 

 

return roots 

 

 

def _inv_totient_estimate(m): 

""" 

Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``. 

 

Examples 

======== 

 

>>> from sympy.polys.polyroots import _inv_totient_estimate 

 

>>> _inv_totient_estimate(192) 

(192, 840) 

>>> _inv_totient_estimate(400) 

(400, 1750) 

 

""" 

primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ] 

 

a, b = 1, 1 

 

for p in primes: 

a *= p 

b *= p - 1 

 

L = m 

U = int(math.ceil(m*(float(a)/b))) 

 

P = p = 2 

primes = [] 

 

while P <= U: 

p = nextprime(p) 

primes.append(p) 

P *= p 

 

P //= p 

b = 1 

 

for p in primes[:-1]: 

b *= p - 1 

 

U = int(math.ceil(m*(float(P)/b))) 

 

return L, U 

 

 

def roots_cyclotomic(f, factor=False): 

"""Compute roots of cyclotomic polynomials. """ 

L, U = _inv_totient_estimate(f.degree()) 

 

for n in range(L, U + 1): 

g = cyclotomic_poly(n, f.gen, polys=True) 

 

if f == g: 

break 

else: # pragma: no cover 

raise RuntimeError("failed to find index of a cyclotomic polynomial") 

 

roots = [] 

 

if not factor: 

# get the indices in the right order so the computed 

# roots will be sorted 

h = n//2 

ks = [i for i in range(1, n + 1) if igcd(i, n) == 1] 

ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1)) 

d = 2*I*pi/n 

for k in reversed(ks): 

roots.append(exp(k*d).expand(complex=True)) 

else: 

g = Poly(f, extension=root(-1, n)) 

 

for h, _ in ordered(g.factor_list()[1]): 

roots.append(-h.TC()) 

 

return roots 

 

 

def roots_quintic(f): 

""" 

Calulate exact roots of a solvable quintic 

""" 

result = [] 

coeff_5, coeff_4, p, q, r, s = f.all_coeffs() 

 

# Eqn must be of the form x^5 + px^3 + qx^2 + rx + s 

if coeff_4: 

return result 

 

if coeff_5 != 1: 

l = [p/coeff_5, q/coeff_5, r/coeff_5, s/coeff_5] 

if not all(coeff.is_Rational for coeff in l): 

return result 

f = Poly(f/coeff_5) 

quintic = PolyQuintic(f) 

 

# Eqn standardized. Algo for solving starts here 

if not f.is_irreducible: 

return result 

 

f20 = quintic.f20 

# Check if f20 has linear factors over domain Z 

if f20.is_irreducible: 

return result 

 

# Now, we know that f is solvable 

for _factor in f20.factor_list()[1]: 

if _factor[0].is_linear: 

theta = _factor[0].root(0) 

break 

d = discriminant(f) 

delta = sqrt(d) 

# zeta = a fifth root of unity 

zeta1, zeta2, zeta3, zeta4 = quintic.zeta 

T = quintic.T(theta, d) 

tol = S(1e-10) 

alpha = T[1] + T[2]*delta 

alpha_bar = T[1] - T[2]*delta 

beta = T[3] + T[4]*delta 

beta_bar = T[3] - T[4]*delta 

 

disc = alpha**2 - 4*beta 

disc_bar = alpha_bar**2 - 4*beta_bar 

 

l0 = quintic.l0(theta) 

 

l1 = _quintic_simplify((-alpha + sqrt(disc)) / S(2)) 

l4 = _quintic_simplify((-alpha - sqrt(disc)) / S(2)) 

 

l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / S(2)) 

l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / S(2)) 

 

order = quintic.order(theta, d) 

test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) ) 

# Comparing floats 

if not comp(test, 0, tol): 

l2, l3 = l3, l2 

 

# Now we have correct order of l's 

R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4 

R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4 

R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4 

R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4 

 

Res = [None, [None]*5, [None]*5, [None]*5, [None]*5] 

Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5] 

sol = Symbol('sol') 

 

# Simplifying improves performace a lot for exact expressions 

R1 = _quintic_simplify(R1) 

R2 = _quintic_simplify(R2) 

R3 = _quintic_simplify(R3) 

R4 = _quintic_simplify(R4) 

 

# Solve imported here. Causing problems if imported as 'solve' 

# and hence the changed name 

from sympy.solvers.solvers import solve as _solve 

a, b = symbols('a b', cls=Dummy) 

_sol = _solve( sol**5 - a - I*b, sol) 

for i in range(5): 

_sol[i] = factor(_sol[i]) 

R1 = R1.as_real_imag() 

R2 = R2.as_real_imag() 

R3 = R3.as_real_imag() 

R4 = R4.as_real_imag() 

 

for i, root in enumerate(_sol): 

Res[1][i] = _quintic_simplify(root.subs({ a: R1[0], b: R1[1] })) 

Res[2][i] = _quintic_simplify(root.subs({ a: R2[0], b: R2[1] })) 

Res[3][i] = _quintic_simplify(root.subs({ a: R3[0], b: R3[1] })) 

Res[4][i] = _quintic_simplify(root.subs({ a: R4[0], b: R4[1] })) 

 

for i in range(1, 5): 

for j in range(5): 

Res_n[i][j] = Res[i][j].n() 

Res[i][j] = _quintic_simplify(Res[i][j]) 

r1 = Res[1][0] 

r1_n = Res_n[1][0] 

 

for i in range(5): 

if comp(im(r1_n*Res_n[4][i]), 0, tol): 

r4 = Res[4][i] 

break 

 

u, v = quintic.uv(theta, d) 

sqrt5 = math.sqrt(5) 

 

# Now we have various Res values. Each will be a list of five 

# values. We have to pick one r value from those five for each Res 

u, v = quintic.uv(theta, d) 

testplus = (u + v*delta*sqrt(5)).n() 

testminus = (u - v*delta*sqrt(5)).n() 

 

# Evaluated numbers suffixed with _n 

# We will use evaluated numbers for calculation. Much faster. 

r4_n = r4.n() 

r2 = r3 = None 

 

for i in range(5): 

r2temp_n = Res_n[2][i] 

for j in range(5): 

# Again storing away the exact number and using 

# evaluated numbers in computations 

r3temp_n = Res_n[3][j] 

if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and 

comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)): 

r2 = Res[2][i] 

r3 = Res[3][j] 

break 

if r2: 

break 

 

# Now, we have r's so we can get roots 

x1 = (r1 + r2 + r3 + r4)/5 

x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5 

x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5 

x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5 

x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5 

result = [x1, x2, x3, x4, x5] 

 

# Now check if solutions are distinct 

 

saw = set() 

for r in result: 

r = r.n(2) 

if r in saw: 

# Roots were identical. Abort, return [] 

# and fall back to usual solve 

return [] 

saw.add(r) 

return result 

 

 

def _quintic_simplify(expr): 

expr = powsimp(expr) 

expr = cancel(expr) 

return together(expr) 

 

 

def _integer_basis(poly): 

"""Compute coefficient basis for a polynomial over integers. 

 

Returns the integer ``div`` such that substituting ``x = div*y`` 

``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller 

than those of ``p``. 

 

For example ``x**5 + 512*x + 1024 = 0`` 

with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0`` 

 

Returns the integer ``div`` or ``None`` if there is no possible scaling. 

 

Examples 

======== 

 

>>> from sympy.polys import Poly 

>>> from sympy.abc import x 

>>> from sympy.polys.polyroots import _integer_basis 

>>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ') 

>>> _integer_basis(p) 

4 

""" 

monoms, coeffs = list(zip(*poly.terms())) 

 

monoms, = list(zip(*monoms)) 

coeffs = list(map(abs, coeffs)) 

 

if coeffs[0] < coeffs[-1]: 

coeffs = list(reversed(coeffs)) 

n = monoms[0] 

monoms = [n - i for i in reversed(monoms)] 

else: 

return None 

 

monoms = monoms[:-1] 

coeffs = coeffs[:-1] 

 

divs = reversed(divisors(gcd_list(coeffs))[1:]) 

 

try: 

div = next(divs) 

except StopIteration: 

return None 

 

while True: 

for monom, coeff in zip(monoms, coeffs): 

if coeff % div**monom != 0: 

try: 

div = next(divs) 

except StopIteration: 

return None 

else: 

break 

else: 

return div 

 

 

def preprocess_roots(poly): 

"""Try to get rid of symbolic coefficients from ``poly``. """ 

coeff = S.One 

 

try: 

_, poly = poly.clear_denoms(convert=True) 

except DomainError: 

return coeff, poly 

 

poly = poly.primitive()[1] 

poly = poly.retract() 

 

# TODO: This is fragile. Figure out how to make this independent of construct_domain(). 

if poly.get_domain().is_Poly and all(c.is_term for c in poly.rep.coeffs()): 

poly = poly.inject() 

 

strips = list(zip(*poly.monoms())) 

gens = list(poly.gens[1:]) 

 

base, strips = strips[0], strips[1:] 

 

for gen, strip in zip(list(gens), strips): 

reverse = False 

 

if strip[0] < strip[-1]: 

strip = reversed(strip) 

reverse = True 

 

ratio = None 

 

for a, b in zip(base, strip): 

if not a and not b: 

continue 

elif not a or not b: 

break 

elif b % a != 0: 

break 

else: 

_ratio = b // a 

 

if ratio is None: 

ratio = _ratio 

elif ratio != _ratio: 

break 

else: 

if reverse: 

ratio = -ratio 

 

poly = poly.eval(gen, 1) 

coeff *= gen**(-ratio) 

gens.remove(gen) 

 

if gens: 

poly = poly.eject(*gens) 

 

if poly.is_univariate and poly.get_domain().is_ZZ: 

basis = _integer_basis(poly) 

 

if basis is not None: 

n = poly.degree() 

 

def func(k, coeff): 

return coeff//basis**(n - k[0]) 

 

poly = poly.termwise(func) 

coeff *= basis 

 

return coeff, poly 

 

 

@public 

def roots(f, *gens, **flags): 

""" 

Computes symbolic roots of a univariate polynomial. 

 

Given a univariate polynomial f with symbolic coefficients (or 

a list of the polynomial's coefficients), returns a dictionary 

with its roots and their multiplicities. 

 

Only roots expressible via radicals will be returned. To get 

a complete set of roots use RootOf class or numerical methods 

instead. By default cubic and quartic formulas are used in 

the algorithm. To disable them because of unreadable output 

set ``cubics=False`` or ``quartics=False`` respectively. If cubic 

roots are real but are expressed in terms of complex numbers 

(casus irreducibilis [1]) the ``trig`` flag can be set to True to 

have the solutions returned in terms of cosine and inverse cosine 

functions. 

 

To get roots from a specific domain set the ``filter`` flag with 

one of the following specifiers: Z, Q, R, I, C. By default all 

roots are returned (this is equivalent to setting ``filter='C'``). 

 

By default a dictionary is returned giving a compact result in 

case of multiple roots. However to get a list containing all 

those roots set the ``multiple`` flag to True; the list will 

have identical roots appearing next to each other in the result. 

(For a given Poly, the all_roots method will give the roots in 

sorted numerical order.) 

 

Examples 

======== 

 

>>> from sympy import Poly, roots 

>>> from sympy.abc import x, y 

 

>>> roots(x**2 - 1, x) 

{-1: 1, 1: 1} 

 

>>> p = Poly(x**2-1, x) 

>>> roots(p) 

{-1: 1, 1: 1} 

 

>>> p = Poly(x**2-y, x, y) 

 

>>> roots(Poly(p, x)) 

{-sqrt(y): 1, sqrt(y): 1} 

 

>>> roots(x**2 - y, x) 

{-sqrt(y): 1, sqrt(y): 1} 

 

>>> roots([1, 0, -1]) 

{-1: 1, 1: 1} 

 

 

References 

========== 

 

1. http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method 

 

""" 

from sympy.polys.polytools import to_rational_coeffs 

flags = dict(flags) 

 

auto = flags.pop('auto', True) 

cubics = flags.pop('cubics', True) 

trig = flags.pop('trig', False) 

quartics = flags.pop('quartics', True) 

quintics = flags.pop('quintics', False) 

multiple = flags.pop('multiple', False) 

filter = flags.pop('filter', None) 

predicate = flags.pop('predicate', None) 

 

if isinstance(f, list): 

if gens: 

raise ValueError('redundant generators given') 

 

x = Dummy('x') 

 

poly, i = {}, len(f) - 1 

 

for coeff in f: 

poly[i], i = sympify(coeff), i - 1 

 

f = Poly(poly, x, field=True) 

else: 

try: 

f = Poly(f, *gens, **flags) 

if f.length == 2 and f.degree() != 1: 

# check for foo**n factors in the constant 

n = f.degree() 

npow_bases = [] 

expr = f.as_expr() 

con = expr.as_independent(*gens)[0] 

for p in Mul.make_args(con): 

if p.is_Pow and not p.exp % n: 

npow_bases.append(p.base**(p.exp/n)) 

else: 

other.append(p) 

if npow_bases: 

b = Mul(*npow_bases) 

B = Dummy() 

d = roots(Poly(expr - con + B**n*Mul(*others), *gens, 

**flags), *gens, **flags) 

rv = {} 

for k, v in d.items(): 

rv[k.subs(B, b)] = v 

return rv 

 

except GeneratorsNeeded: 

if multiple: 

return [] 

else: 

return {} 

 

if f.is_multivariate: 

raise PolynomialError('multivariate polynomials are not supported') 

 

def _update_dict(result, root, k): 

if root in result: 

result[root] += k 

else: 

result[root] = k 

 

def _try_decompose(f): 

"""Find roots using functional decomposition. """ 

factors, roots = f.decompose(), [] 

 

for root in _try_heuristics(factors[0]): 

roots.append(root) 

 

for factor in factors[1:]: 

previous, roots = list(roots), [] 

 

for root in previous: 

g = factor - Poly(root, f.gen) 

 

for root in _try_heuristics(g): 

roots.append(root) 

 

return roots 

 

def _try_heuristics(f): 

"""Find roots using formulas and some tricks. """ 

if f.is_ground: 

return [] 

if f.is_monomial: 

return [S(0)]*f.degree() 

 

if f.length() == 2: 

if f.degree() == 1: 

return list(map(cancel, roots_linear(f))) 

else: 

return roots_binomial(f) 

 

result = [] 

 

for i in [-1, 1]: 

if not f.eval(i): 

f = f.quo(Poly(f.gen - i, f.gen)) 

result.append(i) 

break 

 

n = f.degree() 

 

if n == 1: 

result += list(map(cancel, roots_linear(f))) 

elif n == 2: 

result += list(map(cancel, roots_quadratic(f))) 

elif f.is_cyclotomic: 

result += roots_cyclotomic(f) 

elif n == 3 and cubics: 

result += roots_cubic(f, trig=trig) 

elif n == 4 and quartics: 

result += roots_quartic(f) 

elif n == 5 and quintics: 

result += roots_quintic(f) 

 

return result 

 

(k,), f = f.terms_gcd() 

 

if not k: 

zeros = {} 

else: 

zeros = {S(0): k} 

 

coeff, f = preprocess_roots(f) 

 

if auto and f.get_domain().has_Ring: 

f = f.to_field() 

 

rescale_x = None 

translate_x = None 

 

result = {} 

 

if not f.is_ground: 

if not f.get_domain().is_Exact: 

for r in f.nroots(): 

_update_dict(result, r, 1) 

elif f.degree() == 1: 

result[roots_linear(f)[0]] = 1 

elif f.length() == 2: 

roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial 

for r in roots_fun(f): 

_update_dict(result, r, 1) 

else: 

_, factors = Poly(f.as_expr()).factor_list() 

if len(factors) == 1 and f.degree() == 2: 

for r in roots_quadratic(f): 

_update_dict(result, r, 1) 

else: 

if len(factors) == 1 and factors[0][1] == 1: 

if f.get_domain().is_EX: 

res = to_rational_coeffs(f) 

if res: 

if res[0] is None: 

translate_x, f = res[2:] 

else: 

rescale_x, f = res[1], res[-1] 

result = roots(f) 

if not result: 

for root in _try_decompose(f): 

_update_dict(result, root, 1) 

else: 

for root in _try_decompose(f): 

_update_dict(result, root, 1) 

else: 

for factor, k in factors: 

for r in _try_heuristics(Poly(factor, f.gen, field=True)): 

_update_dict(result, r, k) 

 

if coeff is not S.One: 

_result, result, = result, {} 

 

for root, k in _result.items(): 

result[coeff*root] = k 

 

result.update(zeros) 

 

if filter not in [None, 'C']: 

handlers = { 

'Z': lambda r: r.is_Integer, 

'Q': lambda r: r.is_Rational, 

'R': lambda r: r.is_real, 

'I': lambda r: r.is_imaginary, 

} 

 

try: 

query = handlers[filter] 

except KeyError: 

raise ValueError("Invalid filter: %s" % filter) 

 

for zero in dict(result).keys(): 

if not query(zero): 

del result[zero] 

 

if predicate is not None: 

for zero in dict(result).keys(): 

if not predicate(zero): 

del result[zero] 

if rescale_x: 

result1 = {} 

for k, v in result.items(): 

result1[k*rescale_x] = v 

result = result1 

if translate_x: 

result1 = {} 

for k, v in result.items(): 

result1[k + translate_x] = v 

result = result1 

 

if not multiple: 

return result 

else: 

zeros = [] 

 

for zero in ordered(result): 

zeros.extend([zero]*result[zero]) 

 

return zeros 

 

 

def root_factors(f, *gens, **args): 

""" 

Returns all factors of a univariate polynomial. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y 

>>> from sympy.polys.polyroots import root_factors 

 

>>> root_factors(x**2 - y, x) 

[x - sqrt(y), x + sqrt(y)] 

 

""" 

args = dict(args) 

filter = args.pop('filter', None) 

 

F = Poly(f, *gens, **args) 

 

if not F.is_Poly: 

return [f] 

 

if F.is_multivariate: 

raise ValueError('multivariate polynomials are not supported') 

 

x = F.gens[0] 

 

zeros = roots(F, filter=filter) 

 

if not zeros: 

factors = [F] 

else: 

factors, N = [], 0 

 

for r, n in ordered(zeros.items()): 

factors, N = factors + [Poly(x - r, x)]*n, N + n 

 

if N < F.degree(): 

G = reduce(lambda p, q: p*q, factors) 

factors.append(F.quo(G)) 

 

if not isinstance(f, Poly): 

factors = [ f.as_expr() for f in factors ] 

 

return factors