Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

"""Useful utilities for higher level polynomial classes. """ 

 

from __future__ import print_function, division 

 

from sympy.polys.polyerrors import PolynomialError, GeneratorsNeeded, GeneratorsError 

from sympy.polys.polyoptions import build_options 

 

from sympy.core.exprtools import decompose_power, decompose_power_rat 

 

from sympy.core import S, Add, Mul, Pow, expand_mul, expand_multinomial 

 

from sympy.core.compatibility import range 

 

import re 

 

_gens_order = { 

'a': 301, 'b': 302, 'c': 303, 'd': 304, 

'e': 305, 'f': 306, 'g': 307, 'h': 308, 

'i': 309, 'j': 310, 'k': 311, 'l': 312, 

'm': 313, 'n': 314, 'o': 315, 'p': 216, 

'q': 217, 'r': 218, 's': 219, 't': 220, 

'u': 221, 'v': 222, 'w': 223, 'x': 124, 

'y': 125, 'z': 126, 

} 

 

_max_order = 1000 

_re_gen = re.compile(r"^(.+?)(\d*)$") 

 

 

def _nsort(roots, separated=False): 

"""Sort the numerical roots putting the real roots first, then sorting 

according to real and imaginary parts. If ``separated`` is True, then 

the real and imaginary roots will be returned in two lists, respectively. 

 

This routine tries to avoid issue 6137 by separating the roots into real 

and imaginary parts before evaluation. In addition, the sorting will raise 

an error if any computation cannot be done with precision. 

""" 

if not all(r.is_number for r in roots): 

raise NotImplementedError 

# see issue 6137: 

# get the real part of the evaluated real and imaginary parts of each root 

key = [[i.n(2).as_real_imag()[0] for i in r.as_real_imag()] for r in roots] 

# make sure the parts were computed with precision 

if any(i._prec == 1 for k in key for i in k): 

raise NotImplementedError("could not compute root with precision") 

# insert a key to indicate if the root has an imaginary part 

key = [(1 if i else 0, r, i) for r, i in key] 

key = sorted(zip(key, roots)) 

# return the real and imaginary roots separately if desired 

if separated: 

r = [] 

i = [] 

for (im, _, _), v in key: 

if im: 

i.append(v) 

else: 

r.append(v) 

return r, i 

_, roots = zip(*key) 

return list(roots) 

 

 

def _sort_gens(gens, **args): 

"""Sort generators in a reasonably intelligent way. """ 

opt = build_options(args) 

 

gens_order, wrt = {}, None 

 

if opt is not None: 

gens_order, wrt = {}, opt.wrt 

 

for i, gen in enumerate(opt.sort): 

gens_order[gen] = i + 1 

 

def order_key(gen): 

gen = str(gen) 

 

if wrt is not None: 

try: 

return (-len(wrt) + wrt.index(gen), gen, 0) 

except ValueError: 

pass 

 

name, index = _re_gen.match(gen).groups() 

 

if index: 

index = int(index) 

else: 

index = 0 

 

try: 

return ( gens_order[name], name, index) 

except KeyError: 

pass 

 

try: 

return (_gens_order[name], name, index) 

except KeyError: 

pass 

 

return (_max_order, name, index) 

 

try: 

gens = sorted(gens, key=order_key) 

except TypeError: # pragma: no cover 

pass 

 

return tuple(gens) 

 

 

def _unify_gens(f_gens, g_gens): 

"""Unify generators in a reasonably intelligent way. """ 

f_gens = list(f_gens) 

g_gens = list(g_gens) 

 

if f_gens == g_gens: 

return tuple(f_gens) 

 

gens, common, k = [], [], 0 

 

for gen in f_gens: 

if gen in g_gens: 

common.append(gen) 

 

for i, gen in enumerate(g_gens): 

if gen in common: 

g_gens[i], k = common[k], k + 1 

 

for gen in common: 

i = f_gens.index(gen) 

 

gens.extend(f_gens[:i]) 

f_gens = f_gens[i + 1:] 

 

i = g_gens.index(gen) 

 

gens.extend(g_gens[:i]) 

g_gens = g_gens[i + 1:] 

 

gens.append(gen) 

 

gens.extend(f_gens) 

gens.extend(g_gens) 

 

return tuple(gens) 

 

 

def _analyze_gens(gens): 

"""Support for passing generators as `*gens` and `[gens]`. """ 

if len(gens) == 1 and hasattr(gens[0], '__iter__'): 

return tuple(gens[0]) 

else: 

return tuple(gens) 

 

 

def _sort_factors(factors, **args): 

"""Sort low-level factors in increasing 'complexity' order. """ 

def order_if_multiple_key(factor): 

(f, n) = factor 

return (len(f), n, f) 

 

def order_no_multiple_key(f): 

return (len(f), f) 

 

if args.get('multiple', True): 

return sorted(factors, key=order_if_multiple_key) 

else: 

return sorted(factors, key=order_no_multiple_key) 

 

 

def _not_a_coeff(expr): 

"""Do not treat NaN and infinities as valid polynomial coefficients. """ 

return expr in [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity] 

 

 

def _parallel_dict_from_expr_if_gens(exprs, opt): 

"""Transform expressions into a multinomial form given generators. """ 

k, indices = len(opt.gens), {} 

 

for i, g in enumerate(opt.gens): 

indices[g] = i 

 

polys = [] 

 

for expr in exprs: 

poly = {} 

 

if expr.is_Equality: 

expr = expr.lhs - expr.rhs 

 

for term in Add.make_args(expr): 

coeff, monom = [], [0]*k 

 

for factor in Mul.make_args(term): 

if not _not_a_coeff(factor) and factor.is_Number: 

coeff.append(factor) 

else: 

try: 

if opt.series is False: 

base, exp = decompose_power(factor) 

 

if exp < 0: 

exp, base = -exp, Pow(base, -S.One) 

else: 

base, exp = decompose_power_rat(factor) 

 

monom[indices[base]] = exp 

except KeyError: 

if not factor.free_symbols.intersection(opt.gens): 

coeff.append(factor) 

else: 

raise PolynomialError("%s contains an element of the generators set" % factor) 

 

monom = tuple(monom) 

 

if monom in poly: 

poly[monom] += Mul(*coeff) 

else: 

poly[monom] = Mul(*coeff) 

 

polys.append(poly) 

 

return polys, opt.gens 

 

 

def _parallel_dict_from_expr_no_gens(exprs, opt): 

"""Transform expressions into a multinomial form and figure out generators. """ 

if opt.domain is not None: 

def _is_coeff(factor): 

return factor in opt.domain 

elif opt.extension is True: 

def _is_coeff(factor): 

return factor.is_algebraic 

elif opt.greedy is not False: 

def _is_coeff(factor): 

return False 

else: 

def _is_coeff(factor): 

return factor.is_number 

 

gens, reprs = set([]), [] 

 

for expr in exprs: 

terms = [] 

 

if expr.is_Equality: 

expr = expr.lhs - expr.rhs 

 

for term in Add.make_args(expr): 

coeff, elements = [], {} 

 

for factor in Mul.make_args(term): 

if not _not_a_coeff(factor) and (factor.is_Number or _is_coeff(factor)): 

coeff.append(factor) 

else: 

if opt.series is False: 

base, exp = decompose_power(factor) 

 

if exp < 0: 

exp, base = -exp, Pow(base, -S.One) 

else: 

base, exp = decompose_power_rat(factor) 

 

elements[base] = elements.setdefault(base, 0) + exp 

gens.add(base) 

 

terms.append((coeff, elements)) 

 

reprs.append(terms) 

 

if not gens: 

if len(exprs) == 1: 

arg = exprs[0] 

else: 

arg = (exprs,) 

 

raise GeneratorsNeeded("specify generators to give %s a meaning" % arg) 

 

gens = _sort_gens(gens, opt=opt) 

k, indices = len(gens), {} 

 

for i, g in enumerate(gens): 

indices[g] = i 

 

polys = [] 

 

for terms in reprs: 

poly = {} 

 

for coeff, term in terms: 

monom = [0]*k 

 

for base, exp in term.items(): 

monom[indices[base]] = exp 

 

monom = tuple(monom) 

 

if monom in poly: 

poly[monom] += Mul(*coeff) 

else: 

poly[monom] = Mul(*coeff) 

 

polys.append(poly) 

 

return polys, tuple(gens) 

 

 

def _dict_from_expr_if_gens(expr, opt): 

"""Transform an expression into a multinomial form given generators. """ 

(poly,), gens = _parallel_dict_from_expr_if_gens((expr,), opt) 

return poly, gens 

 

 

def _dict_from_expr_no_gens(expr, opt): 

"""Transform an expression into a multinomial form and figure out generators. """ 

(poly,), gens = _parallel_dict_from_expr_no_gens((expr,), opt) 

return poly, gens 

 

 

def parallel_dict_from_expr(exprs, **args): 

"""Transform expressions into a multinomial form. """ 

reps, opt = _parallel_dict_from_expr(exprs, build_options(args)) 

return reps, opt.gens 

 

 

def _parallel_dict_from_expr(exprs, opt): 

"""Transform expressions into a multinomial form. """ 

if opt.expand is not False: 

exprs = [ expr.expand() for expr in exprs ] 

 

if any(expr.is_commutative is False for expr in exprs): 

raise PolynomialError('non-commutative expressions are not supported') 

 

if opt.gens: 

reps, gens = _parallel_dict_from_expr_if_gens(exprs, opt) 

else: 

reps, gens = _parallel_dict_from_expr_no_gens(exprs, opt) 

 

return reps, opt.clone({'gens': gens}) 

 

 

def dict_from_expr(expr, **args): 

"""Transform an expression into a multinomial form. """ 

rep, opt = _dict_from_expr(expr, build_options(args)) 

return rep, opt.gens 

 

 

def _dict_from_expr(expr, opt): 

"""Transform an expression into a multinomial form. """ 

if expr.is_commutative is False: 

raise PolynomialError('non-commutative expressions are not supported') 

 

def _is_expandable_pow(expr): 

return (expr.is_Pow and expr.exp.is_positive and expr.exp.is_Integer 

and expr.base.is_Add) 

 

if opt.expand is not False: 

try: 

expr = expr.expand() 

except AttributeError: 

raise PolynomialError('expression must support expand method') 

# TODO: Integrate this into expand() itself 

while any(_is_expandable_pow(i) or i.is_Mul and 

any(_is_expandable_pow(j) for j in i.args) for i in 

Add.make_args(expr)): 

 

expr = expand_multinomial(expr) 

while any(i.is_Mul and any(j.is_Add for j in i.args) for i in Add.make_args(expr)): 

expr = expand_mul(expr) 

 

if opt.gens: 

rep, gens = _dict_from_expr_if_gens(expr, opt) 

else: 

rep, gens = _dict_from_expr_no_gens(expr, opt) 

 

return rep, opt.clone({'gens': gens}) 

 

 

def expr_from_dict(rep, *gens): 

"""Convert a multinomial form into an expression. """ 

result = [] 

 

for monom, coeff in rep.items(): 

term = [coeff] 

for g, m in zip(gens, monom): 

if m: 

term.append(Pow(g, m)) 

 

result.append(Mul(*term)) 

 

return Add(*result) 

 

parallel_dict_from_basic = parallel_dict_from_expr 

dict_from_basic = dict_from_expr 

basic_from_dict = expr_from_dict 

 

 

def _dict_reorder(rep, gens, new_gens): 

"""Reorder levels using dict representation. """ 

gens = list(gens) 

 

monoms = rep.keys() 

coeffs = rep.values() 

 

new_monoms = [ [] for _ in range(len(rep)) ] 

used_indices = set() 

 

for gen in new_gens: 

try: 

j = gens.index(gen) 

used_indices.add(j) 

 

for M, new_M in zip(monoms, new_monoms): 

new_M.append(M[j]) 

except ValueError: 

for new_M in new_monoms: 

new_M.append(0) 

 

for i, _ in enumerate(gens): 

if i not in used_indices: 

for monom in monoms: 

if monom[i]: 

raise GeneratorsError("unable to drop generators") 

 

return map(tuple, new_monoms), coeffs 

 

 

class PicklableWithSlots(object): 

""" 

Mixin class that allows to pickle objects with ``__slots__``. 

 

Examples 

======== 

 

First define a class that mixes :class:`PicklableWithSlots` in:: 

 

>>> from sympy.polys.polyutils import PicklableWithSlots 

>>> class Some(PicklableWithSlots): 

... __slots__ = ['foo', 'bar'] 

... 

... def __init__(self, foo, bar): 

... self.foo = foo 

... self.bar = bar 

 

To make :mod:`pickle` happy in doctest we have to use this hack:: 

 

>>> from sympy.core.compatibility import builtins 

>>> builtins.Some = Some 

 

Next lets see if we can create an instance, pickle it and unpickle:: 

 

>>> some = Some('abc', 10) 

>>> some.foo, some.bar 

('abc', 10) 

 

>>> from pickle import dumps, loads 

>>> some2 = loads(dumps(some)) 

 

>>> some2.foo, some2.bar 

('abc', 10) 

 

""" 

 

__slots__ = [] 

 

def __getstate__(self, cls=None): 

if cls is None: 

# This is the case for the instance that gets pickled 

cls = self.__class__ 

 

d = {} 

 

# Get all data that should be stored from super classes 

for c in cls.__bases__: 

if hasattr(c, "__getstate__"): 

d.update(c.__getstate__(self, c)) 

 

# Get all information that should be stored from cls and return the dict 

for name in cls.__slots__: 

if hasattr(self, name): 

d[name] = getattr(self, name) 

 

return d 

 

def __setstate__(self, d): 

# All values that were pickled are now assigned to a fresh instance 

for name, value in d.items(): 

try: 

setattr(self, name, value) 

except AttributeError: # This is needed in cases like Rational :> Half 

pass