Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

"""Power series evaluation and manipulation using sparse Polynomials 

 

Implementing a new function 

--------------------------- 

 

There are a few things to be kept in mind when adding a new function here:: 

 

- The implementation should work on all possible input domains/rings. 

Special cases include the ``EX`` ring and a constant term in the series 

to be expanded. There can be two types of constant terms in the series: 

 

+ A constant value or symbol. 

+ A term of a multivariate series not involving the generator, with 

respect to which the series is to expanded. 

 

Strictly speaking, a generator of a ring should not be considered a 

constant. However, for series expansion both the cases need similar 

treatment (as the user doesn't care about inner details), i.e, use an 

addition formula to separate the constant part and the variable part (see 

rs_sin for reference). 

 

- All the algorithms used here are primarily designed to work for Taylor 

series (number of iterations in the algo equals the required order). 

Hence, it becomes tricky to get the series of the right order if a 

Puiseux series is input. Use rs_puiseux? in your function if your 

algorithm is not designed to handle fractional powers. 

 

Extending rs_series 

------------------- 

 

To make a function work with rs_series you need to do two things:: 

 

- Many sure it works with a constant term (as explained above). 

- If the series contains constant terms, you might need to extend its ring. 

You do so by adding the new terms to the rings as generators. 

``PolyRing.compose`` and ``PolyRing.add_gens`` are two functions that do 

so and need to be called every time you expand a series containing a 

constant term. 

 

Look at rs_sin and rs_series for further reference. 

 

""" 

 

from sympy.polys.domains import QQ, EX 

from sympy.polys.rings import PolyElement, ring, sring 

from sympy.polys.polyerrors import DomainError 

from sympy.polys.monomials import (monomial_min, monomial_mul, monomial_div, 

monomial_ldiv) 

from mpmath.libmp.libintmath import ifac 

from sympy.core import PoleError, Function, Expr 

from sympy.core.numbers import Rational, igcd 

from sympy.core.compatibility import as_int, range 

from sympy.functions import sin, cos, tan, atan, exp, atanh, tanh, log, ceiling 

from mpmath.libmp.libintmath import giant_steps 

import math 

 

 

def _invert_monoms(p1): 

""" 

Compute ``x**n * p1(1/x)`` for a univariate polynomial ``p1`` in ``x``. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import ZZ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import _invert_monoms 

>>> R, x = ring('x', ZZ) 

>>> p = x**2 + 2*x + 3 

>>> _invert_monoms(p) 

3*x**2 + 2*x + 1 

 

See Also 

======== 

 

sympy.polys.densebasic.dup_reverse 

""" 

terms = list(p1.items()) 

terms.sort() 

deg = p1.degree() 

R = p1.ring 

p = R.zero 

cv = p1.listcoeffs() 

mv = p1.listmonoms() 

for i in range(len(mv)): 

p[(deg - mv[i][0],)] = cv[i] 

return p 

 

def _giant_steps(target): 

"""Return a list of precision steps for the Newton's method""" 

res = giant_steps(2, target) 

if res[0] != 2: 

res = [2] + res 

return res 

 

def rs_trunc(p1, x, prec): 

""" 

Truncate the series in the ``x`` variable with precision ``prec``, 

that is, modulo ``O(x**prec)`` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_trunc 

>>> R, x = ring('x', QQ) 

>>> p = x**10 + x**5 + x + 1 

>>> rs_trunc(p, x, 12) 

x**10 + x**5 + x + 1 

>>> rs_trunc(p, x, 10) 

x**5 + x + 1 

""" 

R = p1.ring 

p = R.zero 

i = R.gens.index(x) 

for exp1 in p1: 

if exp1[i] >= prec: 

continue 

p[exp1] = p1[exp1] 

return p 

 

def rs_is_puiseux(p, x): 

""" 

Test if ``p`` is Puiseux series in ``x``. 

 

Raise an exception if it has a negative power in ``x``. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_is_puiseux 

>>> R, x = ring('x', QQ) 

>>> p = x**QQ(2,5) + x**QQ(2,3) + x 

>>> rs_is_puiseux(p, x) 

True 

""" 

index = p.ring.gens.index(x) 

for k in p: 

if k[index] != int(k[index]): 

return True 

if k[index] < 0: 

raise ValueError('The series is not regular in %s' % x) 

return False 

 

def rs_puiseux(f, p, x, prec): 

""" 

Return the puiseux series for `f(p, x, prec)`. 

 

To be used when function ``f`` is implemented only for regular series. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_puiseux, rs_exp 

>>> R, x = ring('x', QQ) 

>>> p = x**QQ(2,5) + x**QQ(2,3) + x 

>>> rs_puiseux(rs_exp,p, x, 1) 

1/2*x**(4/5) + x**(2/3) + x**(2/5) + 1 

""" 

index = p.ring.gens.index(x) 

n = 1 

for k in p: 

power = k[index] 

if isinstance(power, Rational): 

num, den = power.as_numer_denom() 

n = int(n*den // igcd(n, den)) 

elif power != int(power): 

num, den = power.numerator, power.denominator 

n = int(n*den // igcd(n, den)) 

if n != 1: 

p1 = pow_xin(p, index, n) 

r = f(p1, x, prec*n) 

n1 = QQ(1, n) 

if isinstance(r, tuple): 

r = tuple([pow_xin(rx, index, n1) for rx in r]) 

else: 

r = pow_xin(r, index, n1) 

else: 

r = f(p, x, prec) 

return r 

 

def rs_puiseux2(f, p, q, x, prec): 

""" 

Return the puiseux series for `f(p, q, x, prec)`. 

 

To be used when function ``f`` is implemented only for regular series. 

""" 

index = p.ring.gens.index(x) 

n = 1 

for k in p: 

power = k[index] 

if isinstance(power, Rational): 

num, den = power.as_numer_denom() 

n = n*den // igcd(n, den) 

elif power != int(power): 

num, den = power.numerator, power.denominator 

n = n*den // igcd(n, den) 

if n != 1: 

p1 = pow_xin(p, index, n) 

r = f(p1, q, x, prec*n) 

n1 = QQ(1, n) 

r = pow_xin(r, index, n1) 

else: 

r = f(p, q, x, prec) 

return r 

 

def rs_mul(p1, p2, x, prec): 

""" 

Return the product of the given two series, modulo ``O(x**prec)``. 

 

``x`` is the series variable or its position in the generators. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_mul 

>>> R, x = ring('x', QQ) 

>>> p1 = x**2 + 2*x + 1 

>>> p2 = x + 1 

>>> rs_mul(p1, p2, x, 3) 

3*x**2 + 3*x + 1 

""" 

R = p1.ring 

p = R.zero 

if R.__class__ != p2.ring.__class__ or R != p2.ring: 

raise ValueError('p1 and p2 must have the same ring') 

iv = R.gens.index(x) 

if not isinstance(p2, PolyElement): 

raise ValueError('p1 and p2 must have the same ring') 

if R == p2.ring: 

get = p.get 

items2 = list(p2.items()) 

items2.sort(key=lambda e: e[0][iv]) 

if R.ngens == 1: 

for exp1, v1 in p1.items(): 

for exp2, v2 in items2: 

exp = exp1[0] + exp2[0] 

if exp < prec: 

exp = (exp, ) 

p[exp] = get(exp, 0) + v1*v2 

else: 

break 

else: 

monomial_mul = R.monomial_mul 

for exp1, v1 in p1.items(): 

for exp2, v2 in items2: 

if exp1[iv] + exp2[iv] < prec: 

exp = monomial_mul(exp1, exp2) 

p[exp] = get(exp, 0) + v1*v2 

else: 

break 

 

p.strip_zero() 

return p 

 

def rs_square(p1, x, prec): 

""" 

Square the series modulo ``O(x**prec)`` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_square 

>>> R, x = ring('x', QQ) 

>>> p = x**2 + 2*x + 1 

>>> rs_square(p, x, 3) 

6*x**2 + 4*x + 1 

""" 

R = p1.ring 

p = R.zero 

iv = R.gens.index(x) 

get = p.get 

items = list(p1.items()) 

items.sort(key=lambda e: e[0][iv]) 

monomial_mul = R.monomial_mul 

for i in range(len(items)): 

exp1, v1 = items[i] 

for j in range(i): 

exp2, v2 = items[j] 

if exp1[iv] + exp2[iv] < prec: 

exp = monomial_mul(exp1, exp2) 

p[exp] = get(exp, 0) + v1*v2 

else: 

break 

p = p.imul_num(2) 

get = p.get 

for expv, v in p1.items(): 

if 2*expv[iv] < prec: 

e2 = monomial_mul(expv, expv) 

p[e2] = get(e2, 0) + v**2 

p.strip_zero() 

return p 

 

def rs_pow(p1, n, x, prec): 

""" 

Return ``p1**n`` modulo ``O(x**prec)`` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_pow 

>>> R, x = ring('x', QQ) 

>>> p = x + 1 

>>> rs_pow(p, 4, x, 3) 

6*x**2 + 4*x + 1 

""" 

R = p1.ring 

p = R.zero 

if isinstance(n, Rational): 

np = int(n.p) 

nq = int(n.q) 

if nq != 1: 

res = rs_nth_root(p1, nq, x, prec) 

if np != 1: 

res = rs_pow(res, np, x, prec) 

else: 

res = rs_pow(p1, np, x, prec) 

return res 

 

n = as_int(n) 

if n == 0: 

if p1: 

return R(1) 

else: 

raise ValueError('0**0 is undefined') 

if n < 0: 

p1 = rs_pow(p1, -n, x, prec) 

return rs_series_inversion(p1, x, prec) 

if n == 1: 

return rs_trunc(p1, x, prec) 

if n == 2: 

return rs_square(p1, x, prec) 

if n == 3: 

p2 = rs_square(p1, x, prec) 

return rs_mul(p1, p2, x, prec) 

p = R(1) 

while 1: 

if n & 1: 

p = rs_mul(p1, p, x, prec) 

n -= 1 

if not n: 

break 

p1 = rs_square(p1, x, prec) 

n = n // 2 

return p 

 

def rs_subs(p, rules, x, prec): 

""" 

Substitution with truncation according to the mapping in ``rules``. 

 

Return a series with precision ``prec`` in the generator ``x`` 

 

Note that substitutions are not done one after the other 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_subs 

>>> R, x, y = ring('x, y', QQ) 

>>> p = x**2 + y**2 

>>> rs_subs(p, {x: x+ y, y: x+ 2*y}, x, 3) 

2*x**2 + 6*x*y + 5*y**2 

>>> (x + y)**2 + (x + 2*y)**2 

2*x**2 + 6*x*y + 5*y**2 

 

which differs from 

 

>>> rs_subs(rs_subs(p, {x: x+ y}, x, 3), {y: x+ 2*y}, x, 3) 

5*x**2 + 12*x*y + 8*y**2 

 

Parameters 

---------- 

p : :class:`PolyElement` Input series. 

rules : :class:`dict` with substitution mappings. 

x : :class:`PolyElement` in which the series truncation is to be done. 

prec : :class:`Integer` order of the series after truncation. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_subs 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_subs(x**2+y**2, {y: (x+y)**2}, x, 3) 

6*x**2*y**2 + x**2 + 4*x*y**3 + y**4 

""" 

R = p.ring 

ngens = R.ngens 

d = R(0) 

for i in range(ngens): 

d[(i, 1)] = R.gens[i] 

for var in rules: 

d[(R.index(var), 1)] = rules[var] 

p1 = R(0) 

p_keys = sorted(p.keys()) 

for expv in p_keys: 

p2 = R(1) 

for i in range(ngens): 

power = expv[i] 

if power == 0: 

continue 

if (i, power) not in d: 

q, r = divmod(power, 2) 

if r == 0 and (i, q) in d: 

d[(i, power)] = rs_square(d[(i, q)], x, prec) 

elif (i, power - 1) in d: 

d[(i, power)] = rs_mul(d[(i, power - 1)], d[(i, 1)], 

x, prec) 

else: 

d[(i, power)] = rs_pow(d[(i, 1)], power, x, prec) 

p2 = rs_mul(p2, d[(i, power)], x, prec) 

p1 += p2*p[expv] 

return p1 

 

def _has_constant_term(p, x): 

""" 

Check if ``p`` has a constant term in ``x`` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import _has_constant_term 

>>> R, x = ring('x', QQ) 

>>> p = x**2 + x + 1 

>>> _has_constant_term(p, x) 

True 

""" 

R = p.ring 

iv = R.gens.index(x) 

zm = R.zero_monom 

a = [0]*R.ngens 

a[iv] = 1 

miv = tuple(a) 

for expv in p: 

if monomial_min(expv, miv) == zm: 

return True 

return False 

 

def _get_constant_term(p, x): 

"""Return constant term in p with respect to x 

 

Note that it is not simply `p[R.zero_monom]` as there might be multiple 

generators in the ring R. We want the `x`-free term which can contain other 

generators. 

""" 

R = p.ring 

zm = R.zero_monom 

i = R.gens.index(x) 

zm = R.zero_monom 

a = [0]*R.ngens 

a[i] = 1 

miv = tuple(a) 

c = 0 

for expv in p: 

if monomial_min(expv, miv) == zm: 

c += R({expv: p[expv]}) 

return c 

 

def _check_series_var(p, x, name): 

index = p.ring.gens.index(x) 

m = min(p, key=lambda k: k[index])[index] 

if m < 0: 

raise PoleError("Asymptotic expansion of %s around [oo] not " 

"implemented." % name) 

return index, m 

 

def _series_inversion1(p, x, prec): 

""" 

Univariate series inversion ``1/p`` modulo ``O(x**prec)``. 

 

The Newton method is used. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import _series_inversion1 

>>> R, x = ring('x', QQ) 

>>> p = x + 1 

>>> _series_inversion1(p, x, 4) 

-x**3 + x**2 - x + 1 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(_series_inversion1, p, x, prec) 

R = p.ring 

zm = R.zero_monom 

c = p[zm] 

 

# giant_steps does not seem to work with PythonRational numbers with 1 as 

# denominator. This makes sure such a number is converted to integer. 

if prec == int(prec): 

prec = int(prec) 

 

if zm not in p: 

raise ValueError("No constant term in series") 

if _has_constant_term(p - c, x): 

raise ValueError("p cannot contain a constant term depending on " 

"parameters") 

one = R(1) 

if R.domain is EX: 

one = 1 

if c != one: 

# TODO add check that it is a unit 

p1 = R(1)/c 

else: 

p1 = R(1) 

for precx in _giant_steps(prec): 

t = 1 - rs_mul(p1, p, x, precx) 

p1 = p1 + rs_mul(p1, t, x, precx) 

return p1 

 

def rs_series_inversion(p, x, prec): 

""" 

Multivariate series inversion ``1/p`` modulo ``O(x**prec)``. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_series_inversion 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_series_inversion(1 + x*y**2, x, 4) 

-x**3*y**6 + x**2*y**4 - x*y**2 + 1 

>>> rs_series_inversion(1 + x*y**2, y, 4) 

-x*y**2 + 1 

>>> rs_series_inversion(x + x**2, x, 4) 

x**3 - x**2 + x - 1 + x**(-1) 

""" 

R = p.ring 

if p == R.zero: 

raise ZeroDivisionError 

zm = R.zero_monom 

index = R.gens.index(x) 

m = min(p, key=lambda k: k[index])[index] 

if m: 

p = mul_xin(p, index, -m) 

prec = prec + m 

if zm not in p: 

raise NotImplementedError("No constant term in series") 

 

if _has_constant_term(p - p[zm], x): 

raise NotImplementedError("p - p[0] must not have a constant term in " 

"the series variables") 

r = _series_inversion1(p, x, prec) 

if m != 0: 

r = mul_xin(r, index, -m) 

return r 

 

def _coefficient_t(p, t): 

"""Coefficient of `x\_i**j` in p, where ``t`` = (i, j)""" 

i, j = t 

R = p.ring 

expv1 = [0]*R.ngens 

expv1[i] = j 

expv1 = tuple(expv1) 

p1 = R(0) 

for expv in p: 

if expv[i] == j: 

p1[monomial_div(expv, expv1)] = p[expv] 

return p1 

 

def rs_series_reversion(p, x, n, y): 

""" 

Reversion of a series. 

 

``p`` is a series with ``O(x**n)`` of the form `p = a*x + f(x)` 

where `a` is a number different from 0. 

 

`f(x) = sum( a\_k*x\_k, k in range(2, n))` 

 

a_k : Can depend polynomially on other variables, not indicated. 

x : Variable with name x. 

y : Variable with name y. 

 

Solve `p = y`, that is, given `a*x + f(x) - y = 0`, 

find the solution x = r(y) up to O(y**n) 

 

Algorithm: 

 

If `r\_i` is the solution at order i, then: 

`a*r\_i + f(r\_i) - y = O(y**(i + 1))` 

 

and if r_(i + 1) is the solution at order i + 1, then: 

`a*r\_(i + 1) + f(r\_(i + 1)) - y = O(y**(i + 2))` 

 

We have, r_(i + 1) = r_i + e, such that, 

`a*e + f(r\_i) = O(y**(i + 2))` 

or `e = -f(r\_i)/a` 

 

So we use the recursion relation: 

`r\_(i + 1) = r\_i - f(r\_i)/a` 

with the boundary condition: `r\_1 = y` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_series_reversion, rs_trunc 

>>> R, x, y, a, b = ring('x, y, a, b', QQ) 

>>> p = x - x**2 - 2*b*x**2 + 2*a*b*x**2 

>>> p1 = rs_series_reversion(p, x, 3, y); p1 

-2*y**2*a*b + 2*y**2*b + y**2 + y 

>>> rs_trunc(p.compose(x, p1), y, 3) 

y 

""" 

if rs_is_puiseux(p, x): 

raise NotImplementedError 

R = p.ring 

nx = R.gens.index(x) 

y = R(y) 

ny = R.gens.index(y) 

if _has_constant_term(p, x): 

raise ValueError("p must not contain a constant term in the series " 

"variable") 

a = _coefficient_t(p, (nx, 1)) 

zm = R.zero_monom 

assert zm in a and len(a) == 1 

a = a[zm] 

r = y/a 

for i in range(2, n): 

sp = rs_subs(p, {x: r}, y, i + 1) 

sp = _coefficient_t(sp, (ny, i))*y**i 

r -= sp/a 

return r 

 

def rs_series_from_list(p, c, x, prec, concur=1): 

""" 

Return a series `sum c[n]*p**n` modulo `O(x**prec)`. 

 

It reduces the number of multiplications by summing concurrently. 

 

`ax = [1, p, p**2, .., p**(J - 1)]` 

`s = sum(c[i]*ax[i]` for i in `range(r, (r + 1)*J))*p**((K - 1)*J)` 

with `K >= (n + 1)/J` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_series_from_list, rs_trunc 

>>> R, x = ring('x', QQ) 

>>> p = x**2 + x + 1 

>>> c = [1, 2, 3] 

>>> rs_series_from_list(p, c, x, 4) 

6*x**3 + 11*x**2 + 8*x + 6 

>>> rs_trunc(1 + 2*p + 3*p**2, x, 4) 

6*x**3 + 11*x**2 + 8*x + 6 

>>> pc = R.from_list(list(reversed(c))) 

>>> rs_trunc(pc.compose(x, p), x, 4) 

6*x**3 + 11*x**2 + 8*x + 6 

 

See Also 

======== 

 

sympy.polys.ring.compose 

 

""" 

R = p.ring 

n = len(c) 

if not concur: 

q = R(1) 

s = c[0]*q 

for i in range(1, n): 

q = rs_mul(q, p, x, prec) 

s += c[i]*q 

return s 

J = int(math.sqrt(n) + 1) 

K, r = divmod(n, J) 

if r: 

K += 1 

ax = [R(1)] 

b = 1 

q = R(1) 

if len(p) < 20: 

for i in range(1, J): 

q = rs_mul(q, p, x, prec) 

ax.append(q) 

else: 

for i in range(1, J): 

if i % 2 == 0: 

q = rs_square(ax[i//2], x, prec) 

else: 

q = rs_mul(q, p, x, prec) 

ax.append(q) 

# optimize using rs_square 

pj = rs_mul(ax[-1], p, x, prec) 

b = R(1) 

s = R(0) 

for k in range(K - 1): 

r = J*k 

s1 = c[r] 

for j in range(1, J): 

s1 += c[r + j]*ax[j] 

s1 = rs_mul(s1, b, x, prec) 

s += s1 

b = rs_mul(b, pj, x, prec) 

if not b: 

break 

k = K - 1 

r = J*k 

if r < n: 

s1 = c[r]*R(1) 

for j in range(1, J): 

if r + j >= n: 

break 

s1 += c[r + j]*ax[j] 

s1 = rs_mul(s1, b, x, prec) 

s += s1 

return s 

 

def rs_diff(p, x): 

""" 

Return partial derivative of ``p`` with respect to ``x``. 

 

Parameters 

---------- 

x : :class:`PolyElement` with respect to which ``p`` is differentiated. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_diff 

>>> R, x, y = ring('x, y', QQ) 

>>> p = x + x**2*y**3 

>>> rs_diff(p, x) 

2*x*y**3 + 1 

""" 

R = p.ring 

n = R.gens.index(x) 

p1 = R.zero 

mn = [0]*R.ngens 

mn[n] = 1 

mn = tuple(mn) 

for expv in p: 

if expv[n]: 

e = monomial_ldiv(expv, mn) 

p1[e] = p[expv]*expv[n] 

return p1 

 

def rs_integrate(p, x): 

""" 

Integrate ``p`` with respect to ``x``. 

 

Parameters 

---------- 

x : :class:`PolyElement` with respect to which ``p`` is integrated. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_integrate 

>>> R, x, y = ring('x, y', QQ) 

>>> p = x + x**2*y**3 

>>> rs_integrate(p, x) 

1/3*x**3*y**3 + 1/2*x**2 

""" 

R = p.ring 

p1 = R.zero 

n = R.gens.index(x) 

mn = [0]*R.ngens 

mn[n] = 1 

mn = tuple(mn) 

 

for expv in p: 

e = monomial_mul(expv, mn) 

p1[e] = p[expv]/(expv[n] + 1) 

return p1 

 

def rs_fun(p, f, *args): 

""" 

Function of a multivariate series computed by substitution. 

 

The case with f method name is used to compute `rs\_tan` and `rs\_nth\_root` 

of a multivariate series: 

 

`rs\_fun(p, tan, iv, prec)` 

 

tan series is first computed for a dummy variable _x, 

i.e, `rs\_tan(\_x, iv, prec)`. Then we substitute _x with p to get the 

desired series 

 

Parameters 

---------- 

p : :class:`PolyElement` The multivariate series to be expanded. 

f : `ring\_series` function to be applied on `p`. 

args[-2] : :class:`PolyElement` with respect to which, the series is to be expanded. 

args[-1] : Required order of the expanded series. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_fun, _tan1 

>>> R, x, y = ring('x, y', QQ) 

>>> p = x + x*y + x**2*y + x**3*y**2 

>>> rs_fun(p, _tan1, x, 4) 

1/3*x**3*y**3 + 2*x**3*y**2 + x**3*y + 1/3*x**3 + x**2*y + x*y + x 

""" 

_R = p.ring 

R1, _x = ring('_x', _R.domain) 

h = int(args[-1]) 

args1 = args[:-2] + (_x, h) 

zm = _R.zero_monom 

# separate the constant term of the series 

# compute the univariate series f(_x, .., 'x', sum(nv)) 

if zm in p: 

x1 = _x + p[zm] 

p1 = p - p[zm] 

else: 

x1 = _x 

p1 = p 

if isinstance(f, str): 

q = getattr(x1, f)(*args1) 

else: 

q = f(x1, *args1) 

a = sorted(q.items()) 

c = [0]*h 

for x in a: 

c[x[0][0]] = x[1] 

p1 = rs_series_from_list(p1, c, args[-2], args[-1]) 

return p1 

 

def mul_xin(p, i, n): 

""" 

Return `p*x_i**n`. 

 

`x\_i` is the ith variable in ``p``. 

""" 

R = p.ring 

q = R(0) 

for k, v in p.items(): 

k1 = list(k) 

k1[i] += n 

q[tuple(k1)] = v 

return q 

 

def pow_xin(p, i, n): 

""" 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import pow_xin 

>>> R, x, y = ring('x, y', QQ) 

>>> p = x**QQ(2,5) + x + x**QQ(2,3) 

>>> index = p.ring.gens.index(x) 

>>> pow_xin(p, index, 15) 

x**15 + x**10 + x**6 

""" 

R = p.ring 

q = R(0) 

for k, v in p.items(): 

k1 = list(k) 

k1[i] *= n 

q[tuple(k1)] = v 

return q 

 

def _nth_root1(p, n, x, prec): 

""" 

Univariate series expansion of the nth root of ``p``. 

 

The Newton method is used. 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux2(_nth_root1, p, n, x, prec) 

R = p.ring 

zm = R.zero_monom 

if zm not in p: 

raise NotImplementedError('No constant term in series') 

n = as_int(n) 

assert p[zm] == 1 

p1 = R(1) 

if p == 1: 

return p 

if n == 0: 

return R(1) 

if n == 1: 

return p 

if n < 0: 

n = -n 

sign = 1 

else: 

sign = 0 

for precx in _giant_steps(prec): 

tmp = rs_pow(p1, n + 1, x, precx) 

tmp = rs_mul(tmp, p, x, precx) 

p1 += p1/n - tmp/n 

if sign: 

return p1 

else: 

return _series_inversion1(p1, x, prec) 

 

def rs_nth_root(p, n, x, prec): 

""" 

Multivariate series expansion of the nth root of ``p``. 

 

Parameters 

---------- 

n : `p**(1/n)` is returned. 

x : :class:`PolyElement` 

prec : Order of the expanded series. 

 

Notes 

===== 

 

The result of this function is dependent on the ring over which the 

polynomial has been defined. If the answer involves a root of a constant, 

make sure that the polynomial is over a real field. It can not yet handle 

roots of symbols. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ, RR 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_nth_root 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_nth_root(1 + x + x*y, -3, x, 3) 

2/9*x**2*y**2 + 4/9*x**2*y + 2/9*x**2 - 1/3*x*y - 1/3*x + 1 

>>> R, x, y = ring('x, y', RR) 

>>> rs_nth_root(3 + x + x*y, 3, x, 2) 

0.160249952256379*x*y + 0.160249952256379*x + 1.44224957030741 

""" 

p0 = p 

n0 = n 

if n == 0: 

if p == 0: 

raise ValueError('0**0 expression') 

else: 

return p.ring(1) 

if n == 1: 

return rs_trunc(p, x, prec) 

R = p.ring 

zm = R.zero_monom 

index = R.gens.index(x) 

m = min(p, key=lambda k: k[index])[index] 

p = mul_xin(p, index, -m) 

prec -= m 

 

if _has_constant_term(p - 1, x): 

zm = R.zero_monom 

c = p[zm] 

if R.domain is EX: 

c_expr = c.as_expr() 

const = c_expr**QQ(1, n) 

elif isinstance(c, PolyElement): 

try: 

c_expr = c.as_expr() 

const = R(c_expr**(QQ(1, n))) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

else: 

try: # RealElement doesn't support 

const = R(c**Rational(1, n)) # exponentiation with mpq object 

except ValueError: # as exponent 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

res = rs_nth_root(p/c, n, x, prec)*const 

else: 

res = _nth_root1(p, n, x, prec) 

if m: 

m = QQ(m, n) 

res = mul_xin(res, index, m) 

return res 

 

def rs_log(p, x, prec): 

""" 

The Logarithm of ``p`` modulo ``O(x**prec)``. 

 

Notes 

===== 

 

Truncation of ``integral dx p**-1*d p/dx`` is used. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_log 

>>> R, x = ring('x', QQ) 

>>> rs_log(1 + x, x, 8) 

1/7*x**7 - 1/6*x**6 + 1/5*x**5 - 1/4*x**4 + 1/3*x**3 - 1/2*x**2 + x 

>>> rs_log(x**QQ(3, 2) + 1, x, 5) 

1/3*x**(9/2) - 1/2*x**3 + x**(3/2) 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_log, p, x, prec) 

R = p.ring 

if p == 1: 

return R.zero 

if _has_constant_term(p, x): 

const = 0 

zm = R.zero_monom 

c = p[zm] 

if c == 1: 

pass 

else: 

c_expr = c.as_expr() 

if R.domain is EX: 

const = log(c_expr) 

elif isinstance(c, PolyElement): 

try: 

const = R(log(c_expr)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

else: 

try: 

const = R(log(c)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

 

dlog = p.diff(x) 

dlog = rs_mul(dlog, _series_inversion1(p, x, prec), x, prec - 1) 

return rs_integrate(dlog, x) + const 

else: 

raise NotImplementedError 

 

def rs_LambertW(p, x, prec): 

""" 

Calculate the series expansion of the principal branch of the Lambert W 

function. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_LambertW 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_LambertW(x + x*y, x, 3) 

-x**2*y**2 - 2*x**2*y - x**2 + x*y + x 

 

See Also 

======== 

 

LambertW 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_LambertW, p, x, prec) 

R = p.ring 

p1 = R(0) 

if _has_constant_term(p, x): 

raise NotImplementedError("Polynomial must not have constant term in " 

"the series variables") 

if x in R.gens: 

for precx in _giant_steps(prec): 

e = rs_exp(p1, x, precx) 

p2 = rs_mul(e, p1, x, precx) - p 

p3 = rs_mul(e, p1 + 1, x, precx) 

p3 = rs_series_inversion(p3, x, precx) 

tmp = rs_mul(p2, p3, x, precx) 

p1 -= tmp 

return p1 

else: 

raise NotImplementedError 

 

def _exp1(p, x, prec): 

"""Helper function for `rs\_exp`. """ 

R = p.ring 

p1 = R(1) 

for precx in _giant_steps(prec): 

pt = p - rs_log(p1, x, precx) 

tmp = rs_mul(pt, p1, x, precx) 

p1 += tmp 

return p1 

 

def rs_exp(p, x, prec): 

""" 

Exponentiation of a series modulo ``O(x**prec)`` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_exp 

>>> R, x = ring('x', QQ) 

>>> rs_exp(x**2, x, 7) 

1/6*x**6 + 1/2*x**4 + x**2 + 1 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_exp, p, x, prec) 

R = p.ring 

c = _get_constant_term(p, x) 

if c: 

if R.domain is EX: 

c_expr = c.as_expr() 

const = exp(c_expr) 

elif isinstance(c, PolyElement): 

try: 

c_expr = c.as_expr() 

const = R(exp(c_expr)) 

except ValueError: 

R = R.add_gens([exp(c_expr)]) 

p = p.set_ring(R) 

x = x.set_ring(R) 

c = c.set_ring(R) 

const = R(exp(c_expr)) 

else: 

try: 

const = R(exp(c)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

p1 = p - c 

 

# Makes use of sympy fuctions to evaluate the values of the cos/sin 

# of the constant term. 

return const*rs_exp(p1, x, prec) 

 

if len(p) > 20: 

return _exp1(p, x, prec) 

one = R(1) 

n = 1 

k = 1 

c = [] 

for k in range(prec): 

c.append(one/n) 

k += 1 

n *= k 

 

r = rs_series_from_list(p, c, x, prec) 

return r 

 

def _atan(p, iv, prec): 

""" 

Expansion using formula. 

 

Faster on very small and univariate series. 

""" 

R = p.ring 

mo = R(-1) 

c = [-mo] 

p2 = rs_square(p, iv, prec) 

for k in range(1, prec): 

c.append(mo**k/(2*k + 1)) 

s = rs_series_from_list(p2, c, iv, prec) 

s = rs_mul(s, p, iv, prec) 

return s 

 

def rs_atan(p, x, prec): 

""" 

The arctangent of a series 

 

Return the series expansion of the atan of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_atan 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_atan(x + x*y, x, 4) 

-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x 

 

See Also 

======== 

 

atan 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_atan, p, x, prec) 

R = p.ring 

const = 0 

if _has_constant_term(p, x): 

zm = R.zero_monom 

c = p[zm] 

if R.domain is EX: 

c_expr = c.as_expr() 

const = atan(c_expr) 

elif isinstance(c, PolyElement): 

try: 

c_expr = c.as_expr() 

const = R(atan(c_expr)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

else: 

try: 

const = R(atan(c)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

 

# Instead of using a closed form formula, we differentiate atan(p) to get 

# `1/(1+p**2) * dp`, whose series expansion is much easier to calculate. 

# Finally we integrate to get back atan 

dp = p.diff(x) 

p1 = rs_square(p, x, prec) + R(1) 

p1 = rs_series_inversion(p1, x, prec - 1) 

p1 = rs_mul(dp, p1, x, prec - 1) 

return rs_integrate(p1, x) + const 

 

def rs_asin(p, x, prec): 

""" 

Arcsine of a series 

 

Return the series expansion of the asin of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_asin 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_asin(x, x, 8) 

5/112*x**7 + 3/40*x**5 + 1/6*x**3 + x 

 

See Also 

======== 

 

asin 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_asin, p, x, prec) 

if _has_constant_term(p, x): 

raise NotImplementedError("Polynomial must not have constant term in " 

"series variables") 

R = p.ring 

if x in R.gens: 

# get a good value 

if len(p) > 20: 

dp = rs_diff(p, x) 

p1 = 1 - rs_square(p, x, prec - 1) 

p1 = rs_nth_root(p1, -2, x, prec - 1) 

p1 = rs_mul(dp, p1, x, prec - 1) 

return rs_integrate(p1, x) 

one = R(1) 

c = [0, one, 0] 

for k in range(3, prec, 2): 

c.append((k - 2)**2*c[-2]/(k*(k - 1))) 

c.append(0) 

return rs_series_from_list(p, c, x, prec) 

 

else: 

raise NotImplementedError 

 

def _tan1(p, x, prec): 

""" 

Helper function of `rs\_tan`. 

 

Return the series expansion of tan of a univariate series using Newton's 

method. It takes advantage of the fact that series expansion of atan is 

easier than that of tan. 

 

Consider `f(x) = y - atan(x)` 

Let r be a root of f(x) found using Newton's method. 

Then `f(r) = 0` 

Or `y = atan(x)` where `x = tan(y)` as required. 

""" 

R = p.ring 

p1 = R(0) 

for precx in _giant_steps(prec): 

tmp = p - rs_atan(p1, x, precx) 

tmp = rs_mul(tmp, 1 + rs_square(p1, x, precx), x, precx) 

p1 += tmp 

return p1 

 

def rs_tan(p, x, prec): 

""" 

Tangent of a series. 

 

Return the series expansion of the tan of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_tan 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_tan(x + x*y, x, 4) 

1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x 

 

See Also 

======== 

 

_tan1, tan 

""" 

if rs_is_puiseux(p, x): 

r = rs_puiseux(rs_tan, p, x, prec) 

return r 

R = p.ring 

const = 0 

c = _get_constant_term(p, x) 

if c: 

if R.domain is EX: 

c_expr = c.as_expr() 

const = tan(c_expr) 

elif isinstance(c, PolyElement): 

try: 

c_expr = c.as_expr() 

const = R(tan(c_expr)) 

except ValueError: 

R = R.add_gens([tan(c_expr, )]) 

p = p.set_ring(R) 

x = x.set_ring(R) 

c = c.set_ring(R) 

const = R(tan(c_expr)) 

else: 

try: 

const = R(tan(c)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

p1 = p - c 

 

# Makes use of sympy fuctions to evaluate the values of the cos/sin 

# of the constant term. 

t2 = rs_tan(p1, x, prec) 

t = rs_series_inversion(1 - const*t2, x, prec) 

return rs_mul(const + t2, t, x, prec) 

 

if R.ngens == 1: 

return _tan1(p, x, prec) 

else: 

return rs_fun(p, rs_tan, x, prec) 

 

def rs_cot(p, x, prec): 

""" 

Cotangent of a series 

 

Return the series expansion of the cot of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_cot 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_cot(x, x, 6) 

-2/945*x**5 - 1/45*x**3 - 1/3*x + x**(-1) 

 

See Also 

======== 

 

cot 

""" 

# It can not handle series like `p = x + x*y` where the coefficient of the 

# linear term in the series variable is symbolic. 

if rs_is_puiseux(p, x): 

r = rs_puiseux(rs_cot, p, x, prec) 

return r 

i, m = _check_series_var(p, x, 'cot') 

prec1 = prec + 2*m 

c, s = rs_cos_sin(p, x, prec1) 

s = mul_xin(s, i, -m) 

s = rs_series_inversion(s, x, prec1) 

res = rs_mul(c, s, x, prec1) 

res = mul_xin(res, i, -m) 

res = rs_trunc(res, x, prec) 

return res 

 

def rs_sin(p, x, prec): 

""" 

Sine of a series 

 

Return the series expansion of the sin of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_sin 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_sin(x + x*y, x, 4) 

-1/6*x**3*y**3 - 1/2*x**3*y**2 - 1/2*x**3*y - 1/6*x**3 + x*y + x 

>>> rs_sin(x**QQ(3, 2) + x*y**QQ(7, 5), x, 4) 

-1/2*x**(7/2)*y**(14/5) - 1/6*x**3*y**(21/5) + x**(3/2) + x*y**(7/5) 

 

See Also 

======== 

 

sin 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_sin, p, x, prec) 

R = x.ring 

if not p: 

return R(0) 

c = _get_constant_term(p, x) 

if c: 

if R.domain is EX: 

c_expr = c.as_expr() 

t1, t2 = sin(c_expr), cos(c_expr) 

elif isinstance(c, PolyElement): 

try: 

c_expr = c.as_expr() 

t1, t2 = R(sin(c_expr)), R(cos(c_expr)) 

except ValueError: 

R = R.add_gens([sin(c_expr), cos(c_expr)]) 

p = p.set_ring(R) 

x = x.set_ring(R) 

c = c.set_ring(R) 

t1, t2 = R(sin(c_expr)), R(cos(c_expr)) 

else: 

try: 

t1, t2 = R(sin(c)), R(cos(c)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

p1 = p - c 

 

# Makes use of sympy cos, sin fuctions to evaluate the values of the 

# cos/sin of the constant term. 

return rs_sin(p1, x, prec)*t2 + rs_cos(p1, x, prec)*t1 

 

# Series is calculated in terms of tan as its evaluation is fast. 

if len(p) > 20 and R.ngens == 1: 

t = rs_tan(p/2, x, prec) 

t2 = rs_square(t, x, prec) 

p1 = rs_series_inversion(1 + t2, x, prec) 

return rs_mul(p1, 2*t, x, prec) 

one = R(1) 

n = 1 

c = [0] 

for k in range(2, prec + 2, 2): 

c.append(one/n) 

c.append(0) 

n *= -k*(k + 1) 

return rs_series_from_list(p, c, x, prec) 

 

def rs_cos(p, x, prec): 

""" 

Cosine of a series 

 

Return the series expansion of the cos of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_cos 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_cos(x + x*y, x, 4) 

-1/2*x**2*y**2 - x**2*y - 1/2*x**2 + 1 

>>> rs_cos(x + x*y, x, 4)/x**QQ(7, 5) 

-1/2*x**(3/5)*y**2 - x**(3/5)*y - 1/2*x**(3/5) + x**(-7/5) 

 

See Also 

======== 

 

cos 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_cos, p, x, prec) 

R = p.ring 

c = _get_constant_term(p, x) 

if c: 

if R.domain is EX: 

c_expr = c.as_expr() 

t1, t2 = sin(c_expr), cos(c_expr) 

elif isinstance(c, PolyElement): 

try: 

c_expr = c.as_expr() 

t1, t2 = R(sin(c_expr)), R(cos(c_expr)) 

except ValueError: 

R = R.add_gens([sin(c_expr), cos(c_expr)]) 

p = p.set_ring(R) 

x = x.set_ring(R) 

c = c.set_ring(R) 

else: 

try: 

t1, t2 = R(sin(c)), R(cos(c)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

p1 = p - c 

 

# Makes use of sympy cos, sin fuctions to evaluate the values of the 

# cos/sin of the constant term. 

p_cos = rs_cos(p1, x, prec) 

p_sin = rs_sin(p1, x, prec) 

R = R.compose(p_cos.ring).compose(p_sin.ring) 

p_cos.set_ring(R) 

p_sin.set_ring(R) 

t1, t2 = R(sin(c_expr)), R(cos(c_expr)) 

return p_cos*t2 - p_sin*t1 

 

# Series is calculated in terms of tan as its evaluation is fast. 

if len(p) > 20 and R.ngens == 1: 

t = rs_tan(p/2, x, prec) 

t2 = rs_square(t, x, prec) 

p1 = rs_series_inversion(1+t2, x, prec) 

return rs_mul(p1, 1 - t2, x, prec) 

one = R(1) 

n = 1 

c = [] 

for k in range(2, prec + 2, 2): 

c.append(one/n) 

c.append(0) 

n *= -k*(k - 1) 

return rs_series_from_list(p, c, x, prec) 

 

def rs_cos_sin(p, x, prec): 

""" 

Return the tuple `(rs\_cos(p, x, prec)`, `rs\_sin(p, x, prec))`. 

 

Is faster than calling rs_cos and rs_sin separately 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_cos_sin, p, x, prec) 

t = rs_tan(p/2, x, prec) 

t2 = rs_square(t, x, prec) 

p1 = rs_series_inversion(1 + t2, x, prec) 

return (rs_mul(p1, 1 - t2, x, prec), rs_mul(p1, 2*t, x, prec)) 

 

def _atanh(p, x, prec): 

""" 

Expansion using formula 

 

Faster for very small and univariate series 

""" 

R = p.ring 

one = R(1) 

c = [one] 

p2 = rs_square(p, x, prec) 

for k in range(1, prec): 

c.append(one/(2*k + 1)) 

s = rs_series_from_list(p2, c, x, prec) 

s = rs_mul(s, p, x, prec) 

return s 

 

def rs_atanh(p, x, prec): 

""" 

Hyperbolic arctangent of a series 

 

Return the series expansion of the atanh of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_atanh 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_atanh(x + x*y, x, 4) 

1/3*x**3*y**3 + x**3*y**2 + x**3*y + 1/3*x**3 + x*y + x 

 

See Also 

======== 

 

atanh 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_atanh, p, x, prec) 

R = p.ring 

const = 0 

if _has_constant_term(p, x): 

zm = R.zero_monom 

c = p[zm] 

if R.domain is EX: 

c_expr = c.as_expr() 

const = atanh(c_expr) 

elif isinstance(c, PolyElement): 

try: 

c_expr = c.as_expr() 

const = R(atanh(c_expr)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

else: 

try: 

const = R(atanh(c)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

 

# Instead of using a closed form formula, we differentiate atanh(p) to get 

# `1/(1-p**2) * dp`, whose series expansion is much easier to calculate. 

# Finally we integrate to get back atanh 

dp = rs_diff(p, x) 

p1 = - rs_square(p, x, prec) + 1 

p1 = rs_series_inversion(p1, x, prec - 1) 

p1 = rs_mul(dp, p1, x, prec - 1) 

return rs_integrate(p1, x) + const 

 

def rs_sinh(p, x, prec): 

""" 

Hyperbolic sine of a series 

 

Return the series expansion of the sinh of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_sinh 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_sinh(x + x*y, x, 4) 

1/6*x**3*y**3 + 1/2*x**3*y**2 + 1/2*x**3*y + 1/6*x**3 + x*y + x 

 

See Also 

======== 

 

sinh 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_sinh, p, x, prec) 

t = rs_exp(p, x, prec) 

t1 = rs_series_inversion(t, x, prec) 

return (t - t1)/2 

 

def rs_cosh(p, x, prec): 

""" 

Hyperbolic cosine of a series 

 

Return the series expansion of the cosh of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_cosh 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_cosh(x + x*y, x, 4) 

1/2*x**2*y**2 + x**2*y + 1/2*x**2 + 1 

 

See Also 

======== 

 

cosh 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_cosh, p, x, prec) 

t = rs_exp(p, x, prec) 

t1 = rs_series_inversion(t, x, prec) 

return (t + t1)/2 

 

def _tanh(p, x, prec): 

""" 

Helper function of `rs\_tanh` 

 

Return the series expansion of tanh of a univariate series using Newton's 

method. It takes advantage of the fact that series expansion of atanh is 

easier than that of tanh. 

 

See Also 

======== 

 

_tanh 

""" 

R = p.ring 

p1 = R(0) 

for precx in _giant_steps(prec): 

tmp = p - rs_atanh(p1, x, precx) 

tmp = rs_mul(tmp, 1 - rs_square(p1, x, prec), x, precx) 

p1 += tmp 

return p1 

 

def rs_tanh(p, x, prec): 

""" 

Hyperbolic tangent of a series 

 

Return the series expansion of the tanh of ``p``, about 0. 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_tanh 

>>> R, x, y = ring('x, y', QQ) 

>>> rs_tanh(x + x*y, x, 4) 

-1/3*x**3*y**3 - x**3*y**2 - x**3*y - 1/3*x**3 + x*y + x 

 

See Also 

======== 

 

tanh 

""" 

if rs_is_puiseux(p, x): 

return rs_puiseux(rs_tanh, p, x, prec) 

R = p.ring 

const = 0 

if _has_constant_term(p, x): 

zm = R.zero_monom 

c = p[zm] 

if R.domain is EX: 

c_expr = c.as_expr() 

const = tanh(c_expr) 

elif isinstance(c, PolyElement): 

try: 

c_expr = c.as_expr() 

const = R(tanh(c_expr)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

else: 

try: 

const = R(tanh(c)) 

except ValueError: 

raise DomainError("The given series can't be expanded in " 

"this domain.") 

p1 = p - c 

t1 = rs_tanh(p1, x, prec) 

t = rs_series_inversion(1 + const*t1, x, prec) 

return rs_mul(const + t1, t, x, prec) 

 

if R.ngens == 1: 

return _tanh(p, x, prec) 

else: 

return rs_fun(p, _tanh, x, prec) 

 

def rs_newton(p, x, prec): 

""" 

Compute the truncated Newton sum of the polynomial ``p`` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_newton 

>>> R, x = ring('x', QQ) 

>>> p = x**2 - 2 

>>> rs_newton(p, x, 5) 

8*x**4 + 4*x**2 + 2 

""" 

deg = p.degree() 

p1 = _invert_monoms(p) 

p2 = rs_series_inversion(p1, x, prec) 

p3 = rs_mul(p1.diff(x), p2, x, prec) 

res = deg - p3*x 

return res 

 

def rs_hadamard_exp(p1, inverse=False): 

""" 

Return ``sum f_i/i!*x**i`` from ``sum f_i*x**i``, 

where ``x`` is the first variable. 

 

If ``invers=True`` return ``sum f_i*i!*x**i`` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_hadamard_exp 

>>> R, x = ring('x', QQ) 

>>> p = 1 + x + x**2 + x**3 

>>> rs_hadamard_exp(p) 

1/6*x**3 + 1/2*x**2 + x + 1 

""" 

R = p1.ring 

if R.domain != QQ: 

raise NotImplementedError 

p = R.zero 

if not inverse: 

for exp1, v1 in p1.items(): 

p[exp1] = v1/int(ifac(exp1[0])) 

else: 

for exp1, v1 in p1.items(): 

p[exp1] = v1*int(ifac(exp1[0])) 

return p 

 

def rs_compose_add(p1, p2): 

""" 

compute the composed sum ``prod(p2(x - beta) for beta root of p1)`` 

 

Examples 

======== 

 

>>> from sympy.polys.domains import QQ 

>>> from sympy.polys.rings import ring 

>>> from sympy.polys.ring_series import rs_compose_add 

>>> R, x = ring('x', QQ) 

>>> f = x**2 - 2 

>>> g = x**2 - 3 

>>> rs_compose_add(f, g) 

x**4 - 10*x**2 + 1 

 

References 

========== 

 

A. Bostan, P. Flajolet, B. Salvy and E. Schost 

"Fast Computation with Two Algebraic Numbers", 

(2002) Research Report 4579, Institut 

National de Recherche en Informatique et en Automatique 

""" 

R = p1.ring 

x = R.gens[0] 

prec = p1.degree() * p2.degree() + 1 

np1 = rs_newton(p1, x, prec) 

np1e = rs_hadamard_exp(np1) 

np2 = rs_newton(p2, x, prec) 

np2e = rs_hadamard_exp(np2) 

np3e = rs_mul(np1e, np2e, x, prec) 

np3 = rs_hadamard_exp(np3e, True) 

np3a = (np3[(0,)] - np3)/x 

q = rs_integrate(np3a, x) 

q = rs_exp(q, x, prec) 

q = _invert_monoms(q) 

q = q.primitive()[1] 

dp = p1.degree() * p2.degree() - q.degree() 

# `dp` is the multiplicity of the zeroes of the resultant; 

# these zeroes are missed in this computation so they are put here. 

# if p1 and p2 are monic irreducible polynomials, 

# there are zeroes in the resultant 

# if and only if p1 = p2 ; in fact in that case p1 and p2 have a 

# root in common, so gcd(p1, p2) != 1; being p1 and p2 irreducible 

# this means p1 = p2 

if dp: 

q = q*x**dp 

return q 

 

 

_convert_func = { 

'sin': 'rs_sin', 

'cos': 'rs_cos', 

'exp': 'rs_exp', 

'tan': 'rs_tan' 

} 

 

def rs_min_pow(expr, series_rs, a): 

"""Find the minimum power of `a` in the series expansion of expr""" 

series = 0 

n = 2 

while series == 0: 

series = _rs_series(expr, series_rs, a, n) 

n *= 2 

R = series.ring 

a = R(a) 

i = R.gens.index(a) 

return min(series, key=lambda t: t[i])[i] 

 

 

def _rs_series(expr, series_rs, a, prec): 

# TODO Use _parallel_dict_from_expr instead of sring as sring is 

# inefficient. For details, read the todo in sring. 

args = expr.args 

R = series_rs.ring 

 

# expr does not contain any function to be expanded 

if not any(arg.has(Function) for arg in args) and not expr.is_Function: 

return series_rs 

 

if not expr.has(a): 

return series_rs 

 

elif expr.is_Function: 

arg = args[0] 

if len(args) > 1: 

raise NotImplementedError 

R1, series = sring(arg, domain=QQ, expand=False, series=True) 

series_inner = _rs_series(arg, series, a, prec) 

 

# Why do we need to compose these three rings? 

# 

# We want to use a simple domain (like ``QQ`` or ``RR``) but they don't 

# support symbolic coefficients. We need a ring that for example lets 

# us have `sin(1)` and `cos(1)` as coefficients if we are expanding 

# `sin(x + 1)`. The ``EX`` domain allows all symbolic coefficients, but 

# that makes it very complex and hence slow. 

# 

# To solve this problem, we add only those symbolic elements as 

# generators to our ring, that we need. Here, series_inner might 

# involve terms like `sin(4)`, `exp(a)`, etc, which are not there in 

# R1 or R. Hence, we compose these three rings to create one that has 

# the generators of all three. 

R = R.compose(R1).compose(series_inner.ring) 

series_inner = series_inner.set_ring(R) 

series = eval(_convert_func[str(expr.func)])(series_inner, 

R(a), prec) 

return series 

 

elif expr.is_Mul: 

n = len(args) 

for arg in args: # XXX Looks redundant 

if not arg.is_Number: 

R1, _ = sring(arg, expand=False, series=True) 

R = R.compose(R1) 

min_pows = list(map(rs_min_pow, args, [R(arg) for arg in args], 

[a]*len(args))) 

sum_pows = sum(min_pows) 

series = R(1) 

 

for i in range(n): 

_series = _rs_series(args[i], R(args[i]), a, prec - sum_pows + 

min_pows[i]) 

R = R.compose(_series.ring) 

_series = _series.set_ring(R) 

series = series.set_ring(R) 

series *= _series 

series = rs_trunc(series, R(a), prec) 

return series 

 

elif expr.is_Add: 

n = len(args) 

series = R(0) 

for i in range(n): 

_series = _rs_series(args[i], R(args[i]), a, prec) 

R = R.compose(_series.ring) 

_series = _series.set_ring(R) 

series = series.set_ring(R) 

series += _series 

return series 

 

elif expr.is_Pow: 

R1, _ = sring(expr.base, domain=QQ, expand=False, series=True) 

R = R.compose(R1) 

series_inner = _rs_series(expr.base, R(expr.base), a, prec) 

return rs_pow(series_inner, expr.exp, series_inner.ring(a), prec) 

 

# The `is_constant` method is buggy hence we check it at the end. 

# See issue #9786 for details. 

elif isinstance(expr, Expr) and expr.is_constant(): 

return sring(expr, domain=QQ, expand=False, series=True)[1] 

 

else: 

raise NotImplementedError 

 

def rs_series(expr, a, prec): 

"""Return the series expansion of an expression about 0. 

 

Parameters 

---------- 

expr : :class:`Expr` 

a : :class:`Symbol` with respect to which expr is to be expanded 

prec : order of the series expansion 

 

Currently supports multivariate Taylor series expansion. This is much 

faster that Sympy's series method as it uses sparse polynomial operations. 

 

It automatically creates the simplest ring required to represent the series 

expansion through repeated calls to sring. 

 

Examples 

======== 

 

>>> from sympy.polys.ring_series import rs_series 

>>> from sympy.functions import sin, cos, exp, tan 

>>> from sympy.core import symbols 

>>> from sympy.polys.domains import QQ 

>>> a, b, c = symbols('a, b, c') 

>>> rs_series(sin(a) + exp(a), a, 5) 

1/24*a**4 + 1/2*a**2 + 2*a + 1 

>>> series = rs_series(tan(a + b)*cos(a + c), a, 2) 

>>> series.as_expr() 

-a*sin(c)*tan(b) + a*cos(c)*tan(b)**2 + a*cos(c) + cos(c)*tan(b) 

>>> series = rs_series(exp(a**QQ(1,3) + a**QQ(2, 5)), a, 1) 

>>> series.as_expr() 

a**(11/15) + a**(4/5)/2 + a**(2/5) + a**(2/3)/2 + a**(1/3) + 1 

 

""" 

R, series = sring(expr, domain=QQ, expand=False, series=True) 

if a not in R.symbols: 

R = R.add_gens([a, ]) 

series = series.set_ring(R) 

series = _rs_series(expr, series, a, prec) 

R = series.ring 

gen = R(a) 

prec_got = series.degree(gen) + 1 

 

if prec_got >= prec: 

return rs_trunc(series, gen, prec) 

else: 

# increase the requested number of terms to get the desired 

# number keep increasing (up to 9) until the received order 

# is different than the original order and then predict how 

# many additional terms are needed 

for more in range(1, 9): 

p1 = _rs_series(expr, series, a, prec=prec + more) 

gen = gen.set_ring(p1.ring) 

new_prec = p1.degree(gen) + 1 

if new_prec != prec_got: 

prec_do = ceiling(prec + (prec - prec_got)*more/(new_prec - 

prec_got)) 

p1 = _rs_series(expr, series, a, prec=prec_do) 

while p1.degree(gen) + 1 < prec: 

p1 = _rs_series(expr, series, a, prec=prec_do) 

gen = gen.set_ring(p1.ring) 

prec_do *= 2 

break 

else: 

break 

else: 

raise ValueError('Could not calculate %s terms for %s' 

% (str(prec), expr)) 

return rs_trunc(p1, gen, prec)