Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

""" 

A Printer for generating readable representation of most sympy classes. 

""" 

 

from __future__ import print_function, division 

 

from sympy.core import S, Rational, Pow, Basic, Mul 

from sympy.core.mul import _keep_coeff 

from .printer import Printer 

from sympy.printing.precedence import precedence, PRECEDENCE 

 

import mpmath.libmp as mlib 

from mpmath.libmp import prec_to_dps 

 

from sympy.utilities import default_sort_key 

 

 

class StrPrinter(Printer): 

printmethod = "_sympystr" 

_default_settings = { 

"order": None, 

"full_prec": "auto", 

} 

 

_relationals = dict() 

 

def parenthesize(self, item, level, strict=False): 

if (precedence(item) < level) or ((not strict) and precedence(item) <= level): 

return "(%s)" % self._print(item) 

else: 

return self._print(item) 

 

def stringify(self, args, sep, level=0): 

return sep.join([self.parenthesize(item, level) for item in args]) 

 

def emptyPrinter(self, expr): 

if isinstance(expr, str): 

return expr 

elif isinstance(expr, Basic): 

if hasattr(expr, "args"): 

return repr(expr) 

else: 

raise 

else: 

return str(expr) 

 

def _print_Add(self, expr, order=None): 

if self.order == 'none': 

terms = list(expr.args) 

else: 

terms = self._as_ordered_terms(expr, order=order) 

 

PREC = precedence(expr) 

l = [] 

for term in terms: 

t = self._print(term) 

if t.startswith('-'): 

sign = "-" 

t = t[1:] 

else: 

sign = "+" 

if precedence(term) < PREC: 

l.extend([sign, "(%s)" % t]) 

else: 

l.extend([sign, t]) 

sign = l.pop(0) 

if sign == '+': 

sign = "" 

return sign + ' '.join(l) 

 

def _print_BooleanTrue(self, expr): 

return "True" 

 

def _print_BooleanFalse(self, expr): 

return "False" 

 

def _print_And(self, expr): 

return '%s(%s)' % (expr.func, ', '.join(sorted(self._print(a) for a in 

expr.args))) 

 

def _print_Or(self, expr): 

return '%s(%s)' % (expr.func, ', '.join(sorted(self._print(a) for a in 

expr.args))) 

 

def _print_AppliedPredicate(self, expr): 

return '%s(%s)' % (expr.func, expr.arg) 

 

def _print_Basic(self, expr): 

l = [self._print(o) for o in expr.args] 

return expr.__class__.__name__ + "(%s)" % ", ".join(l) 

 

def _print_BlockMatrix(self, B): 

if B.blocks.shape == (1, 1): 

self._print(B.blocks[0, 0]) 

return self._print(B.blocks) 

 

def _print_Catalan(self, expr): 

return 'Catalan' 

 

def _print_ComplexInfinity(self, expr): 

return 'zoo' 

 

def _print_Derivative(self, expr): 

return 'Derivative(%s)' % ", ".join(map(self._print, expr.args)) 

 

def _print_dict(self, d): 

keys = sorted(d.keys(), key=default_sort_key) 

items = [] 

 

for key in keys: 

item = "%s: %s" % (self._print(key), self._print(d[key])) 

items.append(item) 

 

return "{%s}" % ", ".join(items) 

 

def _print_Dict(self, expr): 

return self._print_dict(expr) 

 

 

def _print_RandomDomain(self, d): 

try: 

return 'Domain: ' + self._print(d.as_boolean()) 

except Exception: 

try: 

return ('Domain: ' + self._print(d.symbols) + ' in ' + 

self._print(d.set)) 

except: 

return 'Domain on ' + self._print(d.symbols) 

 

def _print_Dummy(self, expr): 

return '_' + expr.name 

 

def _print_EulerGamma(self, expr): 

return 'EulerGamma' 

 

def _print_Exp1(self, expr): 

return 'E' 

 

def _print_ExprCondPair(self, expr): 

return '(%s, %s)' % (expr.expr, expr.cond) 

 

def _print_FiniteSet(self, s): 

s = sorted(s, key=default_sort_key) 

if len(s) > 10: 

printset = s[:3] + ['...'] + s[-3:] 

else: 

printset = s 

return '{' + ', '.join(self._print(el) for el in printset) + '}' 

 

def _print_Function(self, expr): 

return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ") 

 

def _print_GeometryEntity(self, expr): 

# GeometryEntity is special -- it's base is tuple 

return str(expr) 

 

def _print_GoldenRatio(self, expr): 

return 'GoldenRatio' 

 

def _print_ImaginaryUnit(self, expr): 

return 'I' 

 

def _print_Infinity(self, expr): 

return 'oo' 

 

def _print_Integral(self, expr): 

def _xab_tostr(xab): 

if len(xab) == 1: 

return self._print(xab[0]) 

else: 

return self._print((xab[0],) + tuple(xab[1:])) 

L = ', '.join([_xab_tostr(l) for l in expr.limits]) 

return 'Integral(%s, %s)' % (self._print(expr.function), L) 

 

def _print_Interval(self, i): 

if i.left_open: 

left = '(' 

else: 

left = '[' 

 

if i.right_open: 

right = ')' 

else: 

right = ']' 

 

return "%s%s, %s%s" % \ 

(left, self._print(i.start), self._print(i.end), right) 

 

def _print_AccumulationBounds(self, i): 

left = '<' 

right = '>' 

 

return "%s%s, %s%s" % \ 

(left, self._print(i.min), self._print(i.max), right) 

 

def _print_Inverse(self, I): 

return "%s^-1" % self.parenthesize(I.arg, PRECEDENCE["Pow"]) 

 

def _print_Lambda(self, obj): 

args, expr = obj.args 

if len(args) == 1: 

return "Lambda(%s, %s)" % (args.args[0], expr) 

else: 

arg_string = ", ".join(self._print(arg) for arg in args) 

return "Lambda((%s), %s)" % (arg_string, expr) 

 

def _print_LatticeOp(self, expr): 

args = sorted(expr.args, key=default_sort_key) 

return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args) 

 

def _print_Limit(self, expr): 

e, z, z0, dir = expr.args 

if str(dir) == "+": 

return "Limit(%s, %s, %s)" % (e, z, z0) 

else: 

return "Limit(%s, %s, %s, dir='%s')" % (e, z, z0, dir) 

 

def _print_list(self, expr): 

return "[%s]" % self.stringify(expr, ", ") 

 

def _print_MatrixBase(self, expr): 

return expr._format_str(self) 

_print_SparseMatrix = \ 

_print_MutableSparseMatrix = \ 

_print_ImmutableSparseMatrix = \ 

_print_Matrix = \ 

_print_DenseMatrix = \ 

_print_MutableDenseMatrix = \ 

_print_ImmutableMatrix = \ 

_print_ImmutableDenseMatrix = \ 

_print_MatrixBase 

 

def _print_MatrixElement(self, expr): 

return self._print(expr.parent) + '[%s, %s]'%(expr.i, expr.j) 

 

def _print_MatrixSlice(self, expr): 

def strslice(x): 

x = list(x) 

if x[2] == 1: 

del x[2] 

if x[1] == x[0] + 1: 

del x[1] 

if x[0] == 0: 

x[0] = '' 

return ':'.join(map(self._print, x)) 

return (self._print(expr.parent) + '[' + 

strslice(expr.rowslice) + ', ' + 

strslice(expr.colslice) + ']') 

 

def _print_DeferredVector(self, expr): 

return expr.name 

 

def _print_Mul(self, expr): 

 

prec = precedence(expr) 

 

c, e = expr.as_coeff_Mul() 

if c < 0: 

expr = _keep_coeff(-c, e) 

sign = "-" 

else: 

sign = "" 

 

a = [] # items in the numerator 

b = [] # items that are in the denominator (if any) 

 

if self.order not in ('old', 'none'): 

args = expr.as_ordered_factors() 

else: 

# use make_args in case expr was something like -x -> x 

args = Mul.make_args(expr) 

 

# Gather args for numerator/denominator 

for item in args: 

if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: 

if item.exp != -1: 

b.append(Pow(item.base, -item.exp, evaluate=False)) 

else: 

b.append(Pow(item.base, -item.exp)) 

elif item.is_Rational and item is not S.Infinity: 

if item.p != 1: 

a.append(Rational(item.p)) 

if item.q != 1: 

b.append(Rational(item.q)) 

else: 

a.append(item) 

 

a = a or [S.One] 

 

a_str = [self.parenthesize(x, prec, strict=False) for x in a] 

b_str = [self.parenthesize(x, prec, strict=False) for x in b] 

 

if len(b) == 0: 

return sign + '*'.join(a_str) 

elif len(b) == 1: 

return sign + '*'.join(a_str) + "/" + b_str[0] 

else: 

return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) 

 

def _print_MatMul(self, expr): 

return '*'.join([self.parenthesize(arg, precedence(expr)) 

for arg in expr.args]) 

 

def _print_HadamardProduct(self, expr): 

return '.*'.join([self.parenthesize(arg, precedence(expr)) 

for arg in expr.args]) 

 

def _print_MatAdd(self, expr): 

return ' + '.join([self.parenthesize(arg, precedence(expr)) 

for arg in expr.args]) 

 

def _print_NaN(self, expr): 

return 'nan' 

 

def _print_NegativeInfinity(self, expr): 

return '-oo' 

 

def _print_Normal(self, expr): 

return "Normal(%s, %s)" % (expr.mu, expr.sigma) 

 

def _print_Order(self, expr): 

if all(p is S.Zero for p in expr.point) or not len(expr.variables): 

if len(expr.variables) <= 1: 

return 'O(%s)' % self._print(expr.expr) 

else: 

return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0) 

else: 

return 'O(%s)' % self.stringify(expr.args, ', ', 0) 

 

def _print_Cycle(self, expr): 

return expr.__str__() 

 

def _print_Permutation(self, expr): 

from sympy.combinatorics.permutations import Permutation, Cycle 

if Permutation.print_cyclic: 

if not expr.size: 

return '()' 

# before taking Cycle notation, see if the last element is 

# a singleton and move it to the head of the string 

s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] 

last = s.rfind('(') 

if not last == 0 and ',' not in s[last:]: 

s = s[last:] + s[:last] 

s = s.replace(',', '') 

return s 

else: 

s = expr.support() 

if not s: 

if expr.size < 5: 

return 'Permutation(%s)' % str(expr.array_form) 

return 'Permutation([], size=%s)' % expr.size 

trim = str(expr.array_form[:s[-1] + 1]) + ', size=%s' % expr.size 

use = full = str(expr.array_form) 

if len(trim) < len(full): 

use = trim 

return 'Permutation(%s)' % use 

 

def _print_TensorIndex(self, expr): 

return expr._print() 

 

def _print_TensorHead(self, expr): 

return expr._print() 

 

def _print_Tensor(self, expr): 

return expr._print() 

 

def _print_TensMul(self, expr): 

return expr._print() 

 

def _print_TensAdd(self, expr): 

return expr._print() 

 

def _print_PermutationGroup(self, expr): 

p = [' %s' % str(a) for a in expr.args] 

return 'PermutationGroup([\n%s])' % ',\n'.join(p) 

 

def _print_PDF(self, expr): 

return 'PDF(%s, (%s, %s, %s))' % \ 

(self._print(expr.pdf.args[1]), self._print(expr.pdf.args[0]), 

self._print(expr.domain[0]), self._print(expr.domain[1])) 

 

def _print_Pi(self, expr): 

return 'pi' 

 

def _print_PolyRing(self, ring): 

return "Polynomial ring in %s over %s with %s order" % \ 

(", ".join(map(self._print, ring.symbols)), ring.domain, ring.order) 

 

def _print_FracField(self, field): 

return "Rational function field in %s over %s with %s order" % \ 

(", ".join(map(self._print, field.symbols)), field.domain, field.order) 

 

def _print_FreeGroupElement(self, elm): 

return elm.__str__() 

 

def _print_PolyElement(self, poly): 

return poly.str(self, PRECEDENCE, "%s**%s", "*") 

 

def _print_FracElement(self, frac): 

if frac.denom == 1: 

return self._print(frac.numer) 

else: 

numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True) 

denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True) 

return numer + "/" + denom 

 

def _print_Poly(self, expr): 

ATOM_PREC = PRECEDENCE["Atom"] - 1 

terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ] 

 

for monom, coeff in expr.terms(): 

s_monom = [] 

 

for i, exp in enumerate(monom): 

if exp > 0: 

if exp == 1: 

s_monom.append(gens[i]) 

else: 

s_monom.append(gens[i] + "**%d" % exp) 

 

s_monom = "*".join(s_monom) 

 

if coeff.is_Add: 

if s_monom: 

s_coeff = "(" + self._print(coeff) + ")" 

else: 

s_coeff = self._print(coeff) 

else: 

if s_monom: 

if coeff is S.One: 

terms.extend(['+', s_monom]) 

continue 

 

if coeff is S.NegativeOne: 

terms.extend(['-', s_monom]) 

continue 

 

s_coeff = self._print(coeff) 

 

if not s_monom: 

s_term = s_coeff 

else: 

s_term = s_coeff + "*" + s_monom 

 

if s_term.startswith('-'): 

terms.extend(['-', s_term[1:]]) 

else: 

terms.extend(['+', s_term]) 

 

if terms[0] in ['-', '+']: 

modifier = terms.pop(0) 

 

if modifier == '-': 

terms[0] = '-' + terms[0] 

 

format = expr.__class__.__name__ + "(%s, %s" 

 

from sympy.polys.polyerrors import PolynomialError 

 

try: 

format += ", modulus=%s" % expr.get_modulus() 

except PolynomialError: 

format += ", domain='%s'" % expr.get_domain() 

 

format += ")" 

 

for index, item in enumerate(gens): 

if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"): 

gens[index] = item[1:len(item) - 1] 

 

return format % (' '.join(terms), ', '.join(gens)) 

 

def _print_ProductSet(self, p): 

return ' x '.join(self._print(set) for set in p.sets) 

 

def _print_AlgebraicNumber(self, expr): 

if expr.is_aliased: 

return self._print(expr.as_poly().as_expr()) 

else: 

return self._print(expr.as_expr()) 

 

def _print_Pow(self, expr, rational=False): 

PREC = precedence(expr) 

 

if expr.exp is S.Half and not rational: 

return "sqrt(%s)" % self._print(expr.base) 

 

if expr.is_commutative: 

if -expr.exp is S.Half and not rational: 

# Note: Don't test "expr.exp == -S.Half" here, because that will 

# match -0.5, which we don't want. 

return "1/sqrt(%s)" % self._print(expr.base) 

if expr.exp is -S.One: 

# Similarly to the S.Half case, don't test with "==" here. 

return '1/%s' % self.parenthesize(expr.base, PREC, strict=False) 

 

e = self.parenthesize(expr.exp, PREC, strict=False) 

if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1: 

# the parenthesized exp should be '(Rational(a, b))' so strip parens, 

# but just check to be sure. 

if e.startswith('(Rational'): 

return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1]) 

return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e) 

 

def _print_MatPow(self, expr): 

PREC = precedence(expr) 

return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), 

self.parenthesize(expr.exp, PREC, strict=False)) 

 

def _print_ImmutableDenseNDimArray(self, expr): 

return str(expr) 

 

def _print_ImmutableSparseNDimArray(self, expr): 

return str(expr) 

 

def _print_Integer(self, expr): 

return str(expr.p) 

 

def _print_int(self, expr): 

return str(expr) 

 

def _print_mpz(self, expr): 

return str(expr) 

 

def _print_Rational(self, expr): 

if expr.q == 1: 

return str(expr.p) 

else: 

return "%s/%s" % (expr.p, expr.q) 

 

def _print_PythonRational(self, expr): 

if expr.q == 1: 

return str(expr.p) 

else: 

return "%d/%d" % (expr.p, expr.q) 

 

def _print_Fraction(self, expr): 

if expr.denominator == 1: 

return str(expr.numerator) 

else: 

return "%s/%s" % (expr.numerator, expr.denominator) 

 

def _print_mpq(self, expr): 

if expr.denominator == 1: 

return str(expr.numerator) 

else: 

return "%s/%s" % (expr.numerator, expr.denominator) 

 

def _print_Float(self, expr): 

prec = expr._prec 

if prec < 5: 

dps = 0 

else: 

dps = prec_to_dps(expr._prec) 

if self._settings["full_prec"] is True: 

strip = False 

elif self._settings["full_prec"] is False: 

strip = True 

elif self._settings["full_prec"] == "auto": 

strip = self._print_level > 1 

rv = mlib.to_str(expr._mpf_, dps, strip_zeros=strip) 

if rv.startswith('-.0'): 

rv = '-0.' + rv[3:] 

elif rv.startswith('.0'): 

rv = '0.' + rv[2:] 

return rv 

 

def _print_Relational(self, expr): 

 

charmap = { 

"==": "Eq", 

"!=": "Ne", 

":=": "Assignment", 

'+=': "AddAugmentedAssignment", 

"-=": "SubAugmentedAssignment", 

"*=": "MulAugmentedAssignment", 

"/=": "DivAugmentedAssignment", 

"%=": "ModAugmentedAssignment", 

} 

 

if expr.rel_op in charmap: 

return '%s(%s, %s)' % (charmap[expr.rel_op], expr.lhs, expr.rhs) 

 

return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)), 

self._relationals.get(expr.rel_op) or expr.rel_op, 

self.parenthesize(expr.rhs, precedence(expr))) 

 

def _print_ComplexRootOf(self, expr): 

return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'), 

expr.index) 

 

def _print_RootSum(self, expr): 

args = [self._print_Add(expr.expr, order='lex')] 

 

if expr.fun is not S.IdentityFunction: 

args.append(self._print(expr.fun)) 

 

return "RootSum(%s)" % ", ".join(args) 

 

def _print_GroebnerBasis(self, basis): 

cls = basis.__class__.__name__ 

 

exprs = [ self._print_Add(arg, order=basis.order) 

for arg in basis.exprs ] 

exprs = "[%s]" % ", ".join(exprs) 

 

gens = [ self._print(gen) for gen in basis.gens ] 

domain = "domain='%s'" % self._print(basis.domain) 

order = "order='%s'" % self._print(basis.order) 

 

args = [exprs] + gens + [domain, order] 

 

return "%s(%s)" % (cls, ", ".join(args)) 

 

def _print_Sample(self, expr): 

return "Sample([%s])" % self.stringify(expr, ", ", 0) 

 

def _print_set(self, s): 

items = sorted(s, key=default_sort_key) 

 

args = ', '.join(self._print(item) for item in items) 

if args: 

args = '[%s]' % args 

return '%s(%s)' % (type(s).__name__, args) 

 

_print_frozenset = _print_set 

 

def _print_SparseMatrix(self, expr): 

from sympy.matrices import Matrix 

return self._print(Matrix(expr)) 

 

def _print_Sum(self, expr): 

def _xab_tostr(xab): 

if len(xab) == 1: 

return self._print(xab[0]) 

else: 

return self._print((xab[0],) + tuple(xab[1:])) 

L = ', '.join([_xab_tostr(l) for l in expr.limits]) 

return 'Sum(%s, %s)' % (self._print(expr.function), L) 

 

def _print_Symbol(self, expr): 

return expr.name 

_print_MatrixSymbol = _print_Symbol 

_print_RandomSymbol = _print_Symbol 

 

def _print_Identity(self, expr): 

return "I" 

 

def _print_ZeroMatrix(self, expr): 

return "0" 

 

def _print_Predicate(self, expr): 

return "Q.%s" % expr.name 

 

def _print_str(self, expr): 

return expr 

 

def _print_tuple(self, expr): 

if len(expr) == 1: 

return "(%s,)" % self._print(expr[0]) 

else: 

return "(%s)" % self.stringify(expr, ", ") 

 

def _print_Tuple(self, expr): 

return self._print_tuple(expr) 

 

def _print_Transpose(self, T): 

return "%s'" % self.parenthesize(T.arg, PRECEDENCE["Pow"]) 

 

def _print_Uniform(self, expr): 

return "Uniform(%s, %s)" % (expr.a, expr.b) 

 

def _print_Union(self, expr): 

return ' U '.join(self._print(set) for set in expr.args) 

 

def _print_Complement(self, expr): 

return ' \ '.join(self._print(set) for set in expr.args) 

 

 

def _print_Unit(self, expr): 

return expr.abbrev 

 

def _print_Dimension(self, expr): 

return str(expr) 

 

def _print_Wild(self, expr): 

return expr.name + '_' 

 

def _print_WildFunction(self, expr): 

return expr.name + '_' 

 

def _print_Zero(self, expr): 

return "0" 

 

def _print_DMP(self, p): 

from sympy.core.sympify import SympifyError 

try: 

if p.ring is not None: 

# TODO incorporate order 

return self._print(p.ring.to_sympy(p)) 

except SympifyError: 

pass 

 

cls = p.__class__.__name__ 

rep = self._print(p.rep) 

dom = self._print(p.dom) 

ring = self._print(p.ring) 

 

return "%s(%s, %s, %s)" % (cls, rep, dom, ring) 

 

def _print_DMF(self, expr): 

return self._print_DMP(expr) 

 

def _print_Object(self, object): 

return 'Object("%s")' % object.name 

 

def _print_IdentityMorphism(self, morphism): 

return 'IdentityMorphism(%s)' % morphism.domain 

 

def _print_NamedMorphism(self, morphism): 

return 'NamedMorphism(%s, %s, "%s")' % \ 

(morphism.domain, morphism.codomain, morphism.name) 

 

def _print_Category(self, category): 

return 'Category("%s")' % category.name 

 

def _print_BaseScalarField(self, field): 

return field._coord_sys._names[field._index] 

 

def _print_BaseVectorField(self, field): 

return 'e_%s' % field._coord_sys._names[field._index] 

 

def _print_Differential(self, diff): 

field = diff._form_field 

if hasattr(field, '_coord_sys'): 

return 'd%s' % field._coord_sys._names[field._index] 

else: 

return 'd(%s)' % self._print(field) 

 

def _print_Tr(self, expr): 

#TODO : Handle indices 

return "%s(%s)" % ("Tr", self._print(expr.args[0])) 

 

 

def sstr(expr, **settings): 

"""Returns the expression as a string. 

 

For large expressions where speed is a concern, use the setting 

order='none'. 

 

Examples 

======== 

 

>>> from sympy import symbols, Eq, sstr 

>>> a, b = symbols('a b') 

>>> sstr(Eq(a + b, 0)) 

'Eq(a + b, 0)' 

""" 

 

p = StrPrinter(settings) 

s = p.doprint(expr) 

 

return s 

 

 

class StrReprPrinter(StrPrinter): 

"""(internal) -- see sstrrepr""" 

 

def _print_str(self, s): 

return repr(s) 

 

 

def sstrrepr(expr, **settings): 

"""return expr in mixed str/repr form 

 

i.e. strings are returned in repr form with quotes, and everything else 

is returned in str form. 

 

This function could be useful for hooking into sys.displayhook 

""" 

 

p = StrReprPrinter(settings) 

s = p.doprint(expr) 

 

return s