Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

from __future__ import print_function, division 

 

from sympy.core import S, sympify, Expr, Rational, Symbol, Dummy 

from sympy.core import Add, Mul, expand_power_base, expand_log 

from sympy.core.cache import cacheit 

from sympy.core.compatibility import default_sort_key, is_sequence 

from sympy.core.containers import Tuple 

from sympy.utilities.iterables import uniq 

from sympy.sets.sets import Complement 

 

 

class Order(Expr): 

r""" Represents the limiting behavior of some function 

 

The order of a function characterizes the function based on the limiting 

behavior of the function as it goes to some limit. Only taking the limit 

point to be a number is currently supported. This is expressed in 

big O notation [1]_. 

 

The formal definition for the order of a function `g(x)` about a point `a` 

is such that `g(x) = O(f(x))` as `x \rightarrow a` if and only if for any 

`\delta > 0` there exists a `M > 0` such that `|g(x)| \leq M|f(x)|` for 

`|x-a| < \delta`. This is equivalent to `\lim_{x \rightarrow a} 

\sup |g(x)/f(x)| < \infty`. 

 

Let's illustrate it on the following example by taking the expansion of 

`\sin(x)` about 0: 

 

.. math :: 

\sin(x) = x - x^3/3! + O(x^5) 

 

where in this case `O(x^5) = x^5/5! - x^7/7! + \cdots`. By the definition 

of `O`, for any `\delta > 0` there is an `M` such that: 

 

.. math :: 

|x^5/5! - x^7/7! + ....| <= M|x^5| \text{ for } |x| < \delta 

 

or by the alternate definition: 

 

.. math :: 

\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| < \infty 

 

which surely is true, because 

 

.. math :: 

\lim_{x \rightarrow 0} | (x^5/5! - x^7/7! + ....) / x^5| = 1/5! 

 

 

As it is usually used, the order of a function can be intuitively thought 

of representing all terms of powers greater than the one specified. For 

example, `O(x^3)` corresponds to any terms proportional to `x^3, 

x^4,\ldots` and any higher power. For a polynomial, this leaves terms 

proportional to `x^2`, `x` and constants. 

 

Examples 

======== 

 

>>> from sympy import O, oo, cos, pi 

>>> from sympy.abc import x, y 

 

>>> O(x + x**2) 

O(x) 

>>> O(x + x**2, (x, 0)) 

O(x) 

>>> O(x + x**2, (x, oo)) 

O(x**2, (x, oo)) 

 

>>> O(1 + x*y) 

O(1, x, y) 

>>> O(1 + x*y, (x, 0), (y, 0)) 

O(1, x, y) 

>>> O(1 + x*y, (x, oo), (y, oo)) 

O(x*y, (x, oo), (y, oo)) 

 

>>> O(1) in O(1, x) 

True 

>>> O(1, x) in O(1) 

False 

>>> O(x) in O(1, x) 

True 

>>> O(x**2) in O(x) 

True 

 

>>> O(x)*x 

O(x**2) 

>>> O(x) - O(x) 

O(x) 

>>> O(cos(x)) 

O(1) 

>>> O(cos(x), (x, pi/2)) 

O(x - pi/2, (x, pi/2)) 

 

References 

========== 

 

.. [1] `Big O notation <http://en.wikipedia.org/wiki/Big_O_notation>`_ 

 

Notes 

===== 

 

In ``O(f(x), x)`` the expression ``f(x)`` is assumed to have a leading 

term. ``O(f(x), x)`` is automatically transformed to 

``O(f(x).as_leading_term(x),x)``. 

 

``O(expr*f(x), x)`` is ``O(f(x), x)`` 

 

``O(expr, x)`` is ``O(1)`` 

 

``O(0, x)`` is 0. 

 

Multivariate O is also supported: 

 

``O(f(x, y), x, y)`` is transformed to 

``O(f(x, y).as_leading_term(x,y).as_leading_term(y), x, y)`` 

 

In the multivariate case, it is assumed the limits w.r.t. the various 

symbols commute. 

 

If no symbols are passed then all symbols in the expression are used 

and the limit point is assumed to be zero. 

 

""" 

 

is_Order = True 

 

__slots__ = [] 

 

@cacheit 

def __new__(cls, expr, *args, **kwargs): 

expr = sympify(expr) 

 

if not args: 

if expr.is_Order: 

variables = expr.variables 

point = expr.point 

else: 

variables = list(expr.free_symbols) 

point = [S.Zero]*len(variables) 

else: 

args = list(args if is_sequence(args) else [args]) 

variables, point = [], [] 

if is_sequence(args[0]): 

for a in args: 

v, p = list(map(sympify, a)) 

variables.append(v) 

point.append(p) 

else: 

variables = list(map(sympify, args)) 

point = [S.Zero]*len(variables) 

 

if not all(v.is_Symbol for v in variables): 

raise TypeError('Variables are not symbols, got %s' % variables) 

 

if len(list(uniq(variables))) != len(variables): 

raise ValueError('Variables are supposed to be unique symbols, got %s' % variables) 

 

if expr.is_Order: 

expr_vp = dict(expr.args[1:]) 

new_vp = dict(expr_vp) 

vp = dict(zip(variables, point)) 

for v, p in vp.items(): 

if v in new_vp.keys(): 

if p != new_vp[v]: 

raise NotImplementedError( 

"Mixing Order at different points is not supported.") 

else: 

new_vp[v] = p 

if set(expr_vp.keys()) == set(new_vp.keys()): 

return expr 

else: 

variables = list(new_vp.keys()) 

point = [new_vp[v] for v in variables] 

 

if expr is S.NaN: 

return S.NaN 

 

if any(x in p.free_symbols for x in variables for p in point): 

raise ValueError('Got %s as a point.' % point) 

 

if variables: 

if any(p != point[0] for p in point): 

raise NotImplementedError 

if point[0] is S.Infinity: 

s = {k: 1/Dummy() for k in variables} 

rs = {1/v: 1/k for k, v in s.items()} 

elif point[0] is not S.Zero: 

s = dict((k, Dummy() + point[0]) for k in variables) 

rs = dict((v - point[0], k - point[0]) for k, v in s.items()) 

else: 

s = () 

rs = () 

 

expr = expr.subs(s) 

 

if expr.is_Add: 

from sympy import expand_multinomial 

expr = expand_multinomial(expr) 

 

if s: 

args = tuple([r[0] for r in rs.items()]) 

else: 

args = tuple(variables) 

 

if len(variables) > 1: 

# XXX: better way? We need this expand() to 

# workaround e.g: expr = x*(x + y). 

# (x*(x + y)).as_leading_term(x, y) currently returns 

# x*y (wrong order term!). That's why we want to deal with 

# expand()'ed expr (handled in "if expr.is_Add" branch below). 

expr = expr.expand() 

 

if expr.is_Add: 

lst = expr.extract_leading_order(args) 

expr = Add(*[f.expr for (e, f) in lst]) 

 

elif expr: 

expr = expr.as_leading_term(*args) 

expr = expr.as_independent(*args, as_Add=False)[1] 

 

expr = expand_power_base(expr) 

expr = expand_log(expr) 

 

if len(args) == 1: 

# The definition of O(f(x)) symbol explicitly stated that 

# the argument of f(x) is irrelevant. That's why we can 

# combine some power exponents (only "on top" of the 

# expression tree for f(x)), e.g.: 

# x**p * (-x)**q -> x**(p+q) for real p, q. 

x = args[0] 

margs = list(Mul.make_args( 

expr.as_independent(x, as_Add=False)[1])) 

 

for i, t in enumerate(margs): 

if t.is_Pow: 

b, q = t.args 

if b in (x, -x) and q.is_real and not q.has(x): 

margs[i] = x**q 

elif b.is_Pow and not b.exp.has(x): 

b, r = b.args 

if b in (x, -x) and r.is_real: 

margs[i] = x**(r*q) 

elif b.is_Mul and b.args[0] is S.NegativeOne: 

b = -b 

if b.is_Pow and not b.exp.has(x): 

b, r = b.args 

if b in (x, -x) and r.is_real: 

margs[i] = x**(r*q) 

 

expr = Mul(*margs) 

 

expr = expr.subs(rs) 

 

if expr is S.Zero: 

return expr 

 

if expr.is_Order: 

expr = expr.expr 

 

if not expr.has(*variables): 

expr = S.One 

 

# create Order instance: 

vp = dict(zip(variables, point)) 

variables.sort(key=default_sort_key) 

point = [vp[v] for v in variables] 

args = (expr,) + Tuple(*zip(variables, point)) 

obj = Expr.__new__(cls, *args) 

return obj 

 

def _eval_nseries(self, x, n, logx): 

return self 

 

@property 

def expr(self): 

return self.args[0] 

 

@property 

def variables(self): 

if self.args[1:]: 

return tuple(x[0] for x in self.args[1:]) 

else: 

return () 

 

@property 

def point(self): 

if self.args[1:]: 

return tuple(x[1] for x in self.args[1:]) 

else: 

return () 

 

@property 

def free_symbols(self): 

return self.expr.free_symbols | set(self.variables) 

 

def _eval_power(b, e): 

if e.is_Number and e.is_nonnegative: 

return b.func(b.expr ** e, *b.args[1:]) 

if e == O(1): 

return b 

return 

 

def as_expr_variables(self, order_symbols): 

if order_symbols is None: 

order_symbols = self.args[1:] 

else: 

if not all(o[1] == order_symbols[0][1] for o in order_symbols) and \ 

not all(p == self.point[0] for p in self.point): 

raise NotImplementedError('Order at points other than 0 ' 

'or oo not supported, got %s as a point.' % point) 

if order_symbols and order_symbols[0][1] != self.point[0]: 

raise NotImplementedError( 

"Multiplying Order at different points is not supported.") 

order_symbols = dict(order_symbols) 

for s, p in dict(self.args[1:]).items(): 

if s not in order_symbols.keys(): 

order_symbols[s] = p 

order_symbols = sorted(order_symbols.items(), key=lambda x: default_sort_key(x[0])) 

return self.expr, tuple(order_symbols) 

 

def removeO(self): 

return S.Zero 

 

def getO(self): 

return self 

 

@cacheit 

def contains(self, expr): 

""" 

Return True if expr belongs to Order(self.expr, \*self.variables). 

Return False if self belongs to expr. 

Return None if the inclusion relation cannot be determined 

(e.g. when self and expr have different symbols). 

""" 

from sympy import powsimp 

if expr is S.Zero: 

return True 

if expr is S.NaN: 

return False 

if expr.is_Order: 

if not all(p == expr.point[0] for p in expr.point) and \ 

not all(p == self.point[0] for p in self.point): 

raise NotImplementedError('Order at points other than 0 ' 

'or oo not supported, got %s as a point.' % point) 

else: 

# self and/or expr is O(1): 

if any(not p for p in [expr.point, self.point]): 

point = self.point + expr.point 

if point: 

point = point[0] 

else: 

point = S.Zero 

else: 

point = self.point[0] 

if expr.expr == self.expr: 

# O(1) + O(1), O(1) + O(1, x), etc. 

return all([x in self.args[1:] for x in expr.args[1:]]) 

if expr.expr.is_Add: 

return all([self.contains(x) for x in expr.expr.args]) 

if self.expr.is_Add: 

return any([self.func(x, *self.args[1:]).contains(expr) 

for x in self.expr.args]) 

if self.variables and expr.variables: 

common_symbols = tuple( 

[s for s in self.variables if s in expr.variables]) 

elif self.variables: 

common_symbols = self.variables 

else: 

common_symbols = expr.variables 

if not common_symbols: 

return None 

if (self.expr.is_Pow and self.expr.base.is_Symbol 

and self.expr.exp.is_positive): 

if expr.expr.is_Pow and self.expr.base == expr.expr.base: 

return not (self.expr.exp-expr.expr.exp).is_positive 

if expr.expr.is_Mul: 

for arg in expr.expr.args: 

if (arg.is_Pow and self.expr.base == arg.base 

and (expr.expr/arg).is_number): 

r = (self.expr.exp-arg.exp).is_positive 

if not (r is None): 

return not r 

r = None 

ratio = self.expr/expr.expr 

ratio = powsimp(ratio, deep=True, combine='exp') 

for s in common_symbols: 

l = ratio.limit(s, point) 

from sympy.series.limits import Limit 

if not isinstance(l, Limit): 

l = l != 0 

else: 

l = None 

if r is None: 

r = l 

else: 

if r != l: 

return 

return r 

if (self.expr.is_Pow and self.expr.base.is_Symbol 

and self.expr.exp.is_positive): 

if expr.is_Pow and self.expr.base == expr.base: 

return not (self.expr.exp-expr.exp).is_positive 

if expr.is_Mul: 

for arg in expr.args: 

if (arg.is_Pow and self.expr.base == arg.base 

and (expr/arg).is_number): 

r = (self.expr.exp-arg.exp).is_positive 

if not (r is None): 

return not r 

obj = self.func(expr, *self.args[1:]) 

return self.contains(obj) 

 

def __contains__(self, other): 

result = self.contains(other) 

if result is None: 

raise TypeError('contains did not evaluate to a bool') 

return result 

 

def _eval_subs(self, old, new): 

if old in self.variables: 

newexpr = self.expr.subs(old, new) 

i = self.variables.index(old) 

newvars = list(self.variables) 

newpt = list(self.point) 

if new.is_Symbol: 

newvars[i] = new 

else: 

syms = new.free_symbols 

if len(syms) == 1 or old in syms: 

if old in syms: 

var = self.variables[i] 

else: 

var = syms.pop() 

# First, try to substitute self.point in the "new" 

# expr to see if this is a fixed point. 

# E.g. O(y).subs(y, sin(x)) 

point = new.subs(var, self.point[i]) 

if point != self.point[i]: 

from sympy.solvers.solveset import solveset 

d = Dummy() 

sol = solveset(old - new.subs(var, d), d) 

if isinstance(sol, Complement): 

e1 = sol.args[0] 

e2 = sol.args[1] 

sol = set(e1) - set(e2) 

res = [dict(zip((d, ), sol))] 

point = d.subs(res[0]).limit(old, self.point[i]) 

newvars[i] = var 

newpt[i] = point 

elif old not in syms: 

del newvars[i], newpt[i] 

if not syms and new == self.point[i]: 

newvars.extend(syms) 

newpt.extend([S.Zero]*len(syms)) 

else: 

return 

return Order(newexpr, *zip(newvars, newpt)) 

 

def _eval_conjugate(self): 

expr = self.expr._eval_conjugate() 

if expr is not None: 

return self.func(expr, *self.args[1:]) 

 

def _eval_derivative(self, x): 

return self.func(self.expr.diff(x), *self.args[1:]) or self 

 

def _eval_transpose(self): 

expr = self.expr._eval_transpose() 

if expr is not None: 

return self.func(expr, *self.args[1:]) 

 

def _sage_(self): 

#XXX: SAGE doesn't have Order yet. Let's return 0 instead. 

return Rational(0)._sage_() 

 

O = Order