Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

from __future__ import print_function, division 

 

from itertools import product 

 

from sympy.core.sympify import (_sympify, sympify, converter, 

SympifyError) 

from sympy.core.basic import Basic 

from sympy.core.expr import Expr 

from sympy.core.singleton import Singleton, S 

from sympy.core.evalf import EvalfMixin 

from sympy.core.numbers import Float 

from sympy.core.compatibility import (iterable, with_metaclass, 

ordered, range, PY3) 

from sympy.core.evaluate import global_evaluate 

from sympy.core.function import FunctionClass 

from sympy.core.mul import Mul 

from sympy.core.relational import Eq 

from sympy.core.symbol import Symbol, Dummy 

from sympy.sets.contains import Contains 

from sympy.utilities.misc import func_name, filldedent 

 

from mpmath import mpi, mpf 

from sympy.logic.boolalg import And, Or, Not, true, false 

from sympy.utilities import subsets 

 

 

class Set(Basic): 

""" 

The base class for any kind of set. 

 

This is not meant to be used directly as a container of items. It does not 

behave like the builtin ``set``; see :class:`FiniteSet` for that. 

 

Real intervals are represented by the :class:`Interval` class and unions of 

sets by the :class:`Union` class. The empty set is represented by the 

:class:`EmptySet` class and available as a singleton as ``S.EmptySet``. 

""" 

is_number = False 

is_iterable = False 

is_interval = False 

 

is_FiniteSet = False 

is_Interval = False 

is_ProductSet = False 

is_Union = False 

is_Intersection = None 

is_EmptySet = None 

is_UniversalSet = None 

is_Complement = None 

is_ComplexRegion = False 

 

@staticmethod 

def _infimum_key(expr): 

""" 

Return infimum (if possible) else S.Infinity. 

""" 

try: 

infimum = expr.inf 

assert infimum.is_comparable 

except (NotImplementedError, 

AttributeError, AssertionError, ValueError): 

infimum = S.Infinity 

return infimum 

 

def union(self, other): 

""" 

Returns the union of 'self' and 'other'. 

 

Examples 

======== 

 

As a shortcut it is possible to use the '+' operator: 

 

>>> from sympy import Interval, FiniteSet 

>>> Interval(0, 1).union(Interval(2, 3)) 

[0, 1] U [2, 3] 

>>> Interval(0, 1) + Interval(2, 3) 

[0, 1] U [2, 3] 

>>> Interval(1, 2, True, True) + FiniteSet(2, 3) 

(1, 2] U {3} 

 

Similarly it is possible to use the '-' operator for set differences: 

 

>>> Interval(0, 2) - Interval(0, 1) 

(1, 2] 

>>> Interval(1, 3) - FiniteSet(2) 

[1, 2) U (2, 3] 

 

""" 

return Union(self, other) 

 

def intersect(self, other): 

""" 

Returns the intersection of 'self' and 'other'. 

 

>>> from sympy import Interval 

 

>>> Interval(1, 3).intersect(Interval(1, 2)) 

[1, 2] 

 

>>> from sympy import imageset, Lambda, symbols, S 

>>> n, m = symbols('n m') 

>>> a = imageset(Lambda(n, 2*n), S.Integers) 

>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers)) 

EmptySet() 

 

""" 

return Intersection(self, other) 

 

def intersection(self, other): 

""" 

Alias for :meth:`intersect()` 

""" 

return self.intersect(other) 

 

def _intersect(self, other): 

""" 

This function should only be used internally 

 

self._intersect(other) returns a new, intersected set if self knows how 

to intersect itself with other, otherwise it returns ``None`` 

 

When making a new set class you can be assured that other will not 

be a :class:`Union`, :class:`FiniteSet`, or :class:`EmptySet` 

 

Used within the :class:`Intersection` class 

""" 

return None 

 

def is_disjoint(self, other): 

""" 

Returns True if 'self' and 'other' are disjoint 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 2).is_disjoint(Interval(1, 2)) 

False 

>>> Interval(0, 2).is_disjoint(Interval(3, 4)) 

True 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Disjoint_sets 

""" 

return self.intersect(other) == S.EmptySet 

 

def isdisjoint(self, other): 

""" 

Alias for :meth:`is_disjoint()` 

""" 

return self.is_disjoint(other) 

 

def _union(self, other): 

""" 

This function should only be used internally 

 

self._union(other) returns a new, joined set if self knows how 

to join itself with other, otherwise it returns ``None``. 

It may also return a python set of SymPy Sets if they are somehow 

simpler. If it does this it must be idempotent i.e. the sets returned 

must return ``None`` with _union'ed with each other 

 

Used within the :class:`Union` class 

""" 

return None 

 

def complement(self, universe): 

""" 

The complement of 'self' w.r.t the given the universe. 

 

Examples 

======== 

 

>>> from sympy import Interval, S 

>>> Interval(0, 1).complement(S.Reals) 

(-oo, 0) U (1, oo) 

 

>>> Interval(0, 1).complement(S.UniversalSet) 

UniversalSet() \ [0, 1] 

 

""" 

return Complement(universe, self) 

 

def _complement(self, other): 

# this behaves as other - self 

if isinstance(other, ProductSet): 

# For each set consider it or it's complement 

# We need at least one of the sets to be complemented 

# Consider all 2^n combinations. 

# We can conveniently represent these options easily using a 

# ProductSet 

 

# XXX: this doesn't work if the dimentions of the sets isn't same. 

# A - B is essentially same as A if B has a different 

# dimentionality than A 

switch_sets = ProductSet(FiniteSet(o, o - s) for s, o in 

zip(self.sets, other.sets)) 

product_sets = (ProductSet(*set) for set in switch_sets) 

# Union of all combinations but this one 

return Union(p for p in product_sets if p != other) 

 

elif isinstance(other, Interval): 

if isinstance(self, Interval) or isinstance(self, FiniteSet): 

return Intersection(other, self.complement(S.Reals)) 

 

elif isinstance(other, Union): 

return Union(o - self for o in other.args) 

 

elif isinstance(other, Complement): 

return Complement(other.args[0], Union(other.args[1], self), evaluate=False) 

 

elif isinstance(other, EmptySet): 

return S.EmptySet 

 

elif isinstance(other, FiniteSet): 

return FiniteSet(*[el for el in other if self.contains(el) != True]) 

 

def symmetric_difference(self, other): 

return SymmetricDifference(self, other) 

 

def _symmetric_difference(self, other): 

return Union(Complement(self, other), Complement(other, self)) 

 

@property 

def inf(self): 

""" 

The infimum of 'self' 

 

Examples 

======== 

 

>>> from sympy import Interval, Union 

>>> Interval(0, 1).inf 

0 

>>> Union(Interval(0, 1), Interval(2, 3)).inf 

0 

 

""" 

return self._inf 

 

@property 

def _inf(self): 

raise NotImplementedError("(%s)._inf" % self) 

 

@property 

def sup(self): 

""" 

The supremum of 'self' 

 

Examples 

======== 

 

>>> from sympy import Interval, Union 

>>> Interval(0, 1).sup 

1 

>>> Union(Interval(0, 1), Interval(2, 3)).sup 

3 

 

""" 

return self._sup 

 

@property 

def _sup(self): 

raise NotImplementedError("(%s)._sup" % self) 

 

def contains(self, other): 

""" 

Returns True if 'other' is contained in 'self' as an element. 

 

As a shortcut it is possible to use the 'in' operator: 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 1).contains(0.5) 

True 

>>> 0.5 in Interval(0, 1) 

True 

 

""" 

other = sympify(other, strict=True) 

ret = sympify(self._contains(other)) 

if ret is None: 

ret = Contains(other, self, evaluate=False) 

return ret 

 

def _contains(self, other): 

raise NotImplementedError("(%s)._contains(%s)" % (self, other)) 

 

def is_subset(self, other): 

""" 

Returns True if 'self' is a subset of 'other'. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 0.5).is_subset(Interval(0, 1)) 

True 

>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) 

False 

 

""" 

if isinstance(other, Set): 

return self.intersect(other) == self 

else: 

raise ValueError("Unknown argument '%s'" % other) 

 

def issubset(self, other): 

""" 

Alias for :meth:`is_subset()` 

""" 

return self.is_subset(other) 

 

def is_proper_subset(self, other): 

""" 

Returns True if 'self' is a proper subset of 'other'. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1)) 

True 

>>> Interval(0, 1).is_proper_subset(Interval(0, 1)) 

False 

 

""" 

if isinstance(other, Set): 

return self != other and self.is_subset(other) 

else: 

raise ValueError("Unknown argument '%s'" % other) 

 

def is_superset(self, other): 

""" 

Returns True if 'self' is a superset of 'other'. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 0.5).is_superset(Interval(0, 1)) 

False 

>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True)) 

True 

 

""" 

if isinstance(other, Set): 

return other.is_subset(self) 

else: 

raise ValueError("Unknown argument '%s'" % other) 

 

def issuperset(self, other): 

""" 

Alias for :meth:`is_superset()` 

""" 

return self.is_superset(other) 

 

def is_proper_superset(self, other): 

""" 

Returns True if 'self' is a proper superset of 'other'. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5)) 

True 

>>> Interval(0, 1).is_proper_superset(Interval(0, 1)) 

False 

 

""" 

if isinstance(other, Set): 

return self != other and self.is_superset(other) 

else: 

raise ValueError("Unknown argument '%s'" % other) 

 

def _eval_powerset(self): 

raise NotImplementedError('Power set not defined for: %s' % self.func) 

 

def powerset(self): 

""" 

Find the Power set of 'self'. 

 

Examples 

======== 

 

>>> from sympy import FiniteSet, EmptySet 

>>> A = EmptySet() 

>>> A.powerset() 

{EmptySet()} 

>>> A = FiniteSet(1, 2) 

>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2) 

>>> A.powerset() == FiniteSet(a, b, c, EmptySet()) 

True 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Power_set 

 

""" 

return self._eval_powerset() 

 

@property 

def measure(self): 

""" 

The (Lebesgue) measure of 'self' 

 

Examples 

======== 

 

>>> from sympy import Interval, Union 

>>> Interval(0, 1).measure 

1 

>>> Union(Interval(0, 1), Interval(2, 3)).measure 

2 

 

""" 

return self._measure 

 

@property 

def boundary(self): 

""" 

The boundary or frontier of a set 

 

A point x is on the boundary of a set S if 

 

1. x is in the closure of S. 

I.e. Every neighborhood of x contains a point in S. 

2. x is not in the interior of S. 

I.e. There does not exist an open set centered on x contained 

entirely within S. 

 

There are the points on the outer rim of S. If S is open then these 

points need not actually be contained within S. 

 

For example, the boundary of an interval is its start and end points. 

This is true regardless of whether or not the interval is open. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 1).boundary 

{0, 1} 

>>> Interval(0, 1, True, False).boundary 

{0, 1} 

""" 

return self._boundary 

 

@property 

def is_open(self): 

if not Intersection(self, self.boundary): 

return True 

# We can't confidently claim that an intersection exists 

return None 

 

@property 

def is_closed(self): 

return self.boundary.is_subset(self) 

 

@property 

def closure(self): 

return self + self.boundary 

 

@property 

def interior(self): 

return self - self.boundary 

 

@property 

def _boundary(self): 

raise NotImplementedError() 

 

def _eval_imageset(self, f): 

from sympy.sets.fancysets import ImageSet 

return ImageSet(f, self) 

 

@property 

def _measure(self): 

raise NotImplementedError("(%s)._measure" % self) 

 

def __add__(self, other): 

return self.union(other) 

 

def __or__(self, other): 

return self.union(other) 

 

def __and__(self, other): 

return self.intersect(other) 

 

def __mul__(self, other): 

return ProductSet(self, other) 

 

def __xor__(self, other): 

return SymmetricDifference(self, other) 

 

def __pow__(self, exp): 

if not sympify(exp).is_Integer and exp >= 0: 

raise ValueError("%s: Exponent must be a positive Integer" % exp) 

return ProductSet([self]*exp) 

 

def __sub__(self, other): 

return Complement(self, other) 

 

def __contains__(self, other): 

symb = sympify(self.contains(other)) 

if not (symb is S.true or symb is S.false): 

raise TypeError('contains did not evaluate to a bool: %r' % symb) 

return bool(symb) 

 

 

class ProductSet(Set): 

""" 

Represents a Cartesian Product of Sets. 

 

Returns a Cartesian product given several sets as either an iterable 

or individual arguments. 

 

Can use '*' operator on any sets for convenient shorthand. 

 

Examples 

======== 

 

>>> from sympy import Interval, FiniteSet, ProductSet 

>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3) 

>>> ProductSet(I, S) 

[0, 5] x {1, 2, 3} 

 

>>> (2, 2) in ProductSet(I, S) 

True 

 

>>> Interval(0, 1) * Interval(0, 1) # The unit square 

[0, 1] x [0, 1] 

 

>>> coin = FiniteSet('H', 'T') 

>>> set(coin**2) 

set([(H, H), (H, T), (T, H), (T, T)]) 

 

 

Notes 

===== 

 

- Passes most operations down to the argument sets 

- Flattens Products of ProductSets 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Cartesian_product 

""" 

is_ProductSet = True 

 

def __new__(cls, *sets, **assumptions): 

def flatten(arg): 

if isinstance(arg, Set): 

if arg.is_ProductSet: 

return sum(map(flatten, arg.args), []) 

else: 

return [arg] 

elif iterable(arg): 

return sum(map(flatten, arg), []) 

raise TypeError("Input must be Sets or iterables of Sets") 

sets = flatten(list(sets)) 

 

if EmptySet() in sets or len(sets) == 0: 

return EmptySet() 

 

if len(sets) == 1: 

return sets[0] 

 

return Basic.__new__(cls, *sets, **assumptions) 

 

def _eval_Eq(self, other): 

if not other.is_ProductSet: 

return 

 

if len(self.args) != len(other.args): 

return false 

 

return And(*(Eq(x, y) for x, y in zip(self.args, other.args))) 

 

def _contains(self, element): 

""" 

'in' operator for ProductSets 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> (2, 3) in Interval(0, 5) * Interval(0, 5) 

True 

 

>>> (10, 10) in Interval(0, 5) * Interval(0, 5) 

False 

 

Passes operation on to constituent sets 

""" 

try: 

if len(element) != len(self.args): 

return false 

except TypeError: # maybe element isn't an iterable 

return false 

return And(* 

[set.contains(item) for set, item in zip(self.sets, element)]) 

 

def _intersect(self, other): 

""" 

This function should only be used internally 

 

See Set._intersect for docstring 

""" 

if not other.is_ProductSet: 

return None 

if len(other.args) != len(self.args): 

return S.EmptySet 

return ProductSet(a.intersect(b) 

for a, b in zip(self.sets, other.sets)) 

 

def _union(self, other): 

if not other.is_ProductSet: 

return None 

if len(other.args) != len(self.args): 

return None 

if self.args[0] == other.args[0]: 

return self.args[0] * Union(ProductSet(self.args[1:]), 

ProductSet(other.args[1:])) 

if self.args[-1] == other.args[-1]: 

return Union(ProductSet(self.args[:-1]), 

ProductSet(other.args[:-1])) * self.args[-1] 

return None 

 

@property 

def sets(self): 

return self.args 

 

@property 

def _boundary(self): 

return Union(ProductSet(b + b.boundary if i != j else b.boundary 

for j, b in enumerate(self.sets)) 

for i, a in enumerate(self.sets)) 

 

 

@property 

def is_iterable(self): 

return all(set.is_iterable for set in self.sets) 

 

def __iter__(self): 

if self.is_iterable: 

return product(*self.sets) 

else: 

raise TypeError("Not all constituent sets are iterable") 

 

@property 

def _measure(self): 

measure = 1 

for set in self.sets: 

measure *= set.measure 

return measure 

 

def __len__(self): 

return Mul(*[len(s) for s in self.args]) 

 

 

class Interval(Set, EvalfMixin): 

""" 

Represents a real interval as a Set. 

 

Usage: 

Returns an interval with end points "start" and "end". 

 

For left_open=True (default left_open is False) the interval 

will be open on the left. Similarly, for right_open=True the interval 

will be open on the right. 

 

Examples 

======== 

 

>>> from sympy import Symbol, Interval 

>>> Interval(0, 1) 

[0, 1] 

>>> Interval(0, 1, False, True) 

[0, 1) 

>>> Interval.Ropen(0, 1) 

[0, 1) 

>>> Interval.Lopen(0, 1) 

(0, 1] 

>>> Interval.open(0, 1) 

(0, 1) 

 

>>> a = Symbol('a', real=True) 

>>> Interval(0, a) 

[0, a] 

 

Notes 

===== 

- Only real end points are supported 

- Interval(a, b) with a > b will return the empty set 

- Use the evalf() method to turn an Interval into an mpmath 

'mpi' interval instance 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Interval_%28mathematics%29 

""" 

is_Interval = True 

 

def __new__(cls, start, end, left_open=False, right_open=False): 

 

start = _sympify(start) 

end = _sympify(end) 

left_open = _sympify(left_open) 

right_open = _sympify(right_open) 

 

if not all(isinstance(a, (type(true), type(false))) 

for a in [left_open, right_open]): 

raise NotImplementedError( 

"left_open and right_open can have only true/false values, " 

"got %s and %s" % (left_open, right_open)) 

 

inftys = [S.Infinity, S.NegativeInfinity] 

# Only allow real intervals (use symbols with 'is_real=True'). 

if not all(i.is_real is not False or i in inftys for i in (start, end)): 

raise ValueError("Non-real intervals are not supported") 

 

# evaluate if possible 

if (end < start) == True: 

return S.EmptySet 

elif (end - start).is_negative: 

return S.EmptySet 

 

if end == start and (left_open or right_open): 

return S.EmptySet 

if end == start and not (left_open or right_open): 

return FiniteSet(end) 

 

# Make sure infinite interval end points are open. 

if start == S.NegativeInfinity: 

left_open = true 

if end == S.Infinity: 

right_open = true 

 

return Basic.__new__(cls, start, end, left_open, right_open) 

 

@property 

def start(self): 

""" 

The left end point of 'self'. 

 

This property takes the same value as the 'inf' property. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 1).start 

0 

 

""" 

return self._args[0] 

 

_inf = left = start 

 

@classmethod 

def open(cls, a, b): 

"""Return an interval including neither boundary.""" 

return cls(a, b, True, True) 

 

@classmethod 

def Lopen(cls, a, b): 

"""Return an interval not including the left boundary.""" 

return cls(a, b, True, False) 

 

@classmethod 

def Ropen(cls, a, b): 

"""Return an interval not including the right boundary.""" 

return cls(a, b, False, True) 

 

@property 

def end(self): 

""" 

The right end point of 'self'. 

 

This property takes the same value as the 'sup' property. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 1).end 

1 

 

""" 

return self._args[1] 

 

_sup = right = end 

 

@property 

def left_open(self): 

""" 

True if 'self' is left-open. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 1, left_open=True).left_open 

True 

>>> Interval(0, 1, left_open=False).left_open 

False 

 

""" 

return self._args[2] 

 

@property 

def right_open(self): 

""" 

True if 'self' is right-open. 

 

Examples 

======== 

 

>>> from sympy import Interval 

>>> Interval(0, 1, right_open=True).right_open 

True 

>>> Interval(0, 1, right_open=False).right_open 

False 

 

""" 

return self._args[3] 

 

def _intersect(self, other): 

""" 

This function should only be used internally 

 

See Set._intersect for docstring 

""" 

# We only know how to intersect with other intervals 

if not other.is_Interval: 

return None 

 

# handle (-oo, oo) 

infty = S.NegativeInfinity, S.Infinity 

if self == Interval(*infty): 

l, r = self.left, self.right 

if l.is_real or l in infty or r.is_real or r in infty: 

return other 

 

# We can't intersect [0,3] with [x,6] -- we don't know if x>0 or x<0 

if not self._is_comparable(other): 

return None 

 

empty = False 

 

if self.start <= other.end and other.start <= self.end: 

# Get topology right. 

if self.start < other.start: 

start = other.start 

left_open = other.left_open 

elif self.start > other.start: 

start = self.start 

left_open = self.left_open 

else: 

start = self.start 

left_open = self.left_open or other.left_open 

 

if self.end < other.end: 

end = self.end 

right_open = self.right_open 

elif self.end > other.end: 

end = other.end 

right_open = other.right_open 

else: 

end = self.end 

right_open = self.right_open or other.right_open 

 

if end - start == 0 and (left_open or right_open): 

empty = True 

else: 

empty = True 

 

if empty: 

return S.EmptySet 

 

return Interval(start, end, left_open, right_open) 

 

 

def _complement(self, other): 

if other == S.Reals: 

a = Interval(S.NegativeInfinity, self.start, 

True, not self.left_open) 

b = Interval(self.end, S.Infinity, not self.right_open, True) 

return Union(a, b) 

 

if isinstance(other, FiniteSet): 

nums = [m for m in other.args if m.is_number] 

if nums == []: 

return None 

 

return Set._complement(self, other) 

 

 

def _union(self, other): 

""" 

This function should only be used internally 

 

See Set._union for docstring 

""" 

if other.is_UniversalSet: 

return S.UniversalSet 

if other.is_Interval and self._is_comparable(other): 

from sympy.functions.elementary.miscellaneous import Min, Max 

# Non-overlapping intervals 

end = Min(self.end, other.end) 

start = Max(self.start, other.start) 

if (end < start or 

(end == start and (end not in self and end not in other))): 

return None 

else: 

start = Min(self.start, other.start) 

end = Max(self.end, other.end) 

 

left_open = ((self.start != start or self.left_open) and 

(other.start != start or other.left_open)) 

right_open = ((self.end != end or self.right_open) and 

(other.end != end or other.right_open)) 

 

return Interval(start, end, left_open, right_open) 

 

# If I have open end points and these endpoints are contained in other. 

# But only in case, when endpoints are finite. Because 

# interval does not contain oo or -oo. 

open_left_in_other_and_finite = (self.left_open and 

sympify(other.contains(self.start)) is S.true and 

self.start.is_finite) 

open_right_in_other_and_finite = (self.right_open and 

sympify(other.contains(self.end)) is S.true and 

self.end.is_finite) 

if open_left_in_other_and_finite or open_right_in_other_and_finite: 

# Fill in my end points and return 

open_left = self.left_open and self.start not in other 

open_right = self.right_open and self.end not in other 

new_self = Interval(self.start, self.end, open_left, open_right) 

return set((new_self, other)) 

 

return None 

 

@property 

def _boundary(self): 

finite_points = [p for p in (self.start, self.end) 

if abs(p) != S.Infinity] 

return FiniteSet(*finite_points) 

 

def _contains(self, other): 

if not isinstance(other, Expr) or ( 

other is S.Infinity or 

other is S.NegativeInfinity or 

other is S.NaN or 

other is S.ComplexInfinity) or other.is_real is False: 

return false 

 

if self.start is S.NegativeInfinity and self.end is S.Infinity: 

if not other.is_real is None: 

return other.is_real 

 

if self.left_open: 

expr = other > self.start 

else: 

expr = other >= self.start 

 

if self.right_open: 

expr = And(expr, other < self.end) 

else: 

expr = And(expr, other <= self.end) 

 

return _sympify(expr) 

 

def _eval_imageset(self, f): 

from sympy.functions.elementary.miscellaneous import Min, Max 

from sympy.solvers.solveset import solveset 

from sympy.core.function import diff, Lambda 

from sympy.series import limit 

from sympy.calculus.singularities import singularities 

# TODO: handle functions with infinitely many solutions (eg, sin, tan) 

# TODO: handle multivariate functions 

 

expr = f.expr 

if len(expr.free_symbols) > 1 or len(f.variables) != 1: 

return 

var = f.variables[0] 

 

if expr.is_Piecewise: 

result = S.EmptySet 

domain_set = self 

for (p_expr, p_cond) in expr.args: 

if p_cond is true: 

intrvl = domain_set 

else: 

intrvl = p_cond.as_set() 

intrvl = Intersection(domain_set, intrvl) 

 

if p_expr.is_Number: 

image = FiniteSet(p_expr) 

else: 

image = imageset(Lambda(var, p_expr), intrvl) 

result = Union(result, image) 

 

# remove the part which has been `imaged` 

domain_set = Complement(domain_set, intrvl) 

if domain_set.is_EmptySet: 

break 

return result 

 

if not self.start.is_comparable or not self.end.is_comparable: 

return 

 

try: 

sing = [x for x in singularities(expr, var) 

if x.is_real and x in self] 

except NotImplementedError: 

return 

 

if self.left_open: 

_start = limit(expr, var, self.start, dir="+") 

elif self.start not in sing: 

_start = f(self.start) 

if self.right_open: 

_end = limit(expr, var, self.end, dir="-") 

elif self.end not in sing: 

_end = f(self.end) 

 

if len(sing) == 0: 

solns = list(solveset(diff(expr, var), var)) 

 

extr = [_start, _end] + [f(x) for x in solns 

if x.is_real and x in self] 

start, end = Min(*extr), Max(*extr) 

 

left_open, right_open = False, False 

if _start <= _end: 

# the minimum or maximum value can occur simultaneously 

# on both the edge of the interval and in some interior 

# point 

if start == _start and start not in solns: 

left_open = self.left_open 

if end == _end and end not in solns: 

right_open = self.right_open 

else: 

if start == _end and start not in solns: 

left_open = self.right_open 

if end == _start and end not in solns: 

right_open = self.left_open 

 

return Interval(start, end, left_open, right_open) 

else: 

return imageset(f, Interval(self.start, sing[0], 

self.left_open, True)) + \ 

Union(*[imageset(f, Interval(sing[i], sing[i + 1], True, True)) 

for i in range(0, len(sing) - 1)]) + \ 

imageset(f, Interval(sing[-1], self.end, True, self.right_open)) 

 

@property 

def _measure(self): 

return self.end - self.start 

 

def to_mpi(self, prec=53): 

return mpi(mpf(self.start._eval_evalf(prec)), 

mpf(self.end._eval_evalf(prec))) 

 

def _eval_evalf(self, prec): 

return Interval(self.left._eval_evalf(prec), 

self.right._eval_evalf(prec), 

left_open=self.left_open, right_open=self.right_open) 

 

def _is_comparable(self, other): 

is_comparable = self.start.is_comparable 

is_comparable &= self.end.is_comparable 

is_comparable &= other.start.is_comparable 

is_comparable &= other.end.is_comparable 

 

return is_comparable 

 

@property 

def is_left_unbounded(self): 

"""Return ``True`` if the left endpoint is negative infinity. """ 

return self.left is S.NegativeInfinity or self.left == Float("-inf") 

 

@property 

def is_right_unbounded(self): 

"""Return ``True`` if the right endpoint is positive infinity. """ 

return self.right is S.Infinity or self.right == Float("+inf") 

 

def as_relational(self, x): 

"""Rewrite an interval in terms of inequalities and logic operators.""" 

x = sympify(x) 

if self.right_open: 

right = x < self.end 

else: 

right = x <= self.end 

if self.left_open: 

left = self.start < x 

else: 

left = self.start <= x 

return And(left, right) 

 

def _eval_Eq(self, other): 

if not other.is_Interval: 

if (other.is_Union or other.is_Complement or 

other.is_Intersection or other.is_ProductSet): 

return 

 

return false 

 

return And(Eq(self.left, other.left), 

Eq(self.right, other.right), 

self.left_open == other.left_open, 

self.right_open == other.right_open) 

 

 

class Union(Set, EvalfMixin): 

""" 

Represents a union of sets as a :class:`Set`. 

 

Examples 

======== 

 

>>> from sympy import Union, Interval 

>>> Union(Interval(1, 2), Interval(3, 4)) 

[1, 2] U [3, 4] 

 

The Union constructor will always try to merge overlapping intervals, 

if possible. For example: 

 

>>> Union(Interval(1, 2), Interval(2, 3)) 

[1, 3] 

 

See Also 

======== 

 

Intersection 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Union_%28set_theory%29 

""" 

is_Union = True 

 

def __new__(cls, *args, **kwargs): 

evaluate = kwargs.get('evaluate', global_evaluate[0]) 

 

# flatten inputs to merge intersections and iterables 

args = list(args) 

 

def flatten(arg): 

if isinstance(arg, Set): 

if arg.is_Union: 

return sum(map(flatten, arg.args), []) 

else: 

return [arg] 

if iterable(arg): # and not isinstance(arg, Set) (implicit) 

return sum(map(flatten, arg), []) 

raise TypeError("Input must be Sets or iterables of Sets") 

args = flatten(args) 

 

# Union of no sets is EmptySet 

if len(args) == 0: 

return S.EmptySet 

 

# Reduce sets using known rules 

if evaluate: 

return Union.reduce(args) 

 

args = list(ordered(args, Set._infimum_key)) 

 

return Basic.__new__(cls, *args) 

 

@staticmethod 

def reduce(args): 

""" 

Simplify a :class:`Union` using known rules 

 

We first start with global rules like 

'Merge all FiniteSets' 

 

Then we iterate through all pairs and ask the constituent sets if they 

can simplify themselves with any other constituent 

""" 

 

# ===== Global Rules ===== 

# Merge all finite sets 

finite_sets = [x for x in args if x.is_FiniteSet] 

if len(finite_sets) > 1: 

a = (x for set in finite_sets for x in set) 

finite_set = FiniteSet(*a) 

args = [finite_set] + [x for x in args if not x.is_FiniteSet] 

 

# ===== Pair-wise Rules ===== 

# Here we depend on rules built into the constituent sets 

args = set(args) 

new_args = True 

while(new_args): 

for s in args: 

new_args = False 

for t in args - set((s,)): 

new_set = s._union(t) 

# This returns None if s does not know how to intersect 

# with t. Returns the newly intersected set otherwise 

if new_set is not None: 

if not isinstance(new_set, set): 

new_set = set((new_set, )) 

new_args = (args - set((s, t))).union(new_set) 

break 

if new_args: 

args = new_args 

break 

 

if len(args) == 1: 

return args.pop() 

else: 

return Union(args, evaluate=False) 

 

def _complement(self, universe): 

# DeMorgan's Law 

return Intersection(s.complement(universe) for s in self.args) 

 

@property 

def _inf(self): 

# We use Min so that sup is meaningful in combination with symbolic 

# interval end points. 

from sympy.functions.elementary.miscellaneous import Min 

return Min(*[set.inf for set in self.args]) 

 

@property 

def _sup(self): 

# We use Max so that sup is meaningful in combination with symbolic 

# end points. 

from sympy.functions.elementary.miscellaneous import Max 

return Max(*[set.sup for set in self.args]) 

 

def _contains(self, other): 

return Or(*[set.contains(other) for set in self.args]) 

 

@property 

def _measure(self): 

# Measure of a union is the sum of the measures of the sets minus 

# the sum of their pairwise intersections plus the sum of their 

# triple-wise intersections minus ... etc... 

 

# Sets is a collection of intersections and a set of elementary 

# sets which made up those intersections (called "sos" for set of sets) 

# An example element might of this list might be: 

# ( {A,B,C}, A.intersect(B).intersect(C) ) 

 

# Start with just elementary sets ( ({A}, A), ({B}, B), ... ) 

# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero 

sets = [(FiniteSet(s), s) for s in self.args] 

measure = 0 

parity = 1 

while sets: 

# Add up the measure of these sets and add or subtract it to total 

measure += parity * sum(inter.measure for sos, inter in sets) 

 

# For each intersection in sets, compute the intersection with every 

# other set not already part of the intersection. 

sets = ((sos + FiniteSet(newset), newset.intersect(intersection)) 

for sos, intersection in sets for newset in self.args 

if newset not in sos) 

 

# Clear out sets with no measure 

sets = [(sos, inter) for sos, inter in sets if inter.measure != 0] 

 

# Clear out duplicates 

sos_list = [] 

sets_list = [] 

for set in sets: 

if set[0] in sos_list: 

continue 

else: 

sos_list.append(set[0]) 

sets_list.append(set) 

sets = sets_list 

 

# Flip Parity - next time subtract/add if we added/subtracted here 

parity *= -1 

return measure 

 

@property 

def _boundary(self): 

def boundary_of_set(i): 

""" The boundary of set i minus interior of all other sets """ 

b = self.args[i].boundary 

for j, a in enumerate(self.args): 

if j != i: 

b = b - a.interior 

return b 

return Union(map(boundary_of_set, range(len(self.args)))) 

 

def _eval_imageset(self, f): 

return Union(imageset(f, arg) for arg in self.args) 

 

def as_relational(self, symbol): 

"""Rewrite a Union in terms of equalities and logic operators. """ 

return Or(*[set.as_relational(symbol) for set in self.args]) 

 

@property 

def is_iterable(self): 

return all(arg.is_iterable for arg in self.args) 

 

def _eval_evalf(self, prec): 

try: 

return Union(set._eval_evalf(prec) for set in self.args) 

except Exception: 

raise TypeError("Not all sets are evalf-able") 

 

def __iter__(self): 

import itertools 

 

# roundrobin recipe taken from itertools documentation: 

# https://docs.python.org/2/library/itertools.html#recipes 

def roundrobin(*iterables): 

"roundrobin('ABC', 'D', 'EF') --> A D E B F C" 

# Recipe credited to George Sakkis 

pending = len(iterables) 

if PY3: 

nexts = itertools.cycle(iter(it).__next__ for it in iterables) 

else: 

nexts = itertools.cycle(iter(it).next for it in iterables) 

while pending: 

try: 

for next in nexts: 

yield next() 

except StopIteration: 

pending -= 1 

nexts = itertools.cycle(itertools.islice(nexts, pending)) 

 

if all(set.is_iterable for set in self.args): 

return roundrobin(*(iter(arg) for arg in self.args)) 

else: 

raise TypeError("Not all constituent sets are iterable") 

 

class Intersection(Set): 

""" 

Represents an intersection of sets as a :class:`Set`. 

 

Examples 

======== 

 

>>> from sympy import Intersection, Interval 

>>> Intersection(Interval(1, 3), Interval(2, 4)) 

[2, 3] 

 

We often use the .intersect method 

 

>>> Interval(1,3).intersect(Interval(2,4)) 

[2, 3] 

 

See Also 

======== 

 

Union 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Intersection_%28set_theory%29 

""" 

is_Intersection = True 

 

def __new__(cls, *args, **kwargs): 

evaluate = kwargs.get('evaluate', global_evaluate[0]) 

 

# flatten inputs to merge intersections and iterables 

args = list(args) 

 

def flatten(arg): 

if isinstance(arg, Set): 

if arg.is_Intersection: 

return sum(map(flatten, arg.args), []) 

else: 

return [arg] 

if iterable(arg): # and not isinstance(arg, Set) (implicit) 

return sum(map(flatten, arg), []) 

raise TypeError("Input must be Sets or iterables of Sets") 

args = flatten(args) 

 

if len(args) == 0: 

return S.EmptySet 

 

# args can't be ordered for Partition see issue #9608 

if 'Partition' not in [type(a).__name__ for a in args]: 

args = list(ordered(args, Set._infimum_key)) 

 

# Reduce sets using known rules 

if evaluate: 

return Intersection.reduce(args) 

 

return Basic.__new__(cls, *args) 

 

@property 

def is_iterable(self): 

return any(arg.is_iterable for arg in self.args) 

 

@property 

def _inf(self): 

raise NotImplementedError() 

 

@property 

def _sup(self): 

raise NotImplementedError() 

 

def _eval_imageset(self, f): 

return Intersection(imageset(f, arg) for arg in self.args) 

 

def _contains(self, other): 

return And(*[set.contains(other) for set in self.args]) 

 

def __iter__(self): 

no_iter = True 

for s in self.args: 

if s.is_iterable: 

no_iter = False 

other_sets = set(self.args) - set((s,)) 

other = Intersection(other_sets, evaluate=False) 

for x in s: 

c = sympify(other.contains(x)) 

if c is S.true: 

yield x 

elif c is S.false: 

pass 

else: 

yield c 

 

if no_iter: 

raise ValueError("None of the constituent sets are iterable") 

 

@staticmethod 

def _handle_finite_sets(args): 

from sympy.core.logic import fuzzy_and, fuzzy_bool 

from sympy.core.compatibility import zip_longest 

from sympy.utilities.iterables import sift 

 

sifted = sift(args, lambda x: x.is_FiniteSet) 

fs_args = sifted.pop(True, []) 

if not fs_args: 

return 

s = fs_args[0] 

fs_args = fs_args[1:] 

other = sifted.pop(False, []) 

 

res = [] 

unk = [] 

for x in s: 

c = fuzzy_and(fuzzy_bool(o.contains(x)) 

for o in fs_args + other) 

if c: 

res.append(x) 

elif c is None: 

unk.append(x) 

else: 

pass # drop arg 

res = FiniteSet( 

*res, evaluate=False) if res else S.EmptySet 

if unk: 

symbolic_s_list = [x for x in s if x.has(Symbol)] 

non_symbolic_s = s - FiniteSet( 

*symbolic_s_list, evaluate=False) 

while fs_args: 

v = fs_args.pop() 

if all(i == j for i, j in zip_longest( 

symbolic_s_list, 

(x for x in v if x.has(Symbol)))): 

# all the symbolic elements of `v` are the same 

# as in `s` so remove the non-symbol containing 

# expressions from `unk`, since they cannot be 

# contained 

for x in non_symbolic_s: 

if x in unk: 

unk.remove(x) 

else: 

# if only a subset of elements in `s` are 

# contained in `v` then remove them from `v` 

# and add this as a new arg 

contained = [x for x in symbolic_s_list 

if sympify(v.contains(x)) is S.true] 

if contained != symbolic_s_list: 

other.append( 

v - FiniteSet( 

*contained, evaluate=False)) 

else: 

pass # for coverage 

 

other_sets = Intersection(*other) 

if not other_sets: 

return S.EmptySet # b/c we use evaluate=False below 

res += Intersection( 

FiniteSet(*unk), 

other_sets, evaluate=False) 

return res 

 

@staticmethod 

def reduce(args): 

""" 

Return a simplified intersection by applying rules. 

 

We first start with global rules like 

'if any empty sets, return empty set' and 'distribute unions'. 

 

Then we iterate through all pairs and ask the constituent sets if they 

can simplify themselves with any other constituent 

""" 

from sympy.simplify.simplify import clear_coefficients 

 

# ===== Global Rules ===== 

# If any EmptySets return EmptySet 

if any(s.is_EmptySet for s in args): 

return S.EmptySet 

 

# Handle Finite sets 

rv = Intersection._handle_finite_sets(args) 

if rv is not None: 

return rv 

 

# If any of the sets are unions, return a Union of Intersections 

for s in args: 

if s.is_Union: 

other_sets = set(args) - set((s,)) 

if len(other_sets) > 0: 

other = Intersection(other_sets) 

return Union(Intersection(arg, other) for arg in s.args) 

else: 

return Union(arg for arg in s.args) 

 

for s in args: 

if s.is_Complement: 

args.remove(s) 

other_sets = args + [s.args[0]] 

return Complement(Intersection(*other_sets), s.args[1]) 

 

# At this stage we are guaranteed not to have any 

# EmptySets, FiniteSets, or Unions in the intersection 

 

# ===== Pair-wise Rules ===== 

# Here we depend on rules built into the constituent sets 

args = set(args) 

new_args = True 

while(new_args): 

for s in args: 

new_args = False 

for t in args - set((s,)): 

new_set = s._intersect(t) 

# This returns None if s does not know how to intersect 

# with t. Returns the newly intersected set otherwise 

if new_set is not None: 

new_args = (args - set((s, t))).union(set((new_set, ))) 

break 

if new_args: 

args = new_args 

break 

 

if len(args) == 1: 

return args.pop() 

else: 

return Intersection(args, evaluate=False) 

 

def as_relational(self, symbol): 

"""Rewrite an Intersection in terms of equalities and logic operators""" 

return And(*[set.as_relational(symbol) for set in self.args]) 

 

 

class Complement(Set, EvalfMixin): 

"""Represents the set difference or relative complement of a set with 

another set. 

 

`A - B = \{x \in A| x \\notin B\}` 

 

 

Examples 

======== 

 

>>> from sympy import Complement, FiniteSet 

>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1)) 

{0, 2} 

 

See Also 

========= 

 

Intersection, Union 

 

References 

========== 

 

.. [1] http://mathworld.wolfram.com/ComplementSet.html 

""" 

 

is_Complement = True 

 

def __new__(cls, a, b, evaluate=True): 

if evaluate: 

return Complement.reduce(a, b) 

 

return Basic.__new__(cls, a, b) 

 

@staticmethod 

def reduce(A, B): 

""" 

Simplify a :class:`Complement`. 

 

""" 

if B == S.UniversalSet or A.is_subset(B): 

return EmptySet() 

 

if isinstance(B, Union): 

return Intersection(s.complement(A) for s in B.args) 

 

result = B._complement(A) 

if result != None: 

return result 

else: 

return Complement(A, B, evaluate=False) 

 

def _contains(self, other): 

A = self.args[0] 

B = self.args[1] 

return And(A.contains(other), Not(B.contains(other))) 

 

 

class EmptySet(with_metaclass(Singleton, Set)): 

""" 

Represents the empty set. The empty set is available as a singleton 

as S.EmptySet. 

 

Examples 

======== 

 

>>> from sympy import S, Interval 

>>> S.EmptySet 

EmptySet() 

 

>>> Interval(1, 2).intersect(S.EmptySet) 

EmptySet() 

 

See Also 

======== 

 

UniversalSet 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Empty_set 

""" 

is_EmptySet = True 

is_FiniteSet = True 

 

def _intersect(self, other): 

return S.EmptySet 

 

@property 

def _measure(self): 

return 0 

 

def _contains(self, other): 

return false 

 

def as_relational(self, symbol): 

return false 

 

def __len__(self): 

return 0 

 

def _union(self, other): 

return other 

 

def __iter__(self): 

return iter([]) 

 

def _eval_imageset(self, f): 

return self 

 

def _eval_powerset(self): 

return FiniteSet(self) 

 

@property 

def _boundary(self): 

return self 

 

def _complement(self, other): 

return other 

 

def _symmetric_difference(self, other): 

return other 

 

 

class UniversalSet(with_metaclass(Singleton, Set)): 

""" 

Represents the set of all things. 

The universal set is available as a singleton as S.UniversalSet 

 

Examples 

======== 

 

>>> from sympy import S, Interval 

>>> S.UniversalSet 

UniversalSet() 

 

>>> Interval(1, 2).intersect(S.UniversalSet) 

[1, 2] 

 

See Also 

======== 

 

EmptySet 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Universal_set 

""" 

 

is_UniversalSet = True 

 

def _intersect(self, other): 

return other 

 

def _complement(self, other): 

return S.EmptySet 

 

def _symmetric_difference(self, other): 

return other 

 

@property 

def _measure(self): 

return S.Infinity 

 

def _contains(self, other): 

return true 

 

def as_relational(self, symbol): 

return true 

 

def _union(self, other): 

return self 

 

@property 

def _boundary(self): 

return EmptySet() 

 

 

class FiniteSet(Set, EvalfMixin): 

""" 

Represents a finite set of discrete numbers 

 

Examples 

======== 

 

>>> from sympy import FiniteSet 

>>> FiniteSet(1, 2, 3, 4) 

{1, 2, 3, 4} 

>>> 3 in FiniteSet(1, 2, 3, 4) 

True 

 

>>> members = [1, 2, 3, 4] 

>>> FiniteSet(*members) 

{1, 2, 3, 4} 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Finite_set 

""" 

is_FiniteSet = True 

is_iterable = True 

 

def __new__(cls, *args, **kwargs): 

evaluate = kwargs.get('evaluate', global_evaluate[0]) 

if evaluate: 

args = list(map(sympify, args)) 

 

if len(args) == 0: 

return EmptySet() 

else: 

args = list(map(sympify, args)) 

 

args = list(ordered(frozenset(tuple(args)), Set._infimum_key)) 

obj = Basic.__new__(cls, *args) 

obj._elements = frozenset(args) 

return obj 

 

def _eval_Eq(self, other): 

if not other.is_FiniteSet: 

if (other.is_Union or other.is_Complement or 

other.is_Intersection or other.is_ProductSet): 

return 

 

return false 

 

if len(self) != len(other): 

return false 

 

return And(*(Eq(x, y) for x, y in zip(self.args, other.args))) 

 

def __iter__(self): 

return iter(self.args) 

 

def _intersect(self, other): 

""" 

This function should only be used internally 

 

See Set._intersect for docstring 

""" 

if isinstance(other, self.__class__): 

return self.__class__(*(self._elements & other._elements)) 

return self.__class__(*[el for el in self if el in other]) 

 

def _complement(self, other): 

if isinstance(other, Interval): 

nums = sorted(m for m in self.args if m.is_number) 

if other == S.Reals and nums != []: 

syms = [m for m in self.args if m.is_Symbol] 

# Reals cannot contain elements other than numbers and symbols. 

 

intervals = [] # Build up a list of intervals between the elements 

intervals += [Interval(S.NegativeInfinity, nums[0], True, True)] 

for a, b in zip(nums[:-1], nums[1:]): 

intervals.append(Interval(a, b, True, True)) # both open 

intervals.append(Interval(nums[-1], S.Infinity, True, True)) 

 

if syms != []: 

return Complement(Union(intervals, evaluate=False), 

FiniteSet(*syms), evaluate=False) 

else: 

return Union(intervals, evaluate=False) 

elif nums == []: 

return None 

 

elif isinstance(other, FiniteSet): 

unk = [] 

for i in self: 

c = sympify(other.contains(i)) 

if c is not S.true and c is not S.false: 

unk.append(i) 

unk = FiniteSet(*unk) 

if unk == self: 

return 

not_true = [] 

for i in other: 

c = sympify(self.contains(i)) 

if c is not S.true: 

not_true.append(i) 

return Complement(FiniteSet(*not_true), unk) 

 

return Set._complement(self, other) 

 

 

def _union(self, other): 

""" 

This function should only be used internally 

 

See Set._union for docstring 

""" 

if other.is_FiniteSet: 

return FiniteSet(*(self._elements | other._elements)) 

 

# If other set contains one of my elements, remove it from myself 

if any(sympify(other.contains(x)) is S.true for x in self): 

return set(( 

FiniteSet(*[x for x in self 

if other.contains(x) != True]), other)) 

 

return None 

 

 

def _contains(self, other): 

""" 

Tests whether an element, other, is in the set. 

 

Relies on Python's set class. This tests for object equality 

All inputs are sympified 

 

Examples 

======== 

 

>>> from sympy import FiniteSet 

>>> 1 in FiniteSet(1, 2) 

True 

>>> 5 in FiniteSet(1, 2) 

False 

 

""" 

r = false 

for e in self._elements: 

t = Eq(e, other, evaluate=True) 

if isinstance(t, Eq): 

t = t.simplify() 

if t == true: 

return t 

elif t != false: 

r = None 

return r 

 

def _eval_imageset(self, f): 

return FiniteSet(*map(f, self)) 

 

@property 

def _boundary(self): 

return self 

 

@property 

def _inf(self): 

from sympy.functions.elementary.miscellaneous import Min 

return Min(*self) 

 

@property 

def _sup(self): 

from sympy.functions.elementary.miscellaneous import Max 

return Max(*self) 

 

@property 

def measure(self): 

return 0 

 

def __len__(self): 

return len(self.args) 

 

def as_relational(self, symbol): 

"""Rewrite a FiniteSet in terms of equalities and logic operators. """ 

from sympy.core.relational import Eq 

return Or(*[Eq(symbol, elem) for elem in self]) 

 

def compare(self, other): 

return (hash(self) - hash(other)) 

 

def _eval_evalf(self, prec): 

return FiniteSet(*[elem._eval_evalf(prec) for elem in self]) 

 

def _hashable_content(self): 

return (self._elements,) 

 

@property 

def _sorted_args(self): 

return tuple(ordered(self.args, Set._infimum_key)) 

 

def _eval_powerset(self): 

return self.func(*[self.func(*s) for s in subsets(self.args)]) 

 

def __ge__(self, other): 

if not isinstance(other, Set): 

raise TypeError("Invalid comparison of set with %s" % func_name(other)) 

return other.is_subset(self) 

 

def __gt__(self, other): 

if not isinstance(other, Set): 

raise TypeError("Invalid comparison of set with %s" % func_name(other)) 

return self.is_proper_superset(other) 

 

def __le__(self, other): 

if not isinstance(other, Set): 

raise TypeError("Invalid comparison of set with %s" % func_name(other)) 

return self.is_subset(other) 

 

def __lt__(self, other): 

if not isinstance(other, Set): 

raise TypeError("Invalid comparison of set with %s" % func_name(other)) 

return self.is_proper_subset(other) 

 

 

converter[set] = lambda x: FiniteSet(*x) 

converter[frozenset] = lambda x: FiniteSet(*x) 

 

 

class SymmetricDifference(Set): 

"""Represents the set of elements which are in either of the 

sets and not in their intersection. 

 

Examples 

======== 

 

>>> from sympy import SymmetricDifference, FiniteSet 

>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5)) 

{1, 2, 4, 5} 

 

See Also 

======== 

 

Complement, Union 

 

References 

========== 

 

.. [1] http://en.wikipedia.org/wiki/Symmetric_difference 

""" 

 

is_SymmetricDifference = True 

 

def __new__(cls, a, b, evaluate=True): 

if evaluate: 

return SymmetricDifference.reduce(a, b) 

 

return Basic.__new__(cls, a, b) 

 

@staticmethod 

def reduce(A, B): 

result = B._symmetric_difference(A) 

if result is not None: 

return result 

else: 

return SymmetricDifference(A, B, evaluate=False) 

 

 

def imageset(*args): 

r""" 

Return an image of the set under transformation ``f``. 

 

If this function can't compute the image, it returns an 

unevaluated ImageSet object. 

 

.. math:: 

{ f(x) | x \in self } 

 

Examples 

======== 

 

>>> from sympy import S, Interval, Symbol, imageset, sin, Lambda 

>>> from sympy.abc import x, y 

 

>>> imageset(x, 2*x, Interval(0, 2)) 

[0, 4] 

 

>>> imageset(lambda x: 2*x, Interval(0, 2)) 

[0, 4] 

 

>>> imageset(Lambda(x, sin(x)), Interval(-2, 1)) 

ImageSet(Lambda(x, sin(x)), [-2, 1]) 

 

>>> imageset(sin, Interval(-2, 1)) 

ImageSet(Lambda(x, sin(x)), [-2, 1]) 

>>> imageset(lambda y: x + y, Interval(-2, 1)) 

ImageSet(Lambda(_x, _x + x), [-2, 1]) 

 

Expressions applied to the set of Integers are simplified 

to show as few negatives as possible and linear expressions 

are converted to a canonical form. If this is not desirable 

then the unevaluated ImageSet should be used. 

 

>>> imageset(x, -2*x + 5, S.Integers) 

ImageSet(Lambda(x, 2*x + 1), Integers()) 

 

See Also 

======== 

 

sympy.sets.fancysets.ImageSet 

 

""" 

from sympy.core import Lambda 

from sympy.sets.fancysets import ImageSet 

from sympy.geometry.util import _uniquely_named_symbol 

 

if len(args) not in (2, 3): 

raise ValueError('imageset expects 2 or 3 args, got: %s' % len(args)) 

 

set = args[-1] 

if not isinstance(set, Set): 

name = func_name(set) 

raise ValueError( 

'last argument should be a set, not %s' % name) 

 

if len(args) == 3: 

f = Lambda(*args[:2]) 

elif len(args) == 2: 

f = args[0] 

if isinstance(f, Lambda): 

pass 

elif ( 

isinstance(f, FunctionClass) # like cos 

or func_name(f) == '<lambda>' 

): 

var = _uniquely_named_symbol(Symbol('x'), f(Dummy())) 

expr = f(var) 

f = Lambda(var, expr) 

else: 

raise TypeError(filldedent(''' 

expecting lambda, Lambda, or FunctionClass, not \'%s\'''' % 

func_name(f))) 

 

r = set._eval_imageset(f) 

if isinstance(r, ImageSet): 

f, set = r.args 

 

if f.variables[0] == f.expr: 

return set 

 

if isinstance(set, ImageSet): 

if len(set.lamda.variables) == 1 and len(f.variables) == 1: 

return imageset(Lambda(set.lamda.variables[0], 

f.expr.subs(f.variables[0], set.lamda.expr)), 

set.base_set) 

 

if r is not None: 

return r 

 

return ImageSet(f, set)