Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

from __future__ import print_function, division 

 

from collections import defaultdict 

 

from sympy.core.function import expand_log, count_ops 

from sympy.core import sympify, Basic, Dummy, S, Add, Mul, Pow, expand_mul, factor_terms 

from sympy.core.compatibility import ordered, default_sort_key, reduce 

from sympy.core.numbers import Integer, Rational 

from sympy.core.mul import prod, _keep_coeff 

from sympy.core.rules import Transform 

from sympy.functions import exp_polar, exp, log, root, polarify, unpolarify 

from sympy.polys import lcm, gcd 

from sympy.ntheory.factor_ import multiplicity 

 

 

 

def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops): 

""" 

reduces expression by combining powers with similar bases and exponents. 

 

Notes 

===== 

 

If deep is True then powsimp() will also simplify arguments of 

functions. By default deep is set to False. 

 

If force is True then bases will be combined without checking for 

assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true 

if x and y are both negative. 

 

You can make powsimp() only combine bases or only combine exponents by 

changing combine='base' or combine='exp'. By default, combine='all', 

which does both. combine='base' will only combine:: 

 

a a a 2x x 

x * y => (x*y) as well as things like 2 => 4 

 

and combine='exp' will only combine 

:: 

 

a b (a + b) 

x * x => x 

 

combine='exp' will strictly only combine exponents in the way that used 

to be automatic. Also use deep=True if you need the old behavior. 

 

When combine='all', 'exp' is evaluated first. Consider the first 

example below for when there could be an ambiguity relating to this. 

This is done so things like the second example can be completely 

combined. If you want 'base' combined first, do something like 

powsimp(powsimp(expr, combine='base'), combine='exp'). 

 

Examples 

======== 

 

>>> from sympy import powsimp, exp, log, symbols 

>>> from sympy.abc import x, y, z, n 

>>> powsimp(x**y*x**z*y**z, combine='all') 

x**(y + z)*y**z 

>>> powsimp(x**y*x**z*y**z, combine='exp') 

x**(y + z)*y**z 

>>> powsimp(x**y*x**z*y**z, combine='base', force=True) 

x**y*(x*y)**z 

 

>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True) 

(n*x)**(y + z) 

>>> powsimp(x**z*x**y*n**z*n**y, combine='exp') 

n**(y + z)*x**(y + z) 

>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True) 

(n*x)**y*(n*x)**z 

 

>>> x, y = symbols('x y', positive=True) 

>>> powsimp(log(exp(x)*exp(y))) 

log(exp(x)*exp(y)) 

>>> powsimp(log(exp(x)*exp(y)), deep=True) 

x + y 

 

Radicals with Mul bases will be combined if combine='exp' 

 

>>> from sympy import sqrt, Mul 

>>> x, y = symbols('x y') 

 

Two radicals are automatically joined through Mul: 

 

>>> a=sqrt(x*sqrt(y)) 

>>> a*a**3 == a**4 

True 

 

But if an integer power of that radical has been 

autoexpanded then Mul does not join the resulting factors: 

 

>>> a**4 # auto expands to a Mul, no longer a Pow 

x**2*y 

>>> _*a # so Mul doesn't combine them 

x**2*y*sqrt(x*sqrt(y)) 

>>> powsimp(_) # but powsimp will 

(x*sqrt(y))**(5/2) 

>>> powsimp(x*y*a) # but won't when doing so would violate assumptions 

x*y*sqrt(x*sqrt(y)) 

 

""" 

from sympy.matrices.expressions.matexpr import MatrixSymbol 

 

def recurse(arg, **kwargs): 

_deep = kwargs.get('deep', deep) 

_combine = kwargs.get('combine', combine) 

_force = kwargs.get('force', force) 

_measure = kwargs.get('measure', measure) 

return powsimp(arg, _deep, _combine, _force, _measure) 

 

expr = sympify(expr) 

 

if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol) or ( 

expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))): 

return expr 

 

if deep or expr.is_Add or expr.is_Mul and _y not in expr.args: 

expr = expr.func(*[recurse(w) for w in expr.args]) 

 

if expr.is_Pow: 

return recurse(expr*_y, deep=False)/_y 

 

if not expr.is_Mul: 

return expr 

 

# handle the Mul 

if combine in ('exp', 'all'): 

# Collect base/exp data, while maintaining order in the 

# non-commutative parts of the product 

c_powers = defaultdict(list) 

nc_part = [] 

newexpr = [] 

coeff = S.One 

for term in expr.args: 

if term.is_Rational: 

coeff *= term 

continue 

if term.is_Pow: 

term = _denest_pow(term) 

if term.is_commutative: 

b, e = term.as_base_exp() 

if deep: 

b, e = [recurse(i) for i in [b, e]] 

if b.is_Pow or b.func is exp: 

# don't let smthg like sqrt(x**a) split into x**a, 1/2 

# or else it will be joined as x**(a/2) later 

b, e = b**e, S.One 

c_powers[b].append(e) 

else: 

# This is the logic that combines exponents for equal, 

# but non-commutative bases: A**x*A**y == A**(x+y). 

if nc_part: 

b1, e1 = nc_part[-1].as_base_exp() 

b2, e2 = term.as_base_exp() 

if (b1 == b2 and 

e1.is_commutative and e2.is_commutative): 

nc_part[-1] = Pow(b1, Add(e1, e2)) 

continue 

nc_part.append(term) 

 

# add up exponents of common bases 

for b, e in ordered(iter(c_powers.items())): 

# allow 2**x/4 -> 2**(x - 2); don't do this when b and e are 

# Numbers since autoevaluation will undo it, e.g. 

# 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4 

if (b and b.is_Number and not all(ei.is_Number for ei in e) and \ 

coeff is not S.One and 

b not in (S.One, S.NegativeOne)): 

m = multiplicity(abs(b), abs(coeff)) 

if m: 

e.append(m) 

coeff /= b**m 

c_powers[b] = Add(*e) 

if coeff is not S.One: 

if coeff in c_powers: 

c_powers[coeff] += S.One 

else: 

c_powers[coeff] = S.One 

 

# convert to plain dictionary 

c_powers = dict(c_powers) 

 

# check for base and inverted base pairs 

be = list(c_powers.items()) 

skip = set() # skip if we already saw them 

for b, e in be: 

if b in skip: 

continue 

bpos = b.is_positive or b.is_polar 

if bpos: 

binv = 1/b 

if b != binv and binv in c_powers: 

if b.as_numer_denom()[0] is S.One: 

c_powers.pop(b) 

c_powers[binv] -= e 

else: 

skip.add(binv) 

e = c_powers.pop(binv) 

c_powers[b] -= e 

 

# check for base and negated base pairs 

be = list(c_powers.items()) 

_n = S.NegativeOne 

for i, (b, e) in enumerate(be): 

if ((-b).is_Symbol or b.is_Add) and -b in c_powers: 

if (b.is_positive in (0, 1) or e.is_integer): 

c_powers[-b] += c_powers.pop(b) 

if _n in c_powers: 

c_powers[_n] += e 

else: 

c_powers[_n] = e 

 

# filter c_powers and convert to a list 

c_powers = [(b, e) for b, e in c_powers.items() if e] 

 

# ============================================================== 

# check for Mul bases of Rational powers that can be combined with 

# separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) -> 

# (x*sqrt(x*y))**(3/2) 

# ---------------- helper functions 

 

def ratq(x): 

'''Return Rational part of x's exponent as it appears in the bkey. 

''' 

return bkey(x)[0][1] 

 

def bkey(b, e=None): 

'''Return (b**s, c.q), c.p where e -> c*s. If e is not given then 

it will be taken by using as_base_exp() on the input b. 

e.g. 

x**3/2 -> (x, 2), 3 

x**y -> (x**y, 1), 1 

x**(2*y/3) -> (x**y, 3), 2 

exp(x/2) -> (exp(a), 2), 1 

 

''' 

if e is not None: # coming from c_powers or from below 

if e.is_Integer: 

return (b, S.One), e 

elif e.is_Rational: 

return (b, Integer(e.q)), Integer(e.p) 

else: 

c, m = e.as_coeff_Mul(rational=True) 

if c is not S.One: 

if m.is_integer: 

return (b, Integer(c.q)), m*Integer(c.p) 

return (b**m, Integer(c.q)), Integer(c.p) 

else: 

return (b**e, S.One), S.One 

else: 

return bkey(*b.as_base_exp()) 

 

def update(b): 

'''Decide what to do with base, b. If its exponent is now an 

integer multiple of the Rational denominator, then remove it 

and put the factors of its base in the common_b dictionary or 

update the existing bases if necessary. If it has been zeroed 

out, simply remove the base. 

''' 

newe, r = divmod(common_b[b], b[1]) 

if not r: 

common_b.pop(b) 

if newe: 

for m in Mul.make_args(b[0]**newe): 

b, e = bkey(m) 

if b not in common_b: 

common_b[b] = 0 

common_b[b] += e 

if b[1] != 1: 

bases.append(b) 

# ---------------- end of helper functions 

 

# assemble a dictionary of the factors having a Rational power 

common_b = {} 

done = [] 

bases = [] 

for b, e in c_powers: 

b, e = bkey(b, e) 

if b in common_b.keys(): 

common_b[b] = common_b[b] + e 

else: 

common_b[b] = e 

if b[1] != 1 and b[0].is_Mul: 

bases.append(b) 

c_powers = [(b, e) for b, e in common_b.items() if e] 

bases.sort(key=default_sort_key) # this makes tie-breaking canonical 

bases.sort(key=measure, reverse=True) # handle longest first 

for base in bases: 

if base not in common_b: # it may have been removed already 

continue 

b, exponent = base 

last = False # True when no factor of base is a radical 

qlcm = 1 # the lcm of the radical denominators 

while True: 

bstart = b 

qstart = qlcm 

 

bb = [] # list of factors 

ee = [] # (factor's expo. and it's current value in common_b) 

for bi in Mul.make_args(b): 

bib, bie = bkey(bi) 

if bib not in common_b or common_b[bib] < bie: 

ee = bb = [] # failed 

break 

ee.append([bie, common_b[bib]]) 

bb.append(bib) 

if ee: 

# find the number of extractions possible 

# e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1 

min1 = ee[0][1]/ee[0][0] 

for i in range(len(ee)): 

rat = ee[i][1]/ee[i][0] 

if rat < 1: 

break 

min1 = min(min1, rat) 

else: 

# update base factor counts 

# e.g. if ee = [(2, 5), (3, 6)] then min1 = 2 

# and the new base counts will be 5-2*2 and 6-2*3 

for i in range(len(bb)): 

common_b[bb[i]] -= min1*ee[i][0] 

update(bb[i]) 

# update the count of the base 

# e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y) 

# will increase by 4 to give bkey (x*sqrt(y), 2, 5) 

common_b[base] += min1*qstart*exponent 

if (last # no more radicals in base 

or len(common_b) == 1 # nothing left to join with 

or all(k[1] == 1 for k in common_b) # no rad's in common_b 

): 

break 

# see what we can exponentiate base by to remove any radicals 

# so we know what to search for 

# e.g. if base were x**(1/2)*y**(1/3) then we should 

# exponentiate by 6 and look for powers of x and y in the ratio 

# of 2 to 3 

qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)]) 

if qlcm == 1: 

break # we are done 

b = bstart**qlcm 

qlcm *= qstart 

if all(ratq(bi) == 1 for bi in Mul.make_args(b)): 

last = True # we are going to be done after this next pass 

# this base no longer can find anything to join with and 

# since it was longer than any other we are done with it 

b, q = base 

done.append((b, common_b.pop(base)*Rational(1, q))) 

 

# update c_powers and get ready to continue with powsimp 

c_powers = done 

# there may be terms still in common_b that were bases that were 

# identified as needing processing, so remove those, too 

for (b, q), e in common_b.items(): 

if (b.is_Pow or b.func is exp) and \ 

q is not S.One and not b.exp.is_Rational: 

b, be = b.as_base_exp() 

b = b**(be/q) 

else: 

b = root(b, q) 

c_powers.append((b, e)) 

check = len(c_powers) 

c_powers = dict(c_powers) 

assert len(c_powers) == check # there should have been no duplicates 

# ============================================================== 

 

# rebuild the expression 

newexpr = expr.func(*(newexpr + [Pow(b, e) for b, e in c_powers.items()])) 

if combine == 'exp': 

return expr.func(newexpr, expr.func(*nc_part)) 

else: 

return recurse(expr.func(*nc_part), combine='base') * \ 

recurse(newexpr, combine='base') 

 

elif combine == 'base': 

 

# Build c_powers and nc_part. These must both be lists not 

# dicts because exp's are not combined. 

c_powers = [] 

nc_part = [] 

for term in expr.args: 

if term.is_commutative: 

c_powers.append(list(term.as_base_exp())) 

else: 

# This is the logic that combines bases that are 

# different and non-commutative, but with equal and 

# commutative exponents: A**x*B**x == (A*B)**x. 

if nc_part: 

b1, e1 = nc_part[-1].as_base_exp() 

b2, e2 = term.as_base_exp() 

if (e1 == e2 and e2.is_commutative): 

nc_part[-1] = Pow(b1*b2, e1) 

continue 

nc_part.append(term) 

 

# Pull out numerical coefficients from exponent if assumptions allow 

# e.g., 2**(2*x) => 4**x 

for i in range(len(c_powers)): 

b, e = c_powers[i] 

if not (all(x.is_nonnegative for x in b.as_numer_denom()) or e.is_integer or force or b.is_polar): 

continue 

exp_c, exp_t = e.as_coeff_Mul(rational=True) 

if exp_c is not S.One and exp_t is not S.One: 

c_powers[i] = [Pow(b, exp_c), exp_t] 

 

# Combine bases whenever they have the same exponent and 

# assumptions allow 

# first gather the potential bases under the common exponent 

c_exp = defaultdict(list) 

for b, e in c_powers: 

if deep: 

e = recurse(e) 

c_exp[e].append(b) 

del c_powers 

 

# Merge back in the results of the above to form a new product 

c_powers = defaultdict(list) 

for e in c_exp: 

bases = c_exp[e] 

 

# calculate the new base for e 

 

if len(bases) == 1: 

new_base = bases[0] 

elif e.is_integer or force: 

new_base = expr.func(*bases) 

else: 

# see which ones can be joined 

unk = [] 

nonneg = [] 

neg = [] 

for bi in bases: 

if bi.is_negative: 

neg.append(bi) 

elif bi.is_nonnegative: 

nonneg.append(bi) 

elif bi.is_polar: 

nonneg.append( 

bi) # polar can be treated like non-negative 

else: 

unk.append(bi) 

if len(unk) == 1 and not neg or len(neg) == 1 and not unk: 

# a single neg or a single unk can join the rest 

nonneg.extend(unk + neg) 

unk = neg = [] 

elif neg: 

# their negative signs cancel in groups of 2*q if we know 

# that e = p/q else we have to treat them as unknown 

israt = False 

if e.is_Rational: 

israt = True 

else: 

p, d = e.as_numer_denom() 

if p.is_integer and d.is_integer: 

israt = True 

if israt: 

neg = [-w for w in neg] 

unk.extend([S.NegativeOne]*len(neg)) 

else: 

unk.extend(neg) 

neg = [] 

del israt 

 

# these shouldn't be joined 

for b in unk: 

c_powers[b].append(e) 

# here is a new joined base 

new_base = expr.func(*(nonneg + neg)) 

# if there are positive parts they will just get separated 

# again unless some change is made 

 

def _terms(e): 

# return the number of terms of this expression 

# when multiplied out -- assuming no joining of terms 

if e.is_Add: 

return sum([_terms(ai) for ai in e.args]) 

if e.is_Mul: 

return prod([_terms(mi) for mi in e.args]) 

return 1 

xnew_base = expand_mul(new_base, deep=False) 

if len(Add.make_args(xnew_base)) < _terms(new_base): 

new_base = factor_terms(xnew_base) 

 

c_powers[new_base].append(e) 

 

# break out the powers from c_powers now 

c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e] 

 

# we're done 

return expr.func(*(c_part + nc_part)) 

 

else: 

raise ValueError("combine must be one of ('all', 'exp', 'base').") 

 

 

def powdenest(eq, force=False, polar=False): 

r""" 

Collect exponents on powers as assumptions allow. 

 

Given ``(bb**be)**e``, this can be simplified as follows: 

* if ``bb`` is positive, or 

* ``e`` is an integer, or 

* ``|be| < 1`` then this simplifies to ``bb**(be*e)`` 

 

Given a product of powers raised to a power, ``(bb1**be1 * 

bb2**be2...)**e``, simplification can be done as follows: 

 

- if e is positive, the gcd of all bei can be joined with e; 

- all non-negative bb can be separated from those that are negative 

and their gcd can be joined with e; autosimplification already 

handles this separation. 

- integer factors from powers that have integers in the denominator 

of the exponent can be removed from any term and the gcd of such 

integers can be joined with e 

 

Setting ``force`` to True will make symbols that are not explicitly 

negative behave as though they are positive, resulting in more 

denesting. 

 

Setting ``polar`` to True will do simplifications on the Riemann surface of 

the logarithm, also resulting in more denestings. 

 

When there are sums of logs in exp() then a product of powers may be 

obtained e.g. ``exp(3*(log(a) + 2*log(b)))`` - > ``a**3*b**6``. 

 

Examples 

======== 

 

>>> from sympy.abc import a, b, x, y, z 

>>> from sympy import Symbol, exp, log, sqrt, symbols, powdenest 

 

>>> powdenest((x**(2*a/3))**(3*x)) 

(x**(2*a/3))**(3*x) 

>>> powdenest(exp(3*x*log(2))) 

2**(3*x) 

 

Assumptions may prevent expansion: 

 

>>> powdenest(sqrt(x**2)) 

sqrt(x**2) 

 

>>> p = symbols('p', positive=True) 

>>> powdenest(sqrt(p**2)) 

p 

 

No other expansion is done. 

 

>>> i, j = symbols('i,j', integer=True) 

>>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i*(x**x)**j 

x**(x*(i + j)) 

 

But exp() will be denested by moving all non-log terms outside of 

the function; this may result in the collapsing of the exp to a power 

with a different base: 

 

>>> powdenest(exp(3*y*log(x))) 

x**(3*y) 

>>> powdenest(exp(y*(log(a) + log(b)))) 

(a*b)**y 

>>> powdenest(exp(3*(log(a) + log(b)))) 

a**3*b**3 

 

If assumptions allow, symbols can also be moved to the outermost exponent: 

 

>>> i = Symbol('i', integer=True) 

>>> powdenest(((x**(2*i))**(3*y))**x) 

((x**(2*i))**(3*y))**x 

>>> powdenest(((x**(2*i))**(3*y))**x, force=True) 

x**(6*i*x*y) 

 

>>> powdenest(((x**(2*a/3))**(3*y/i))**x) 

((x**(2*a/3))**(3*y/i))**x 

>>> powdenest((x**(2*i)*y**(4*i))**z, force=True) 

(x*y**2)**(2*i*z) 

 

>>> n = Symbol('n', negative=True) 

 

>>> powdenest((x**i)**y, force=True) 

x**(i*y) 

>>> powdenest((n**i)**x, force=True) 

(n**i)**x 

 

""" 

from sympy.simplify.simplify import posify 

 

if force: 

eq, rep = posify(eq) 

return powdenest(eq, force=False).xreplace(rep) 

 

if polar: 

eq, rep = polarify(eq) 

return unpolarify(powdenest(unpolarify(eq, exponents_only=True)), rep) 

 

new = powsimp(sympify(eq)) 

return new.xreplace(Transform( 

_denest_pow, filter=lambda m: m.is_Pow or m.func is exp)) 

 

_y = Dummy('y') 

 

 

def _denest_pow(eq): 

""" 

Denest powers. 

 

This is a helper function for powdenest that performs the actual 

transformation. 

""" 

from sympy.simplify.simplify import logcombine 

 

b, e = eq.as_base_exp() 

if b.is_Pow or isinstance(b.func, exp) and e != 1: 

new = b._eval_power(e) 

if new is not None: 

eq = new 

b, e = new.as_base_exp() 

 

# denest exp with log terms in exponent 

if b is S.Exp1 and e.is_Mul: 

logs = [] 

other = [] 

for ei in e.args: 

if any(ai.func is log for ai in Add.make_args(ei)): 

logs.append(ei) 

else: 

other.append(ei) 

logs = logcombine(Mul(*logs)) 

return Pow(exp(logs), Mul(*other)) 

 

_, be = b.as_base_exp() 

if be is S.One and not (b.is_Mul or 

b.is_Rational and b.q != 1 or 

b.is_positive): 

return eq 

 

# denest eq which is either pos**e or Pow**e or Mul**e or 

# Mul(b1**e1, b2**e2) 

 

# handle polar numbers specially 

polars, nonpolars = [], [] 

for bb in Mul.make_args(b): 

if bb.is_polar: 

polars.append(bb.as_base_exp()) 

else: 

nonpolars.append(bb) 

if len(polars) == 1 and not polars[0][0].is_Mul: 

return Pow(polars[0][0], polars[0][1]*e)*powdenest(Mul(*nonpolars)**e) 

elif polars: 

return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \ 

*powdenest(Mul(*nonpolars)**e) 

 

if b.is_Integer: 

# use log to see if there is a power here 

logb = expand_log(log(b)) 

if logb.is_Mul: 

c, logb = logb.args 

e *= c 

base = logb.args[0] 

return Pow(base, e) 

 

# if b is not a Mul or any factor is an atom then there is nothing to do 

if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)): 

return eq 

 

# let log handle the case of the base of the argument being a Mul, e.g. 

# sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we 

# will take the log, expand it, and then factor out the common powers that 

# now appear as coefficient. We do this manually since terms_gcd pulls out 

# fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2; 

# gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but 

# we want 3*x. Neither work with noncommutatives. 

 

def nc_gcd(aa, bb): 

a, b = [i.as_coeff_Mul() for i in [aa, bb]] 

c = gcd(a[0], b[0]).as_numer_denom()[0] 

g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0])) 

return _keep_coeff(c, g) 

 

glogb = expand_log(log(b)) 

if glogb.is_Add: 

args = glogb.args 

g = reduce(nc_gcd, args) 

if g != 1: 

cg, rg = g.as_coeff_Mul() 

glogb = _keep_coeff(cg, rg*Add(*[a/g for a in args])) 

 

# now put the log back together again 

if glogb.func is log or not glogb.is_Mul: 

if glogb.args[0].is_Pow or glogb.args[0].func is exp: 

glogb = _denest_pow(glogb.args[0]) 

if (abs(glogb.exp) < 1) == True: 

return Pow(glogb.base, glogb.exp*e) 

return eq 

 

# the log(b) was a Mul so join any adds with logcombine 

add = [] 

other = [] 

for a in glogb.args: 

if a.is_Add: 

add.append(a) 

else: 

other.append(a) 

return Pow(exp(logcombine(Mul(*add))), e*Mul(*other))