Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

from __future__ import print_function, division 

 

from sympy.functions import sqrt, sign, root 

from sympy.core import S, sympify, Mul, Add, Expr 

from sympy.core.function import expand_mul 

from sympy.core.compatibility import range 

from sympy.core.symbol import Dummy 

from sympy.polys import Poly, PolynomialError 

from sympy.core.function import count_ops, _mexpand 

from sympy.utilities import default_sort_key 

 

 

def is_sqrt(expr): 

"""Return True if expr is a sqrt, otherwise False.""" 

 

return expr.is_Pow and expr.exp.is_Rational and abs(expr.exp) is S.Half 

 

 

def sqrt_depth(p): 

"""Return the maximum depth of any square root argument of p. 

 

>>> from sympy.functions.elementary.miscellaneous import sqrt 

>>> from sympy.simplify.sqrtdenest import sqrt_depth 

 

Neither of these square roots contains any other square roots 

so the depth is 1: 

 

>>> sqrt_depth(1 + sqrt(2)*(1 + sqrt(3))) 

1 

 

The sqrt(3) is contained within a square root so the depth is 

2: 

 

>>> sqrt_depth(1 + sqrt(2)*sqrt(1 + sqrt(3))) 

2 

""" 

 

if p.is_Atom: 

return 0 

elif p.is_Add or p.is_Mul: 

return max([sqrt_depth(x) for x in p.args], key=default_sort_key) 

elif is_sqrt(p): 

return sqrt_depth(p.base) + 1 

else: 

return 0 

 

 

def is_algebraic(p): 

"""Return True if p is comprised of only Rationals or square roots 

of Rationals and algebraic operations. 

 

Examples 

======== 

 

>>> from sympy.functions.elementary.miscellaneous import sqrt 

>>> from sympy.simplify.sqrtdenest import is_algebraic 

>>> from sympy import cos 

>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*sqrt(2)))) 

True 

>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*cos(2)))) 

False 

""" 

 

if p.is_Rational: 

return True 

elif p.is_Atom: 

return False 

elif is_sqrt(p) or p.is_Pow and p.exp.is_Integer: 

return is_algebraic(p.base) 

elif p.is_Add or p.is_Mul: 

return all(is_algebraic(x) for x in p.args) 

else: 

return False 

 

 

def _subsets(n): 

""" 

Returns all possible subsets of the set (0, 1, ..., n-1) except the 

empty set, listed in reversed lexicographical order according to binary 

representation, so that the case of the fourth root is treated last. 

 

Examples 

======== 

 

>>> from sympy.simplify.sqrtdenest import _subsets 

>>> _subsets(2) 

[[1, 0], [0, 1], [1, 1]] 

 

""" 

if n == 1: 

a = [[1]] 

elif n == 2: 

a = [[1, 0], [0, 1], [1, 1]] 

elif n == 3: 

a = [[1, 0, 0], [0, 1, 0], [1, 1, 0], 

[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]] 

else: 

b = _subsets(n - 1) 

a0 = [x + [0] for x in b] 

a1 = [x + [1] for x in b] 

a = a0 + [[0]*(n - 1) + [1]] + a1 

return a 

 

 

def sqrtdenest(expr, max_iter=3): 

"""Denests sqrts in an expression that contain other square roots 

if possible, otherwise returns the expr unchanged. This is based on the 

algorithms of [1]. 

 

Examples 

======== 

 

>>> from sympy.simplify.sqrtdenest import sqrtdenest 

>>> from sympy import sqrt 

>>> sqrtdenest(sqrt(5 + 2 * sqrt(6))) 

sqrt(2) + sqrt(3) 

 

See Also 

======== 

sympy.solvers.solvers.unrad 

 

References 

========== 

[1] http://researcher.watson.ibm.com/researcher/files/us-fagin/symb85.pdf 

 

[2] D. J. Jeffrey and A. D. Rich, 'Symplifying Square Roots of Square Roots 

by Denesting' (available at http://www.cybertester.com/data/denest.pdf) 

 

""" 

expr = expand_mul(sympify(expr)) 

for i in range(max_iter): 

z = _sqrtdenest0(expr) 

if expr == z: 

return expr 

expr = z 

return expr 

 

 

def _sqrt_match(p): 

"""Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to 

matching, sqrt(r) also has then maximal sqrt_depth among addends of p. 

 

Examples 

======== 

 

>>> from sympy.functions.elementary.miscellaneous import sqrt 

>>> from sympy.simplify.sqrtdenest import _sqrt_match 

>>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) + 2*sqrt(1+sqrt(5))) 

[1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)] 

""" 

from sympy.simplify.radsimp import split_surds 

 

p = _mexpand(p) 

if p.is_Number: 

res = (p, S.Zero, S.Zero) 

elif p.is_Add: 

pargs = sorted(p.args, key=default_sort_key) 

if all((x**2).is_Rational for x in pargs): 

r, b, a = split_surds(p) 

res = a, b, r 

return list(res) 

# to make the process canonical, the argument is included in the tuple 

# so when the max is selected, it will be the largest arg having a 

# given depth 

v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)] 

nmax = max(v, key=default_sort_key) 

if nmax[0] == 0: 

res = [] 

else: 

# select r 

depth, _, i = nmax 

r = pargs.pop(i) 

v.pop(i) 

b = S.One 

if r.is_Mul: 

bv = [] 

rv = [] 

for x in r.args: 

if sqrt_depth(x) < depth: 

bv.append(x) 

else: 

rv.append(x) 

b = Mul._from_args(bv) 

r = Mul._from_args(rv) 

# collect terms comtaining r 

a1 = [] 

b1 = [b] 

for x in v: 

if x[0] < depth: 

a1.append(x[1]) 

else: 

x1 = x[1] 

if x1 == r: 

b1.append(1) 

else: 

if x1.is_Mul: 

x1args = list(x1.args) 

if r in x1args: 

x1args.remove(r) 

b1.append(Mul(*x1args)) 

else: 

a1.append(x[1]) 

else: 

a1.append(x[1]) 

a = Add(*a1) 

b = Add(*b1) 

res = (a, b, r**2) 

else: 

b, r = p.as_coeff_Mul() 

if is_sqrt(r): 

res = (S.Zero, b, r**2) 

else: 

res = [] 

return list(res) 

 

 

class SqrtdenestStopIteration(StopIteration): 

pass 

 

 

def _sqrtdenest0(expr): 

"""Returns expr after denesting its arguments.""" 

 

if is_sqrt(expr): 

n, d = expr.as_numer_denom() 

if d is S.One: # n is a square root 

if n.base.is_Add: 

args = sorted(n.base.args, key=default_sort_key) 

if len(args) > 2 and all((x**2).is_Integer for x in args): 

try: 

return _sqrtdenest_rec(n) 

except SqrtdenestStopIteration: 

pass 

expr = sqrt(_mexpand(Add(*[_sqrtdenest0(x) for x in args]))) 

return _sqrtdenest1(expr) 

else: 

n, d = [_sqrtdenest0(i) for i in (n, d)] 

return n/d 

if isinstance(expr, Expr): 

args = expr.args 

if args: 

return expr.func(*[_sqrtdenest0(a) for a in args]) 

return expr 

 

 

def _sqrtdenest_rec(expr): 

"""Helper that denests the square root of three or more surds. 

 

It returns the denested expression; if it cannot be denested it 

throws SqrtdenestStopIteration 

 

Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k)); 

split expr.base = a + b*sqrt(r_k), where `a` and `b` are on 

Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is 

on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on. 

See [1], section 6. 

 

Examples 

======== 

 

>>> from sympy import sqrt 

>>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec 

>>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498)) 

-sqrt(10) + sqrt(2) + 9 + 9*sqrt(5) 

>>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65 

>>> _sqrtdenest_rec(sqrt(w)) 

-sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5) 

""" 

from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds 

if not expr.is_Pow: 

return sqrtdenest(expr) 

if expr.base < 0: 

return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base)) 

g, a, b = split_surds(expr.base) 

a = a*sqrt(g) 

if a < b: 

a, b = b, a 

c2 = _mexpand(a**2 - b**2) 

if len(c2.args) > 2: 

g, a1, b1 = split_surds(c2) 

a1 = a1*sqrt(g) 

if a1 < b1: 

a1, b1 = b1, a1 

c2_1 = _mexpand(a1**2 - b1**2) 

c_1 = _sqrtdenest_rec(sqrt(c2_1)) 

d_1 = _sqrtdenest_rec(sqrt(a1 + c_1)) 

num, den = rad_rationalize(b1, d_1) 

c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2))) 

else: 

c = _sqrtdenest1(sqrt(c2)) 

 

if sqrt_depth(c) > 1: 

raise SqrtdenestStopIteration 

ac = a + c 

if len(ac.args) >= len(expr.args): 

if count_ops(ac) >= count_ops(expr.base): 

raise SqrtdenestStopIteration 

d = sqrtdenest(sqrt(ac)) 

if sqrt_depth(d) > 1: 

raise SqrtdenestStopIteration 

num, den = rad_rationalize(b, d) 

r = d/sqrt(2) + num/(den*sqrt(2)) 

r = radsimp(r) 

return _mexpand(r) 

 

 

def _sqrtdenest1(expr, denester=True): 

"""Return denested expr after denesting with simpler methods or, that 

failing, using the denester.""" 

 

from sympy.simplify.simplify import radsimp 

 

if not is_sqrt(expr): 

return expr 

 

a = expr.base 

if a.is_Atom: 

return expr 

val = _sqrt_match(a) 

if not val: 

return expr 

 

a, b, r = val 

# try a quick numeric denesting 

d2 = _mexpand(a**2 - b**2*r) 

if d2.is_Rational: 

if d2.is_positive: 

z = _sqrt_numeric_denest(a, b, r, d2) 

if z is not None: 

return z 

else: 

# fourth root case 

# sqrtdenest(sqrt(3 + 2*sqrt(3))) = 

# sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2 

dr2 = _mexpand(-d2*r) 

dr = sqrt(dr2) 

if dr.is_Rational: 

z = _sqrt_numeric_denest(_mexpand(b*r), a, r, dr2) 

if z is not None: 

return z/root(r, 4) 

 

else: 

z = _sqrt_symbolic_denest(a, b, r) 

if z is not None: 

return z 

 

if not denester or not is_algebraic(expr): 

return expr 

 

res = sqrt_biquadratic_denest(expr, a, b, r, d2) 

if res: 

return res 

 

# now call to the denester 

av0 = [a, b, r, d2] 

z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0] 

if av0[1] is None: 

return expr 

if z is not None: 

if sqrt_depth(z) == sqrt_depth(expr) and count_ops(z) > count_ops(expr): 

return expr 

return z 

return expr 

 

 

def _sqrt_symbolic_denest(a, b, r): 

"""Given an expression, sqrt(a + b*sqrt(b)), return the denested 

expression or None. 

 

Algorithm: 

If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with 

(y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and 

(cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as 

sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2). 

 

Examples 

======== 

 

>>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest 

>>> from sympy import sqrt, Symbol 

>>> from sympy.abc import x 

 

>>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55 

>>> _sqrt_symbolic_denest(a, b, r) 

sqrt(-2*sqrt(29) + 11) + sqrt(5) 

 

If the expression is numeric, it will be simplified: 

 

>>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2) 

>>> sqrtdenest(sqrt((w**2).expand())) 

1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3))) 

 

Otherwise, it will only be simplified if assumptions allow: 

 

>>> w = w.subs(sqrt(3), sqrt(x + 3)) 

>>> sqrtdenest(sqrt((w**2).expand())) 

sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2) 

 

Notice that the argument of the sqrt is a square. If x is made positive 

then the sqrt of the square is resolved: 

 

>>> _.subs(x, Symbol('x', positive=True)) 

sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2) 

""" 

 

a, b, r = map(sympify, (a, b, r)) 

rval = _sqrt_match(r) 

if not rval: 

return None 

ra, rb, rr = rval 

if rb: 

y = Dummy('y', positive=True) 

try: 

newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y) 

except PolynomialError: 

return None 

if newa.degree() == 2: 

ca, cb, cc = newa.all_coeffs() 

cb += b 

if _mexpand(cb**2 - 4*ca*cc).equals(0): 

z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2) 

if z.is_number: 

z = _mexpand(Mul._from_args(z.as_content_primitive())) 

return z 

 

 

def _sqrt_numeric_denest(a, b, r, d2): 

"""Helper that denest expr = a + b*sqrt(r), with d2 = a**2 - b**2*r > 0 

or returns None if not denested. 

""" 

from sympy.simplify.simplify import radsimp 

depthr = sqrt_depth(r) 

d = sqrt(d2) 

vad = a + d 

# sqrt_depth(res) <= sqrt_depth(vad) + 1 

# sqrt_depth(expr) = depthr + 2 

# there is denesting if sqrt_depth(vad)+1 < depthr + 2 

# if vad**2 is Number there is a fourth root 

if sqrt_depth(vad) < depthr + 1 or (vad**2).is_Rational: 

vad1 = radsimp(1/vad) 

return (sqrt(vad/2) + sign(b)*sqrt((b**2*r*vad1/2).expand())).expand() 

 

 

def sqrt_biquadratic_denest(expr, a, b, r, d2): 

"""denest expr = sqrt(a + b*sqrt(r)) 

where a, b, r are linear combinations of square roots of 

positive rationals on the rationals (SQRR) and r > 0, b != 0, 

d2 = a**2 - b**2*r > 0 

 

If it cannot denest it returns None. 

 

ALGORITHM 

Search for a solution A of type SQRR of the biquadratic equation 

4*A**4 - 4*a*A**2 + b**2*r = 0 (1) 

sqd = sqrt(a**2 - b**2*r) 

Choosing the sqrt to be positive, the possible solutions are 

A = sqrt(a/2 +/- sqd/2) 

Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR, 

so if sqd can be denested, it is done by 

_sqrtdenest_rec, and the result is a SQRR. 

Similarly for A. 

Examples of solutions (in both cases a and sqd are positive): 

 

Example of expr with solution sqrt(a/2 + sqd/2) but not 

solution sqrt(a/2 - sqd/2): 

expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8) 

a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3) 

 

Example of expr with solution sqrt(a/2 - sqd/2) but not 

solution sqrt(a/2 + sqd/2): 

w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3) 

expr = sqrt((w**2).expand()) 

a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3) 

sqd = 29 + 20*sqrt(3) 

 

Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then 

expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2 

 

Examples 

======== 

 

>>> from sympy import sqrt 

>>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest 

>>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8) 

>>> a, b, r = _sqrt_match(z**2) 

>>> d2 = a**2 - b**2*r 

>>> sqrt_biquadratic_denest(z, a, b, r, d2) 

sqrt(2) + sqrt(sqrt(2) + 2) + 2 

""" 

from sympy.simplify.radsimp import radsimp, rad_rationalize 

if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2: 

return None 

for x in (a, b, r): 

for y in x.args: 

y2 = y**2 

if not y2.is_Integer or not y2.is_positive: 

return None 

sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2)))) 

if sqrt_depth(sqd) > 1: 

return None 

x1, x2 = [a/2 + sqd/2, a/2 - sqd/2] 

# look for a solution A with depth 1 

for x in (x1, x2): 

A = sqrtdenest(sqrt(x)) 

if sqrt_depth(A) > 1: 

continue 

Bn, Bd = rad_rationalize(b, _mexpand(2*A)) 

B = Bn/Bd 

z = A + B*sqrt(r) 

if z < 0: 

z = -z 

return _mexpand(z) 

return None 

 

 

def _denester(nested, av0, h, max_depth_level): 

"""Denests a list of expressions that contain nested square roots. 

 

Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>. 

 

It is assumed that all of the elements of 'nested' share the same 

bottom-level radicand. (This is stated in the paper, on page 177, in 

the paragraph immediately preceding the algorithm.) 

 

When evaluating all of the arguments in parallel, the bottom-level 

radicand only needs to be denested once. This means that calling 

_denester with x arguments results in a recursive invocation with x+1 

arguments; hence _denester has polynomial complexity. 

 

However, if the arguments were evaluated separately, each call would 

result in two recursive invocations, and the algorithm would have 

exponential complexity. 

 

This is discussed in the paper in the middle paragraph of page 179. 

""" 

from sympy.simplify.simplify import radsimp 

if h > max_depth_level: 

return None, None 

if av0[1] is None: 

return None, None 

if (av0[0] is None and 

all(n.is_Number for n in nested)): # no arguments are nested 

for f in _subsets(len(nested)): # test subset 'f' of nested 

p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]])) 

if f.count(1) > 1 and f[-1]: 

p = -p 

sqp = sqrt(p) 

if sqp.is_Rational: 

return sqp, f # got a perfect square so return its square root. 

# Otherwise, return the radicand from the previous invocation. 

return sqrt(nested[-1]), [0]*len(nested) 

else: 

R = None 

if av0[0] is not None: 

values = [av0[:2]] 

R = av0[2] 

nested2 = [av0[3], R] 

av0[0] = None 

else: 

values = list(filter(None, [_sqrt_match(expr) for expr in nested])) 

for v in values: 

if v[2]: # Since if b=0, r is not defined 

if R is not None: 

if R != v[2]: 

av0[1] = None 

return None, None 

else: 

R = v[2] 

if R is None: 

# return the radicand from the previous invocation 

return sqrt(nested[-1]), [0]*len(nested) 

nested2 = [_mexpand(v[0]**2) - 

_mexpand(R*v[1]**2) for v in values] + [R] 

d, f = _denester(nested2, av0, h + 1, max_depth_level) 

if not f: 

return None, None 

if not any(f[i] for i in range(len(nested))): 

v = values[-1] 

return sqrt(v[0] + _mexpand(v[1]*d)), f 

else: 

p = Mul(*[nested[i] for i in range(len(nested)) if f[i]]) 

v = _sqrt_match(p) 

if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]: 

v[0] = -v[0] 

v[1] = -v[1] 

if not f[len(nested)]: # Solution denests with square roots 

vad = _mexpand(v[0] + d) 

if vad <= 0: 

# return the radicand from the previous invocation. 

return sqrt(nested[-1]), [0]*len(nested) 

if not(sqrt_depth(vad) <= sqrt_depth(R) + 1 or 

(vad**2).is_Number): 

av0[1] = None 

return None, None 

 

sqvad = _sqrtdenest1(sqrt(vad), denester=False) 

if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1): 

av0[1] = None 

return None, None 

sqvad1 = radsimp(1/sqvad) 

res = _mexpand(sqvad/sqrt(2) + (v[1]*sqrt(R)*sqvad1/sqrt(2))) 

return res, f 

 

# sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f 

else: # Solution requires a fourth root 

s2 = _mexpand(v[1]*R) + d 

if s2 <= 0: 

return sqrt(nested[-1]), [0]*len(nested) 

FR, s = root(_mexpand(R), 4), sqrt(s2) 

return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f