Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

from sympy import ( 

Abs, Dummy, Eq, Gt, Function, Mod, 

LambertW, Piecewise, Poly, Rational, S, Symbol, Matrix, 

asin, acos, acsc, asec, atan, atanh, cos, csc, erf, erfinv, erfc, erfcinv, 

exp, log, pi, sin, sinh, sec, sqrt, symbols, 

tan, tanh, atan2, arg, 

Lambda, imageset, cot, acot, I, EmptySet, Union, E, Interval, Intersection, 

oo) 

 

from sympy.core.function import nfloat 

from sympy.core.relational import Unequality as Ne 

from sympy.functions.elementary.complexes import im, re 

from sympy.functions.elementary.hyperbolic import HyperbolicFunction 

from sympy.functions.elementary.trigonometric import TrigonometricFunction 

 

from sympy.polys.rootoftools import CRootOf 

 

from sympy.sets import (FiniteSet, ConditionSet, Complement, ImageSet) 

 

from sympy.utilities.pytest import XFAIL, raises, skip, slow, SKIP 

from sympy.utilities.randtest import verify_numerically as tn 

from sympy.physics.units import cm 

from sympy.core.containers import Dict 

 

from sympy.solvers.solveset import ( 

solveset_real, domain_check, solveset_complex, linear_eq_to_matrix, 

linsolve, _is_function_class_equation, invert_real, invert_complex, 

solveset, solve_decomposition, substitution, nonlinsolve) 

 

a = Symbol('a', real=True) 

b = Symbol('b', real=True) 

c = Symbol('c', real=True) 

x = Symbol('x', real=True) 

y = Symbol('y', real=True) 

z = Symbol('z', real=True) 

q = Symbol('q', real=True) 

m = Symbol('m', real=True) 

n = Symbol('n', real=True) 

 

 

def test_invert_real(): 

x = Symbol('x', real=True) 

y = Symbol('y') 

n = Symbol('n') 

def ireal(x, s=S.Reals): 

return Intersection(s, x) 

 

minus_n = Intersection(Interval(-oo, 0), FiniteSet(-n)) 

plus_n = Intersection(Interval(0, oo), FiniteSet(n)) 

assert solveset(abs(x) - n, x, S.Reals) == Union(minus_n, plus_n) 

 

assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y)))) 

 

y = Symbol('y', positive=True) 

n = Symbol('n', real=True) 

assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3)) 

assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3)) 

 

assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y))) 

assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3)) 

assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3)) 

 

assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3)))) 

assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3))) 

 

assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y))) 

assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3)) 

assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3)) 

 

minus_y = Intersection(Interval(-oo, 0), FiniteSet(-y)) 

plus_y = Intersection(Interval(0, oo), FiniteSet(y)) 

assert invert_real(Abs(x), y, x) == (x, Union(minus_y, plus_y)) 

 

assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2))) 

assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2))))) 

 

assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y))) 

assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2)) 

 

raises(ValueError, lambda: invert_real(x, x, x)) 

raises(ValueError, lambda: invert_real(x**pi, y, x)) 

raises(ValueError, lambda: invert_real(S.One, y, x)) 

 

assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y)) 

 

y_1 = Intersection(Interval(-1, oo), FiniteSet(y - 1)) 

y_2 = Intersection(Interval(-oo, -1), FiniteSet(-y - 1)) 

assert invert_real(Abs(x**31 + x + 1), y, x) == (x**31 + x, 

Union(y_1, y_2)) 

 

assert invert_real(sin(x), y, x) == \ 

(x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers)) 

 

assert invert_real(sin(exp(x)), y, x) == \ 

(x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers)) 

 

assert invert_real(csc(x), y, x) == \ 

(x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers)) 

 

assert invert_real(csc(exp(x)), y, x) == \ 

(x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers)) 

 

assert invert_real(cos(x), y, x) == \ 

(x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \ 

imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers))) 

 

assert invert_real(cos(exp(x)), y, x) == \ 

(x, Union(imageset(Lambda(n, log(2*n*pi + Mod(acos(y), 2*pi))), S.Integers), \ 

imageset(Lambda(n, log(2*n*pi + Mod(-acos(y), 2*pi))), S.Integers))) 

 

assert invert_real(sec(x), y, x) == \ 

(x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \ 

imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers))) 

 

assert invert_real(sec(exp(x)), y, x) == \ 

(x, Union(imageset(Lambda(n, log(2*n*pi + Mod(asec(y), 2*pi))), S.Integers), \ 

imageset(Lambda(n, log(2*n*pi + Mod(-asec(y), 2*pi))), S.Integers))) 

 

assert invert_real(tan(x), y, x) == \ 

(x, imageset(Lambda(n, n*pi + atan(y) % pi), S.Integers)) 

 

assert invert_real(tan(exp(x)), y, x) == \ 

(x, imageset(Lambda(n, log(n*pi + atan(y) % pi)), S.Integers)) 

 

assert invert_real(cot(x), y, x) == \ 

(x, imageset(Lambda(n, n*pi + acot(y) % pi), S.Integers)) 

 

assert invert_real(cot(exp(x)), y, x) == \ 

(x, imageset(Lambda(n, log(n*pi + acot(y) % pi)), S.Integers)) 

 

assert invert_real(tan(tan(x)), y, x) == \ 

(tan(x), imageset(Lambda(n, n*pi + atan(y) % pi), S.Integers)) 

 

x = Symbol('x', positive=True) 

assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi))) 

 

# Test for ``set_h`` containing information about the domain 

 

n = Dummy('n') 

x = Symbol('x') 

 

h1 = Intersection(Interval(-3, oo), FiniteSet(a + b - 3), 

imageset(Lambda(n, -n + a - 3), Interval(-oo, 0))) 

 

h2 = Intersection(Interval(-oo, -3), FiniteSet(-a + b - 3), 

imageset(Lambda(n, n - a - 3), Interval(0, oo))) 

 

h3 = Intersection(Interval(-3, oo), FiniteSet(a - b - 3), 

imageset(Lambda(n, -n + a - 3), Interval(0, oo))) 

 

h4 = Intersection(Interval(-oo, -3), FiniteSet(-a - b - 3), 

imageset(Lambda(n, n - a - 3), Interval(-oo, 0))) 

 

soln = (x, Union(h1, h2, h3, h4)) 

assert invert_real(Abs(Abs(x + 3) - a) - b, 0, x) == soln 

 

 

def test_invert_complex(): 

assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3)) 

assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3)) 

 

assert invert_complex(exp(x), y, x) == \ 

(x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers)) 

 

assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y))) 

 

raises(ValueError, lambda: invert_real(1, y, x)) 

raises(ValueError, lambda: invert_complex(x, x, x)) 

raises(ValueError, lambda: invert_complex(x, x, 1)) 

 

 

def test_domain_check(): 

assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False 

assert domain_check(x**2, x, 0) is True 

assert domain_check(x, x, oo) is False 

assert domain_check(0, x, oo) is False 

 

 

def test_is_function_class_equation(): 

from sympy.abc import x, a 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x), x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x) - 1, x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x) + sin(x), x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x) + sin(x) - a, x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

sin(x)*tan(x) + sin(x), x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

sin(x)*tan(x + a) + sin(x), x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

sin(x)*tan(x*a) + sin(x), x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

a*tan(x) - 1, x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x)**2 + sin(x) - 1, x) is True 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x) + x, x) is False 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x**2), x) is False 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x**2) + sin(x), x) is False 

assert _is_function_class_equation(TrigonometricFunction, 

tan(x)**sin(x), x) is False 

assert _is_function_class_equation(TrigonometricFunction, 

tan(sin(x)) + sin(x), x) is False 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x), x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x) - 1, x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x) + sinh(x), x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x) + sinh(x) - a, x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

sinh(x)*tanh(x) + sinh(x), x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

sinh(x)*tanh(x + a) + sinh(x), x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

sinh(x)*tanh(x*a) + sinh(x), x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

a*tanh(x) - 1, x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x)**2 + sinh(x) - 1, x) is True 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x) + x, x) is False 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x**2), x) is False 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x**2) + sinh(x), x) is False 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(x)**sinh(x), x) is False 

assert _is_function_class_equation(HyperbolicFunction, 

tanh(sinh(x)) + sinh(x), x) is False 

 

 

def test_garbage_input(): 

raises(ValueError, lambda: solveset_real(x, 1)) 

raises(ValueError, lambda: solveset_real([x], x)) 

raises(ValueError, lambda: solveset_real(x, pi)) 

raises(ValueError, lambda: solveset_real(x, x**2)) 

 

raises(ValueError, lambda: solveset_complex([x], x)) 

raises(ValueError, lambda: solveset_complex(x, pi)) 

 

 

def test_solve_mul(): 

assert solveset_real((a*x + b)*(exp(x) - 3), x) == \ 

FiniteSet(-b/a, log(3)) 

assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4)) 

assert solveset_real(x/log(x), x) == EmptySet() 

 

 

def test_solve_invert(): 

assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3)) 

assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3)) 

 

assert solveset_real(3**(x + 2), x) == FiniteSet() 

assert solveset_real(3**(2 - x), x) == FiniteSet() 

 

assert solveset_real(y - b*exp(a/x), x) == Intersection(S.Reals, FiniteSet(a/log(y/b))) 

# issue 4504 

assert solveset_real(2**x - 10, x) == FiniteSet(log(10)/log(2)) 

 

 

def test_errorinverses(): 

assert solveset_real(erf(x) - S.One/2, x) == \ 

FiniteSet(erfinv(S.One/2)) 

assert solveset_real(erfinv(x) - 2, x) == \ 

FiniteSet(erf(2)) 

assert solveset_real(erfc(x) - S.One, x) == \ 

FiniteSet(erfcinv(S.One)) 

assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2)) 

 

 

def test_solve_polynomial(): 

assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3)) 

 

assert solveset_real(x**2 - 1, x) == FiniteSet(-S(1), S(1)) 

assert solveset_real(x - y**3, x) == FiniteSet(y ** 3) 

 

a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2') 

 

assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet( 

-2 + 3 ** Rational(1, 2), 

S(4), 

-2 - 3 ** Rational(1, 2)) 

 

assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) 

assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) 

assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) 

assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) 

assert len(solveset_real(x**5 + x**3 + 1, x)) == 1 

assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0 

 

 

def test_return_root_of(): 

f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 

s = list(solveset_complex(f, x)) 

for root in s: 

assert root.func == CRootOf 

 

# if one uses solve to get the roots of a polynomial that has a CRootOf 

# solution, make sure that the use of nfloat during the solve process 

# doesn't fail. Note: if you want numerical solutions to a polynomial 

# it is *much* faster to use nroots to get them than to solve the 

# equation only to get CRootOf solutions which are then numerically 

# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather 

# than [i.n() for i in solve(eq)] to get the numerical roots of eq. 

assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0], 

exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n() 

 

sol = list(solveset_complex(x**6 - 2*x + 2, x)) 

assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 

 

f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 

s = list(solveset_complex(f, x)) 

for root in s: 

assert root.func == CRootOf 

 

s = x**5 + 4*x**3 + 3*x**2 + S(7)/4 

assert solveset_complex(s, x) == \ 

FiniteSet(*Poly(s*4, domain='ZZ').all_roots()) 

 

# Refer issue #7876 

eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1) 

assert solveset_complex(eq, x) == \ 

FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0), 

CRootOf(x**6 - x + 1, 1), 

CRootOf(x**6 - x + 1, 2), 

CRootOf(x**6 - x + 1, 3), 

CRootOf(x**6 - x + 1, 4), 

CRootOf(x**6 - x + 1, 5)) 

 

 

def test__has_rational_power(): 

from sympy.solvers.solveset import _has_rational_power 

assert _has_rational_power(sqrt(2), x)[0] is False 

assert _has_rational_power(x*sqrt(2), x)[0] is False 

 

assert _has_rational_power(x**2*sqrt(x), x) == (True, 2) 

assert _has_rational_power(sqrt(2)*x**(S(1)/3), x) == (True, 3) 

assert _has_rational_power(sqrt(x)*x**(S(1)/3), x) == (True, 6) 

 

 

def test_solveset_sqrt_1(): 

assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \ 

FiniteSet(-S(1), S(2)) 

assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10) 

assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27) 

assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49) 

assert solveset_real(sqrt(x**3), x) == FiniteSet(0) 

assert solveset_real(sqrt(x - 1), x) == FiniteSet(1) 

 

 

def test_solveset_sqrt_2(): 

# http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a 

assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \ 

FiniteSet(S(5), S(13)) 

assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \ 

FiniteSet(-6) 

 

# http://www.purplemath.com/modules/solverad.htm 

assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \ 

FiniteSet(3) 

 

eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4) 

assert solveset_real(eq, x) == FiniteSet(-S(1)/2, -S(1)/3) 

 

eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4) 

assert solveset_real(eq, x) == FiniteSet(0) 

 

eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1) 

assert solveset_real(eq, x) == FiniteSet(5) 

 

eq = sqrt(x)*sqrt(x - 7) - 12 

assert solveset_real(eq, x) == FiniteSet(16) 

 

eq = sqrt(x - 3) + sqrt(x) - 3 

assert solveset_real(eq, x) == FiniteSet(4) 

 

eq = sqrt(2*x**2 - 7) - (3 - x) 

assert solveset_real(eq, x) == FiniteSet(-S(8), S(2)) 

 

# others 

eq = sqrt(9*x**2 + 4) - (3*x + 2) 

assert solveset_real(eq, x) == FiniteSet(0) 

 

assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet() 

 

eq = (2*x - 5)**Rational(1, 3) - 3 

assert solveset_real(eq, x) == FiniteSet(16) 

 

assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \ 

FiniteSet((-S.Half + sqrt(17)/2)**4) 

 

eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x)) 

assert solveset_real(eq, x) == FiniteSet() 

 

eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) 

ans = solveset_real(eq, x) 

ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 + 

114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 + 

sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''') 

rb = S(4)/5 

assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \ 

len(ans) == 2 and \ 

set([i.n(chop=True) for i in ans]) == \ 

set([i.n(chop=True) for i in (ra, rb)]) 

 

assert solveset_real(sqrt(x) + x**Rational(1, 3) + 

x**Rational(1, 4), x) == FiniteSet(0) 

 

assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0) 

 

eq = (x - y**3)/((y**2)*sqrt(1 - y**2)) 

assert solveset_real(eq, x) == FiniteSet(y**3) 

 

# issue 4497 

assert solveset_real(1/(5 + x)**(S(1)/5) - 9, x) == \ 

FiniteSet(-295244/S(59049)) 

 

 

@XFAIL 

def test_solve_sqrt_fail(): 

# this only works if we check real_root(eq.subs(x, S(1)/3)) 

# but checksol doesn't work like that 

eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x 

assert solveset_real(eq, x) == FiniteSet(S(1)/3) 

 

 

@slow 

def test_solve_sqrt_3(): 

R = Symbol('R') 

eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) 

sol = solveset_complex(eq, R) 

 

assert sol == FiniteSet(*[S(5)/3 + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3, 

-sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 + 40*re(1/((-S(1)/2 - 

sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9 + 

sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + S(5)/3 + 

I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 - 

sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + 40*im(1/((-S(1)/2 - 

sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9)]) 

 

# the number of real roots will depend on the value of m: for m=1 there are 4 

# and for m=-1 there are none. 

eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt( 

4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt( 

4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2) 

unsolved_object = ConditionSet(q, Eq((-2*sqrt(4*q**2*(m - q)**2 + 

(-m + q)**2) + sqrt((-2*m**2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1) - 

1)**2 + (2*m**2 - 4*m - sqrt(4*m**4 - 4*m**2 + 8*m + 1) - 1)**2 

)*Abs(q))/Abs(q), 0), S.Reals) 

assert solveset_real(eq, q) == unsolved_object 

 

 

def test_solve_polynomial_symbolic_param(): 

assert solveset_complex((x**2 - 1)**2 - a, x) == \ 

FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), 

sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))) 

 

# issue 4507 

assert solveset_complex(y - b/(1 + a*x), x) == \ 

FiniteSet((b/y - 1)/a) - FiniteSet(-1/a) 

 

# issue 4508 

assert solveset_complex(y - b*x/(a + x), x) == \ 

FiniteSet(-a*y/(y - b)) - FiniteSet(-a) 

 

 

def test_solve_rational(): 

assert solveset_real(1/x + 1, x) == FiniteSet(-S.One) 

assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0) 

assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5) 

assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) 

assert solveset_real((x**2/(7 - x)).diff(x), x) == \ 

FiniteSet(S(0), S(14)) 

 

 

def test_solveset_real_gen_is_pow(): 

assert solveset_real(sqrt(1) + 1, x) == EmptySet() 

 

 

def test_no_sol(): 

assert solveset_real(4, x) == EmptySet() 

assert solveset_real(exp(x), x) == EmptySet() 

assert solveset_real(x**2 + 1, x) == EmptySet() 

assert solveset_real(-3*a/sqrt(x), x) == EmptySet() 

assert solveset_real(1/x, x) == EmptySet() 

assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \ 

EmptySet() 

 

 

def test_sol_zero_real(): 

assert solveset_real(0, x) == S.Reals 

assert solveset(0, x, Interval(1, 2)) == Interval(1, 2) 

assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals 

 

 

def test_no_sol_rational_extragenous(): 

assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet() 

assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet() 

 

 

def test_solve_polynomial_cv_1a(): 

""" 

Test for solving on equations that can be converted to 

a polynomial equation using the change of variable y -> x**Rational(p, q) 

""" 

assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1) 

assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4) 

assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16) 

assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27) 

assert solveset_real(x*(x**(S(1) / 3) - 3), x) == \ 

FiniteSet(S(0), S(27)) 

 

 

def test_solveset_real_rational(): 

"""Test solveset_real for rational functions""" 

assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \ 

== FiniteSet(y**3) 

# issue 4486 

assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2) 

 

 

def test_solveset_real_log(): 

assert solveset_real(log((x-1)*(x+1)), x) == \ 

FiniteSet(sqrt(2), -sqrt(2)) 

 

 

def test_poly_gens(): 

assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \ 

FiniteSet(-Rational(3, 2), S.Half) 

 

 

@XFAIL 

def test_uselogcombine_1(): 

assert solveset_real(log(x - 3) + log(x + 3), x) == \ 

FiniteSet(sqrt(10)) 

assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2) 

assert solveset_real(log(x + 3) + log(1 + 3/x) - 3) == FiniteSet( 

-3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2, 

-sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2) 

 

 

@XFAIL 

def test_uselogcombine_2(): 

eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) 

assert solveset_real(eq, x) == \ 

FiniteSet(-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))) 

 

 

def test_solve_abs(): 

assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2) 

assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \ 

FiniteSet(1, 9) 

assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \ 

FiniteSet(-1, Rational(1, 3)) 

 

assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15)) 

 

# issue 9565 

assert solveset_real(Abs((x - 1)/(x - 5)) <= S(1)/3, x) == Interval(-1, 2) 

 

# issue #10069 

eq = abs(1/(x - 1)) - 1 > 0 

u = Union(Interval.open(0, 1), Interval.open(1, 2)) 

assert solveset_real(eq, x) == u 

assert solveset(eq, x, domain=S.Reals) == u 

 

raises(ValueError, lambda: solveset(abs(x) - 1, x)) 

 

 

@XFAIL 

def test_rewrite_trigh(): 

# if this import passes then the test below should also pass 

from sympy import sech 

assert solveset_real(sinh(x) + sech(x), x) == FiniteSet( 

2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2), 

2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2), 

2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2), 

2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)) 

 

 

def test_real_imag_splitting(): 

a, b = symbols('a b', real=True, finite=True) 

assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \ 

FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9)) 

assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \ 

S.EmptySet 

 

 

def test_units(): 

assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm) 

 

 

def test_solve_only_exp_1(): 

y = Symbol('y', positive=True, finite=True) 

assert solveset_real(exp(x) - y, x) == FiniteSet(log(y)) 

assert solveset_real(exp(x) + exp(-x) - 4, x) == \ 

FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2)) 

assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet 

 

 

@XFAIL 

def test_solve_only_exp_2(): 

assert solveset_real(exp(x/y)*exp(-z/y) - 2, y) == \ 

FiniteSet((x - z)/log(2)) 

assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \ 

FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)) 

 

 

def test_atan2(): 

# The .inverse() method on atan2 works only if x.is_real is True and the 

# second argument is a real constant 

assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3)) 

 

 

def test_piecewise(): 

eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3 

assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5)) 

 

absxm3 = Piecewise( 

(x - 3, S(0) <= x - 3), 

(3 - x, S(0) > x - 3)) 

y = Symbol('y', positive=True) 

assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3) 

 

f = Piecewise(((x - 2)**2, x >= 0), (0, True)) 

assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True)) 

 

assert solveset(Piecewise((x + 1, x > 0), (I, True)) - I, x) == \ 

Interval(-oo, 0) 

 

 

def test_solveset_complex_polynomial(): 

from sympy.abc import x, a, b, c 

assert solveset_complex(a*x**2 + b*x + c, x) == \ 

FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a), 

-b/(2*a) + sqrt(-4*a*c + b**2)/(2*a)) 

 

assert solveset_complex(x - y**3, y) == FiniteSet( 

(-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2, 

x**Rational(1, 3), 

(-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2) 

 

assert solveset_complex(x + 1/x - 1, x) == \ 

FiniteSet(Rational(1, 2) + I*sqrt(3)/2, Rational(1, 2) - I*sqrt(3)/2) 

 

 

def test_sol_zero_complex(): 

assert solveset_complex(0, x) == S.Complexes 

 

 

def test_solveset_complex_rational(): 

assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \ 

FiniteSet(1, I) 

 

assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \ 

FiniteSet(y**3) 

assert solveset_complex(-x**2 - I, x) == \ 

FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2) 

 

 

def test_solve_quintics(): 

skip("This test is too slow") 

f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 

s = solveset_complex(f, x) 

for root in s: 

res = f.subs(x, root.n()).n() 

assert tn(res, 0) 

 

f = x**5 + 15*x + 12 

s = solveset_complex(f, x) 

for root in s: 

res = f.subs(x, root.n()).n() 

assert tn(res, 0) 

 

 

def test_solveset_complex_exp(): 

from sympy.abc import x, n 

assert solveset_complex(exp(x) - 1, x) == \ 

imageset(Lambda(n, I*2*n*pi), S.Integers) 

assert solveset_complex(exp(x) - I, x) == \ 

imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers) 

assert solveset_complex(1/exp(x), x) == S.EmptySet 

assert solveset_complex(sinh(x).rewrite(exp), x) == \ 

imageset(Lambda(n, n*pi*I), S.Integers) 

 

 

def test_solve_complex_log(): 

assert solveset_complex(log(x), x) == FiniteSet(1) 

assert solveset_complex(1 - log(a + 4*x**2), x) == \ 

FiniteSet(-sqrt(-a/4 + E/4), sqrt(-a/4 + E/4)) 

 

 

def test_solve_complex_sqrt(): 

assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \ 

FiniteSet(-S(1), S(2)) 

assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \ 

FiniteSet(-S(2), 3 - 4*I) 

assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \ 

FiniteSet(S(0), 1 / a ** 2) 

 

 

def test_solveset_complex_tan(): 

s = solveset_complex(tan(x).rewrite(exp), x) 

assert s == imageset(Lambda(n, pi*n), S.Integers) - \ 

imageset(Lambda(n, pi*n + pi/2), S.Integers) 

 

 

def test_solve_trig(): 

from sympy.abc import n 

assert solveset_real(sin(x), x) == \ 

Union(imageset(Lambda(n, 2*pi*n), S.Integers), 

imageset(Lambda(n, 2*pi*n + pi), S.Integers)) 

 

assert solveset_real(sin(x) - 1, x) == \ 

imageset(Lambda(n, 2*pi*n + pi/2), S.Integers) 

 

assert solveset_real(cos(x), x) == \ 

Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers), 

imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)) 

 

assert solveset_real(sin(x) + cos(x), x) == \ 

Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers), 

imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers)) 

 

assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet 

 

assert solveset_complex(cos(x) - S.Half, x) == \ 

Union(imageset(Lambda(n, 2*n*pi + pi/3), S.Integers), 

imageset(Lambda(n, 2*n*pi - pi/3), S.Integers)) 

 

y, a = symbols('y,a') 

assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \ 

imageset(Lambda(n, 2*n*pi), S.Integers) 

 

 

@XFAIL 

def test_solve_trig_abs(): 

assert solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals) == \ 

Union(ImageSet(Lambda(n, n*pi + (-1)**n*pi/2), S.Naturals0), 

ImageSet(Lambda(n, -n*pi - (-1)**n*pi/2), S.Naturals0)) 

 

 

def test_solve_invalid_sol(): 

assert 0 not in solveset_real(sin(x)/x, x) 

assert 0 not in solveset_complex((exp(x) - 1)/x, x) 

 

 

@XFAIL 

def test_solve_trig_simplified(): 

from sympy.abc import n 

assert solveset_real(sin(x), x) == \ 

imageset(Lambda(n, n*pi), S.Integers) 

 

assert solveset_real(cos(x), x) == \ 

imageset(Lambda(n, n*pi + pi/2), S.Integers) 

 

assert solveset_real(cos(x) + sin(x), x) == \ 

imageset(Lambda(n, n*pi - pi/4), S.Integers) 

 

 

@XFAIL 

def test_solve_lambert(): 

assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1)) 

assert solveset_real(x + 2**x, x) == \ 

FiniteSet(-LambertW(log(2))/log(2)) 

 

# issue 4739 

assert solveset_real(exp(log(5)*x) - 2**x, x) == FiniteSet(0) 

ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x) 

assert ans == FiniteSet(-Rational(5, 3) + 

LambertW(-10240*2**(S(1)/3)*log(2)/3)/(5*log(2))) 

 

eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) 

result = solveset_real(eq, x) 

ans = FiniteSet((log(2401) + 

5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1) 

assert result == ans 

assert solveset_real(eq.expand(), x) == result 

 

assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \ 

FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7) 

 

assert solveset_real(2*x + 5 + log(3*x - 2), x) == \ 

FiniteSet(Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2) 

 

assert solveset_real(3*x + log(4*x), x) == \ 

FiniteSet(LambertW(Rational(3, 4))/3) 

 

assert solveset_complex(x**z*y**z - 2, z) == \ 

FiniteSet(log(2)/(log(x) + log(y))) 

 

assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2)))) 

 

a = Symbol('a') 

assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2)) 

a = Symbol('a', real=True) 

assert solveset_real(a/x + exp(x/2), x) == \ 

FiniteSet(2*LambertW(-a/2)) 

assert solveset_real((a/x + exp(x/2)).diff(x), x) == \ 

FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4)) 

 

assert solveset_real(1/(1/x - y + exp(y)), x) == EmptySet() 

# coverage test 

p = Symbol('p', positive=True) 

w = Symbol('w') 

assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet() 

assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet() 

assert solveset_real(2*x**w - 4*y**w, w) == \ 

solveset_real((x/y)**w - 2, w) 

 

assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \ 

FiniteSet(LambertW(3*S.Exp1)/3) 

assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \ 

FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3) 

assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \ 

FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3) 

assert solveset_real(x*log(x) + 3*x + 1, x) == \ 

FiniteSet(exp(-3 + LambertW(-exp(3)))) 

eq = (x*exp(x) - 3).subs(x, x*exp(x)) 

assert solveset_real(eq, x) == \ 

FiniteSet(LambertW(3*exp(-LambertW(3)))) 

 

assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \ 

FiniteSet(-((log(a**5) + LambertW(S(1)/3))/(3*log(a)))) 

p = symbols('p', positive=True) 

assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \ 

FiniteSet( 

log((-3**(S(1)/3) - 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p), 

log((-3**(S(1)/3) + 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p), 

log((3*LambertW(S(1)/3)/p**5)**(1/(3*log(p)))),) # checked numerically 

# check collection 

b = Symbol('b') 

eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5) 

assert solveset_real(eq, x) == FiniteSet( 

-((log(a**5) + LambertW(1/(b + 3)))/(3*log(a)))) 

 

# issue 4271 

assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet( 

6*LambertW((-1)**(S(1)/3)*a**(S(1)/3)/3)) 

 

assert solveset_real(x**3 - 3**x, x) == \ 

FiniteSet(-3/log(3)*LambertW(-log(3)/3)) 

assert solveset_real(x**2 - 2**x, x) == FiniteSet(2) 

assert solveset_real(-x**2 + 2**x, x) == FiniteSet(2) 

assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet( 

acos(-3*LambertW(-log(3)/3)/log(3))) 

 

assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0) 

assert solveset_real(5**(x/2) - 2**(x/3), x) == FiniteSet(0) 

b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) 

assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b) 

 

 

def test_solveset(): 

x = Symbol('x') 

raises(ValueError, lambda: solveset(x + y)) 

raises(ValueError, lambda: solveset(x, 1)) 

 

assert solveset(0, domain=S.Reals) == S.Reals 

assert solveset(1) == S.EmptySet 

assert solveset(True, domain=S.Reals) == S.Reals # issue 10197 

assert solveset(False, domain=S.Reals) == S.EmptySet 

 

assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0) 

assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0) 

assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0) 

 

assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo) 

assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo) 

 

assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers) 

assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n), 

S.Integers) 

 

 

def test_conditionset(): 

assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \ 

ConditionSet(x, True, S.Reals) 

 

assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals) == \ 

ConditionSet(x, Eq(x*(x + sin(x)) - 1, 0), S.Reals) 

 

assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals) == \ 

ConditionSet(x, Eq(-x + sin(Abs(x)), 0), Interval(-oo, oo)) 

 

assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x) == \ 

imageset(Lambda(n, 2*n*pi + pi/2), S.Integers) 

 

assert solveset(x + sin(x) > 1, x, domain=S.Reals) == \ 

ConditionSet(x, x + sin(x) > 1, S.Reals) 

 

 

@XFAIL 

def test_conditionset_equality(): 

''' Checking equality of different representations of ConditionSet''' 

assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes) 

 

 

def test_solveset_domain(): 

x = Symbol('x') 

 

assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3) 

assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1) 

assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2) 

 

 

def test_improve_coverage(): 

from sympy.solvers.solveset import _has_rational_power 

x = Symbol('x') 

y = exp(x+1/x**2) 

solution = solveset(y**2+y, x, S.Reals) 

unsolved_object = ConditionSet(x, Eq((exp((x**3 + 1)/x**2) + 1)*exp((x**3 + 1)/x**2), 0), S.Reals) 

assert solution == unsolved_object 

 

assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One) 

assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One) 

 

 

def test_issue_9522(): 

x = Symbol('x') 

expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2) 

expr2 = Eq(1/x + x, 1/x) 

 

assert solveset(expr1, x, S.Reals) == EmptySet() 

assert solveset(expr2, x, S.Reals) == EmptySet() 

 

 

def test_linear_eq_to_matrix(): 

x, y, z = symbols('x, y, z') 

eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12] 

eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z] 

 

A, b = linear_eq_to_matrix(eqns1, x, y, z) 

assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]]) 

assert b == Matrix([[3], [0], [12]]) 

 

A, b = linear_eq_to_matrix(eqns2, x, y, z) 

assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]]) 

assert b == Matrix([[1], [-2], [0]]) 

 

# Pure symbolic coefficients 

from sympy.abc import a, b, c, d, e, f, g, h, i, j, k, l 

eqns3 = [a*x + b*y + c*z - d, e*x + f*y + g*z - h, i*x + j*y + k*z - l] 

A, B = linear_eq_to_matrix(eqns3, x, y, z) 

assert A == Matrix([[a, b, c], [e, f, g], [i, j, k]]) 

assert B == Matrix([[d], [h], [l]]) 

 

# raise ValueError if no symbols are given 

raises(ValueError, lambda: linear_eq_to_matrix(eqns3)) 

 

 

def test_linsolve(): 

x, y, z, u, v, w = symbols("x, y, z, u, v, w") 

x1, x2, x3, x4 = symbols('x1, x2, x3, x4') 

 

# Test for different input forms 

 

M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]]) 

system1 = A, b = M[:, :-1], M[:, -1] 

Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12, 

2*x1 + 4*x2 + 6*x4 - 4] 

 

sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) 

assert linsolve(M, (x1, x2, x3, x4)) == sol 

assert linsolve(Eqns, (x1, x2, x3, x4)) == sol 

assert linsolve(system1, (x1, x2, x3, x4)) == sol 

 

# raise ValueError if no symbols are given 

raises(ValueError, lambda: linsolve(system1)) 

 

# raise ValueError if, A & b is not given as tuple 

raises(ValueError, lambda: linsolve(A, b, x1, x2, x3, x4)) 

 

# raise ValueError for garbage value 

raises(ValueError, lambda: linsolve(Eqns[0], x1, x2, x3, x4)) 

 

# Fully symbolic test 

a, b, c, d, e, f = symbols('a, b, c, d, e, f') 

A = Matrix([[a, b], [c, d]]) 

B = Matrix([[e], [f]]) 

system2 = (A, B) 

sol = FiniteSet(((-b*f + d*e)/(a*d - b*c), (a*f - c*e)/(a*d - b*c))) 

assert linsolve(system2, [x, y]) == sol 

 

# Test for Dummy Symbols issue #9667 

x1 = Dummy('x1') 

x2 = Dummy('x2') 

x3 = Dummy('x3') 

x4 = Dummy('x4') 

 

assert linsolve(system1, x1, x2, x3, x4) == FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4)) 

 

# No solution 

A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) 

b = Matrix([0, 0, 1]) 

assert linsolve((A, b), (x, y, z)) == EmptySet() 

 

# Issue #10056 

A, B, J1, J2 = symbols('A B J1 J2') 

Augmatrix = Matrix([ 

[2*I*J1, 2*I*J2, -2/J1], 

[-2*I*J2, -2*I*J1, 2/J2], 

[0, 2, 2*I/(J1*J2)], 

[2, 0, 0], 

]) 

 

assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2))) 

 

# Issue #10121 - Assignment of free variables 

a, b, c, d, e = symbols('a, b, c, d, e') 

Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) 

assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e)) 

 

 

def test_solve_decomposition(): 

x = Symbol('x') 

n = Dummy('n') 

 

f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6 

f2 = sin(x)**2 - 2*sin(x) + 1 

f3 = sin(x)**2 - sin(x) 

f4 = sin(x + 1) 

f5 = exp(x + 2) - 1 

f6 = 1/log(x) 

 

s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers) 

s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers) 

s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers) 

s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers) 

s5 = ImageSet(Lambda(n, (2*n + 1)*pi - 1), S.Integers) 

 

assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3)) 

assert solve_decomposition(f2, x, S.Reals) == s3 

assert solve_decomposition(f3, x, S.Reals) == Union(s1, s2, s3) 

assert solve_decomposition(f4, x, S.Reals) == Union(s4, s5) 

assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2) 

assert solve_decomposition(f6, x, S.Reals) == ConditionSet(x, Eq(f6, 0), S.Reals) 

 

 

# nonlinsolve testcases 

def test_nonlinsolve_basic(): 

assert nonlinsolve([],[]) == S.EmptySet 

assert nonlinsolve([],[x, y]) == S.EmptySet 

 

system = [x, y - x - 5] 

assert nonlinsolve([x],[x, y]) == FiniteSet((0, y)) 

assert nonlinsolve(system, [y]) == FiniteSet((x + 5,)) 

soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) 

assert nonlinsolve([sin(x) - 1], [x]) == FiniteSet(tuple(soln)) 

assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,)) 

 

soln = FiniteSet((- y, y), (y, y)) 

assert nonlinsolve([Abs(x) - y], x, y) == soln 

soln = FiniteSet((y, y)) 

assert nonlinsolve([x - y, 0], x, y) == soln 

assert nonlinsolve([0, x - y], x, y) == soln 

assert nonlinsolve([x - y, x - y], x, y) == soln 

assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y)) 

 

 

def test_raise_exception_nonlinsolve(): 

raises(IndexError, lambda: nonlinsolve([x**2 -1], [])) 

raises(ValueError, lambda: nonlinsolve([x**2 -1])) 

raises(ValueError, lambda: nonlinsolve([x**2 -1], [sin(x)])) 

raises(ValueError, lambda: nonlinsolve([x**2 -1], sin(x))) 

raises(ValueError, lambda: nonlinsolve([x**2 -1], 1)) 

raises(ValueError, lambda: nonlinsolve([x**2 -1], x + y)) 

 

 

def test_trig_system(): 

# TODO: add more simple testcases when solveset returns 

# simplified soln for Trig eq 

assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet 

soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),) 

soln = FiniteSet(soln1) 

assert nonlinsolve([sin(x) - 1, cos(x)], x) == soln 

 

 

@XFAIL 

def test_trig_system_fail(): 

# fails because solveset trig solver is not much smart. 

sys = [x + y - pi/2, sin(x) + sin(y) - 1] 

# solveset returns conditonset for sin(x) + sin(y) - 1 

soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers), 

ImageSet(Lambda(n, n*pi)), S.Integers) 

soln_1 = FiniteSet(soln_1) 

soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers), 

ImageSet(Lambda(n, n*pi+ pi/2), S.Integers)) 

soln_2 = FiniteSet(soln_2) 

soln = soln_1 + soln_2 

assert nonlinsolve(sys, [x, y]) == soln 

 

# Add more cases from here 

# http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno 

sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2] 

soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers), 

ImageSet(Lambda(n, 2*n*pi + 2*pi/3), S.Integers)) 

soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers), 

ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers)) 

assert nonlinsolve(sys, [x, y]) ==FiniteSet((soln_x, soln_y)) 

 

 

def test_nonlinsolve_positive_dimensional(): 

x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', real = True) 

assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y)) 

 

system = [a**2 + a*c, a - b] 

assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c)) 

# here (a= 0, b = 0) is independent soln so both is printed. 

# if symbols = [a, b, c] then only {a : -c ,b : -c} 

 

eq1 = a + b + c + d 

eq2 = a*b + b*c + c*d + d*a 

eq3 = a*b*c + b*c*d + c*d*a + d*a*b 

eq4 = a*b*c*d - 1 

system = [eq1, eq2, eq3, eq4] 

sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0)) 

sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0)) 

soln = FiniteSet(sol1, sol2) 

assert nonlinsolve(system, [a, b, c, d]) == soln 

 

 

def test_nonlinsolve_polysys(): 

x, y, z = symbols('x, y, z', real = True) 

assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet 

 

s = (-y + 2, y) 

assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s) 

 

system = [x**2 - y**2] 

soln_real = FiniteSet((-y, y), (y, y)) 

soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y)) 

soln =soln_real + soln_complex 

assert nonlinsolve(system, [x, y]) == soln 

 

system = [x**2 - y**2] 

soln_real= FiniteSet((y, -y), (y, y)) 

soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y))) 

soln = soln_real + soln_complex 

assert nonlinsolve(system, [y, x]) == soln 

 

system = [x**2 + y - 3, x - y - 4] 

assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x)) 

 

 

def test_nonlinsolve_using_substitution(): 

x, y, z, n = symbols('x, y, z, n', real = True) 

system = [(x + y)*n - y**2 + 2] 

s_x = (n*y - y**2 + 2)/n 

soln = (-s_x, y) 

assert nonlinsolve(system, [x, y]) == FiniteSet(soln) 

 

system = [z**2*x**2 - z**2*y**2/exp(x)] 

soln_real_1 = (y, x, 0) 

soln_real_2 = (-exp(x/2)*Abs(x), x, z) 

soln_real_3 = (exp(x/2)*Abs(x), x, z) 

soln_complex_1 = (-x*exp(x/2), x, z) 

soln_complex_2 = (x*exp(x/2), x, z) 

syms = [y, x, z] 

soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\ 

soln_real_2, soln_real_3) 

assert nonlinsolve(system,syms) == soln 

 

 

def test_nonlinsolve_complex(): 

x, y, z = symbols('x, y, z') 

n = Dummy('n') 

real_soln = (log(sin(S(1)/3)), S(1)/3) 

img_lamda = Lambda(n, 2*n*I*pi + Mod(log(sin(S(1)/3)), 2*I*pi)) 

complex_soln = (ImageSet(img_lamda, S.Integers), S(1)/3) 

soln = FiniteSet(real_soln, complex_soln) 

assert nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]) == soln 

 

system = [exp(x) - sin(y), 1/exp(y) - 3] 

soln_x = ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(log(3)))), S.Integers) 

soln_real = FiniteSet((soln_x, -log(S(3)))) 

# Mod(-log(3), 2*I*pi) is equal to -log(3). 

expr_x = I*(2*n*pi + arg(sin(2*n*I*pi + Mod(-log(3), 2*I*pi)))) + \ 

log(Abs(sin(2*n*I*pi + Mod(-log(3), 2*I*pi)))) 

soln_x = ImageSet(Lambda(n, expr_x), S.Integers) 

expr_y = 2*n*I*pi + Mod(-log(3), 2*I*pi) 

soln_y = ImageSet(Lambda(n, expr_y), S.Integers) 

soln_complex = FiniteSet((soln_x, soln_y)) 

soln = soln_real + soln_complex 

assert nonlinsolve(system, [x, y]) == soln 

 

system = [exp(x) - sin(y), y**2 - 4] 

s1 = (log(sin(2)), 2) 

s2 = (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2 ) 

img = ImageSet(Lambda(n, 2*n*I*pi + Mod(log(sin(2)), 2*I*pi)), S.Integers) 

s3 = (img, 2) 

assert nonlinsolve(system, [x, y]) == FiniteSet(s1, s2, s3) 

 

 

@XFAIL 

def test_solve_nonlinear_trans(): 

# After the transcendental equation solver these will work 

x, y, z = symbols('x, y, z', real=True) 

soln1 = FiniteSet((2*LambertW(y/2), y)) 

soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y)) 

soln3 = FiniteSet((x*exp(x/2), x)) 

soln4 = FiniteSet(2*LambertW(y/2), y) 

assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1 

assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2 

assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3 

assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4 

 

 

def test_issue_5132_1(): 

system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4] 

assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1)) 

 

n = Dummy('n') 

eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] 

s_real_y = -log(3) 

s_real_z = sqrt(-exp(2*x) - sin(log(3))) 

soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) 

lam = Lambda(n, 2*n*I*pi + Mod(-log(3), 2*I*pi)) 

s_complex_y = ImageSet(lam, S.Integers) 

lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi)))) 

s_complex_z_1 = ImageSet(lam, S.Integers) 

lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi)))) 

s_complex_z_2 = ImageSet(lam, S.Integers) 

soln_complex = FiniteSet( 

(s_complex_y, s_complex_z_1), 

(s_complex_y, s_complex_z_2) 

) 

soln = soln_real + soln_complex 

assert nonlinsolve(eqs, [y, z]) == soln 

 

 

def test_issue_5132_2(): 

x, y = symbols('x, y', real=True) 

eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] 

n = Dummy('n') 

soln_real = (log(-z**2 + sin(y))/2, z) 

lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2) 

img = ImageSet(lam, S.Integers) 

# not sure about the complex soln. But it looks correct. 

soln_complex = (img, z) 

soln = FiniteSet(soln_real, soln_complex) 

assert nonlinsolve(eqs, [x, z]) == soln 

 

r, t = symbols('r, t') 

system = [r - x**2 - y**2, tan(t) - y/x] 

s_x = sqrt(r/(tan(t)**2 + 1)) 

s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) 

soln = FiniteSet((s_x, s_y), (-s_x, -s_y)) 

assert nonlinsolve(system, [x, y]) == soln 

 

 

def test_issue_6752(): 

a,b,c,d = symbols('a, b, c, d', real=True) 

assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)} 

 

 

@SKIP("slow") 

def test_issue_5114(): 

# slow testcase 

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r') 

 

# there is no 'a' in the equation set but this is how the 

# problem was originally posed 

syms = [a, b, c, f, h, k, n] 

eqs = [b + r/d - c/d, 

c*(1/d + 1/e + 1/g) - f/g - r/d, 

f*(1/g + 1/i + 1/j) - c/g - h/i, 

h*(1/i + 1/l + 1/m) - f/i - k/m, 

k*(1/m + 1/o + 1/p) - h/m - n/p, 

n*(1/p + 1/q) - k/p] 

assert len(nonlinsolve(eqs, syms)) == 1 

 

 

@SKIP("Hangs") 

def _test_issue_5335(): 

# Not able to check zero dimensional system. 

# is_zero_dimensional Hangs 

lam, a0, conc = symbols('lam a0 conc') 

eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, 

a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, 

x + y - conc] 

sym = [x, y, a0] 

# there are 4 solutions but only two are valid 

assert len(nonlinsolve(eqs, sym)) == 2 

# float 

lam, a0, conc = symbols('lam a0 conc') 

eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x, 

a0*(1 - x/2)*x - 1*y - 0.743436700916726*y, 

x + y - conc] 

sym = [x, y, a0] 

assert len(nonlinsolve(eqs, sym)) == 2 

 

 

def test_issue_2777(): 

# the equations represent two circles 

x, y = symbols('x y', real=True) 

e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 

a, b = 191/S(20), 3*sqrt(391)/20 

ans = {(a, -b), (a, b)} 

assert nonlinsolve((e1, e2), (x, y)) == ans 

assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet 

# make the 2nd circle's radius be -3 

e2 += 6 

assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet 

 

 

def test_issue_8828(): 

x1 = 0 

y1 = -620 

r1 = 920 

x2 = 126 

y2 = 276 

x3 = 51 

y3 = 205 

r3 = 104 

v = [x, y, z] 

 

f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 

f2 = (x2 - x)**2 + (y2 - y)**2 - z**2 

f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 

F = [f1, f2, f3] 

 

g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 

g2 = f2 

g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 

G = [g1, g2, g3] 

 

# both soln same 

A = nonlinsolve(F, v) 

B = nonlinsolve(G, v) 

assert A == B 

 

 

def test_nonlinsolve_conditionset(): 

# when solveset failed to solve all the eq 

# return conditionset 

f = Function('f') 

f1 = f(x) - pi/2 

f2 = f(x) - 3*pi/2 

intermediate_system = FiniteSet(2*f(x) - 3*pi, 2*f(x) - pi) 

symbols = FiniteSet(x, y) 

soln = ConditionSet( 

symbols, 

intermediate_system, 

S.Complexes) 

assert nonlinsolve([f1, f2], [x,y]) == soln 

 

 

def test_substitution_basic(): 

assert substitution([], [x, y]) == S.EmptySet 

assert substitution([], []) == S.EmptySet 

system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19] 

soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2)) 

assert substitution(system, [x, y]) == soln 

 

soln = FiniteSet((-1, 1)) 

assert substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) == soln 

assert substitution( 

[x + y], [x], [{y: 1}], [y], 

set([x + 1]), [y, x]) == S.EmptySet 

 

 

def test_issue_5132_substitution(): 

x, y, z, r, t = symbols('x, y, z, r, t', real=True) 

system = [r - x**2 - y**2, tan(t) - y/x] 

s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) 

s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0)) 

s_y = sqrt(r/(tan(t)**2 + 1))*tan(t) 

soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y)) 

assert substitution(system, [x, y]) == soln 

 

n = Dummy('n') 

eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] 

s_real_y = -log(3) 

s_real_z = sqrt(-exp(2*x) - sin(log(3))) 

soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z)) 

lam = Lambda(n, 2*n*I*pi + Mod(-log(3), 2*I*pi)) 

s_complex_y = ImageSet(lam, S.Integers) 

lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi)))) 

s_complex_z_1 = ImageSet(lam, S.Integers) 

lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi)))) 

s_complex_z_2 = ImageSet(lam, S.Integers) 

soln_complex = FiniteSet( 

(s_complex_y, s_complex_z_1), 

(s_complex_y, s_complex_z_2) 

) 

soln = soln_real + soln_complex 

assert substitution(eqs, [y, z]) == soln 

 

 

def test_raises_substitution(): 

raises(ValueError, lambda: substitution([x**2 -1], [])) 

raises(TypeError, lambda: substitution([x**2 -1])) 

raises(ValueError, lambda: substitution([x**2 -1], [sin(x)])) 

raises(TypeError, lambda: substitution([x**2 -1], x)) 

raises(TypeError, lambda: substitution([x**2 -1], 1)) 

 

# end of tests for nonlinsolve 

 

 

def test_issue_9556(): 

x = Symbol('x') 

b = Symbol('b', positive=True) 

 

assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet() 

assert solveset(Abs(x) + b, x, S.Reals) == EmptySet() 

assert solveset(Eq(b, -1), b, S.Reals) == EmptySet() 

 

 

def test_issue_9611(): 

x = Symbol('x') 

a = Symbol('a') 

y = Symbol('y') 

 

assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals 

assert solveset(Eq(y - y + a, a), y) == S.Complexes 

 

 

def test_issue_9557(): 

x = Symbol('x') 

a = Symbol('a') 

 

assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals, 

FiniteSet(-sqrt(-a), sqrt(-a))) 

 

 

def test_issue_9778(): 

assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1) 

assert solveset(x**(S(3)/5) + 1, x, S.Reals) == S.EmptySet 

assert solveset(x**3 + y, x, S.Reals) == Intersection(Interval(-oo, oo), \ 

FiniteSet((-y)**(S(1)/3)*Piecewise((1, Ne(-im(y), 0)), ((-1)**(S(2)/3), -y < 0), (1, True)))) 

 

 

@XFAIL 

def test_issue_failing_pow(): 

assert solveset(x**(S(3)/2) + 4, x, S.Reals) == S.EmptySet 

 

 

def test_issue_9849(): 

assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet 

 

 

def test_issue_9953(): 

assert linsolve([ ], x) == S.EmptySet 

 

 

def test_issue_9913(): 

assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \ 

FiniteSet(-(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)/3 - 100/ 

(3*(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)) + S(20)/3) 

 

 

def test_issue_10397(): 

assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0) 

 

 

def test_simplification(): 

eq = x + (a - b)/(-2*a + 2*b) 

assert solveset(eq, x) == FiniteSet(S.Half) 

assert solveset(eq, x, S.Reals) == FiniteSet(S.Half) 

 

 

def test_issue_10555(): 

f = Function('f') 

assert solveset(f(x) - pi/2, x, S.Reals) == \ 

ConditionSet(x, Eq(2*f(x) - pi, 0), S.Reals) 

 

 

def test_issue_8715(): 

eq = x + 1/x > -2 + 1/x 

assert solveset(eq, x, S.Reals) == \ 

(Interval.open(-2, oo) - FiniteSet(0)) 

assert solveset(eq.subs(x,log(x)), x, S.Reals) == \ 

Interval.open(exp(-2), oo) - FiniteSet(1) 

 

def test_issue_11174(): 

r, t = symbols('r t') 

eq = z**2 + exp(2*x) - sin(y) 

soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2)) 

assert solveset(eq, x, S.Reals) == soln 

 

eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t) 

s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t)) 

soln = Intersection(S.Reals, FiniteSet(s)) 

assert solveset(eq, x, S.Reals) == soln