| 
 from sympy import (  
    Abs, Dummy, Eq, Gt, Function, Mod,  
    LambertW, Piecewise, Poly, Rational, S, Symbol, Matrix,  
    asin, acos, acsc, asec, atan, atanh, cos, csc, erf, erfinv, erfc, erfcinv,  
    exp, log, pi, sin, sinh, sec, sqrt, symbols,  
    tan, tanh, atan2, arg,  
    Lambda, imageset, cot, acot, I, EmptySet, Union, E, Interval, Intersection,  
    oo)  
  
from sympy.core.function import nfloat  
from sympy.core.relational import Unequality as Ne  
from sympy.functions.elementary.complexes import im, re  
from sympy.functions.elementary.hyperbolic import HyperbolicFunction  
from sympy.functions.elementary.trigonometric import TrigonometricFunction  
  
from sympy.polys.rootoftools import CRootOf  
  
from sympy.sets import (FiniteSet, ConditionSet, Complement, ImageSet)  
  
from sympy.utilities.pytest import XFAIL, raises, skip, slow, SKIP  
from sympy.utilities.randtest import verify_numerically as tn  
from sympy.physics.units import cm  
from sympy.core.containers import Dict  
  
from sympy.solvers.solveset import (  
    solveset_real, domain_check, solveset_complex, linear_eq_to_matrix,  
    linsolve, _is_function_class_equation, invert_real, invert_complex,  
    solveset, solve_decomposition, substitution, nonlinsolve)  
  
a = Symbol('a', real=True)  
b = Symbol('b', real=True)  
c = Symbol('c', real=True)  
x = Symbol('x', real=True)  
y = Symbol('y', real=True)  
z = Symbol('z', real=True)  
q = Symbol('q', real=True)  
m = Symbol('m', real=True)  
n = Symbol('n', real=True)  
  
  
def test_invert_real():  
    x = Symbol('x', real=True)  
    y = Symbol('y')  
    n = Symbol('n')  
    def ireal(x, s=S.Reals):  
        return Intersection(s, x)  
  
    minus_n = Intersection(Interval(-oo, 0), FiniteSet(-n))  
    plus_n = Intersection(Interval(0, oo), FiniteSet(n))  
    assert solveset(abs(x) - n, x, S.Reals) == Union(minus_n, plus_n)  
  
    assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y))))  
  
    y = Symbol('y', positive=True)  
    n = Symbol('n', real=True)  
    assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))  
    assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))  
  
    assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))  
    assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))  
    assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))  
  
    assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))  
    assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))  
  
    assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))  
    assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))  
    assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))  
  
    minus_y = Intersection(Interval(-oo, 0), FiniteSet(-y))  
    plus_y = Intersection(Interval(0, oo), FiniteSet(y))  
    assert invert_real(Abs(x), y, x) == (x, Union(minus_y, plus_y))  
  
    assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))  
    assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2)))))  
  
    assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))  
    assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))  
  
    raises(ValueError, lambda: invert_real(x, x, x))  
    raises(ValueError, lambda: invert_real(x**pi, y, x))  
    raises(ValueError, lambda: invert_real(S.One, y, x))  
  
    assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))  
  
    y_1 = Intersection(Interval(-1, oo), FiniteSet(y - 1))  
    y_2 = Intersection(Interval(-oo, -1), FiniteSet(-y - 1))  
    assert invert_real(Abs(x**31 + x + 1), y, x) == (x**31 + x,  
                                                     Union(y_1, y_2))  
  
    assert invert_real(sin(x), y, x) == \  
        (x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))  
  
    assert invert_real(sin(exp(x)), y, x) == \  
        (x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))  
  
    assert invert_real(csc(x), y, x) == \  
        (x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))  
  
    assert invert_real(csc(exp(x)), y, x) == \  
        (x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))  
  
    assert invert_real(cos(x), y, x) == \  
        (x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \  
                imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))  
  
    assert invert_real(cos(exp(x)), y, x) == \  
        (x, Union(imageset(Lambda(n, log(2*n*pi + Mod(acos(y), 2*pi))), S.Integers), \  
                imageset(Lambda(n, log(2*n*pi + Mod(-acos(y), 2*pi))), S.Integers)))  
  
    assert invert_real(sec(x), y, x) == \  
        (x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \  
                imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))  
  
    assert invert_real(sec(exp(x)), y, x) == \  
        (x, Union(imageset(Lambda(n, log(2*n*pi + Mod(asec(y), 2*pi))), S.Integers), \  
                imageset(Lambda(n, log(2*n*pi + Mod(-asec(y), 2*pi))), S.Integers)))  
  
    assert invert_real(tan(x), y, x) == \  
        (x, imageset(Lambda(n, n*pi + atan(y) % pi), S.Integers))  
  
    assert invert_real(tan(exp(x)), y, x) == \  
        (x, imageset(Lambda(n, log(n*pi + atan(y) % pi)), S.Integers))  
  
    assert invert_real(cot(x), y, x) == \  
        (x, imageset(Lambda(n, n*pi + acot(y) % pi), S.Integers))  
  
    assert invert_real(cot(exp(x)), y, x) == \  
        (x, imageset(Lambda(n, log(n*pi + acot(y) % pi)), S.Integers))  
  
    assert invert_real(tan(tan(x)), y, x) == \  
        (tan(x), imageset(Lambda(n, n*pi + atan(y) % pi), S.Integers))  
  
    x = Symbol('x', positive=True)  
    assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))  
  
    # Test for ``set_h`` containing information about the domain  
  
    n = Dummy('n')  
    x = Symbol('x')  
  
    h1 = Intersection(Interval(-3, oo), FiniteSet(a + b - 3),  
                      imageset(Lambda(n, -n + a - 3), Interval(-oo, 0)))  
  
    h2 = Intersection(Interval(-oo, -3), FiniteSet(-a + b - 3),  
                      imageset(Lambda(n, n - a - 3), Interval(0, oo)))  
  
    h3 = Intersection(Interval(-3, oo), FiniteSet(a - b - 3),  
                      imageset(Lambda(n, -n + a - 3), Interval(0, oo)))  
  
    h4 = Intersection(Interval(-oo, -3), FiniteSet(-a - b - 3),  
                      imageset(Lambda(n, n - a - 3), Interval(-oo, 0)))  
  
    soln = (x, Union(h1, h2, h3, h4))  
    assert invert_real(Abs(Abs(x + 3) - a) - b, 0, x) == soln  
  
  
def test_invert_complex():  
    assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))  
    assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3))  
  
    assert invert_complex(exp(x), y, x) == \  
        (x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers))  
  
    assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))  
  
    raises(ValueError, lambda: invert_real(1, y, x))  
    raises(ValueError, lambda: invert_complex(x, x, x))  
    raises(ValueError, lambda: invert_complex(x, x, 1))  
  
  
def test_domain_check():  
    assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False  
    assert domain_check(x**2, x, 0) is True  
    assert domain_check(x, x, oo) is False  
    assert domain_check(0, x, oo) is False  
  
  
def test_is_function_class_equation():  
    from sympy.abc import x, a  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x), x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x) - 1, x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x) + sin(x), x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x) + sin(x) - a, x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       sin(x)*tan(x) + sin(x), x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       sin(x)*tan(x + a) + sin(x), x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       sin(x)*tan(x*a) + sin(x), x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       a*tan(x) - 1, x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x)**2 + sin(x) - 1, x) is True  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x) + x, x) is False  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x**2), x) is False  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x**2) + sin(x), x) is False  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(x)**sin(x), x) is False  
    assert _is_function_class_equation(TrigonometricFunction,  
                                       tan(sin(x)) + sin(x), x) is False  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x), x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x) - 1, x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x) + sinh(x), x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x) + sinh(x) - a, x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       sinh(x)*tanh(x) + sinh(x), x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       sinh(x)*tanh(x + a) + sinh(x), x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       sinh(x)*tanh(x*a) + sinh(x), x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       a*tanh(x) - 1, x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x)**2 + sinh(x) - 1, x) is True  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x) + x, x) is False  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x**2), x) is False  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x**2) + sinh(x), x) is False  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(x)**sinh(x), x) is False  
    assert _is_function_class_equation(HyperbolicFunction,  
                                       tanh(sinh(x)) + sinh(x), x) is False  
  
  
def test_garbage_input():  
    raises(ValueError, lambda: solveset_real(x, 1))  
    raises(ValueError, lambda: solveset_real([x], x))  
    raises(ValueError, lambda: solveset_real(x, pi))  
    raises(ValueError, lambda: solveset_real(x, x**2))  
  
    raises(ValueError, lambda: solveset_complex([x], x))  
    raises(ValueError, lambda: solveset_complex(x, pi))  
  
  
def test_solve_mul():  
    assert solveset_real((a*x + b)*(exp(x) - 3), x) == \  
        FiniteSet(-b/a, log(3))  
    assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4))  
    assert solveset_real(x/log(x), x) == EmptySet()  
  
  
def test_solve_invert():  
    assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))  
    assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))  
  
    assert solveset_real(3**(x + 2), x) == FiniteSet()  
    assert solveset_real(3**(2 - x), x) == FiniteSet()  
  
    assert solveset_real(y - b*exp(a/x), x) == Intersection(S.Reals, FiniteSet(a/log(y/b)))  
    # issue 4504  
    assert solveset_real(2**x - 10, x) == FiniteSet(log(10)/log(2))  
  
  
def test_errorinverses():  
    assert solveset_real(erf(x) - S.One/2, x) == \  
        FiniteSet(erfinv(S.One/2))  
    assert solveset_real(erfinv(x) - 2, x) == \  
        FiniteSet(erf(2))  
    assert solveset_real(erfc(x) - S.One, x) == \  
        FiniteSet(erfcinv(S.One))  
    assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))  
  
  
def test_solve_polynomial():  
    assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3))  
  
    assert solveset_real(x**2 - 1, x) == FiniteSet(-S(1), S(1))  
    assert solveset_real(x - y**3, x) == FiniteSet(y ** 3)  
  
    a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2')  
  
    assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet(  
        -2 + 3 ** Rational(1, 2),  
        S(4),  
        -2 - 3 ** Rational(1, 2))  
  
    assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)  
    assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)  
    assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)  
    assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)  
    assert len(solveset_real(x**5 + x**3 + 1, x)) == 1  
    assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0  
  
  
def test_return_root_of():  
    f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20  
    s = list(solveset_complex(f, x))  
    for root in s:  
        assert root.func == CRootOf  
  
    # if one uses solve to get the roots of a polynomial that has a CRootOf  
    # solution, make sure that the use of nfloat during the solve process  
    # doesn't fail. Note: if you want numerical solutions to a polynomial  
    # it is *much* faster to use nroots to get them than to solve the  
    # equation only to get CRootOf solutions which are then numerically  
    # evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather  
    # than [i.n() for i in solve(eq)] to get the numerical roots of eq.  
    assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0],  
                  exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n()  
  
    sol = list(solveset_complex(x**6 - 2*x + 2, x))  
    assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6  
  
    f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20  
    s = list(solveset_complex(f, x))  
    for root in s:  
        assert root.func == CRootOf  
  
    s = x**5 + 4*x**3 + 3*x**2 + S(7)/4  
    assert solveset_complex(s, x) == \  
        FiniteSet(*Poly(s*4, domain='ZZ').all_roots())  
  
    # Refer issue #7876  
    eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1)  
    assert solveset_complex(eq, x) == \  
        FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0),  
                       CRootOf(x**6 - x + 1, 1),  
                       CRootOf(x**6 - x + 1, 2),  
                       CRootOf(x**6 - x + 1, 3),  
                       CRootOf(x**6 - x + 1, 4),  
                       CRootOf(x**6 - x + 1, 5))  
  
  
def test__has_rational_power():  
    from sympy.solvers.solveset import _has_rational_power  
    assert _has_rational_power(sqrt(2), x)[0] is False  
    assert _has_rational_power(x*sqrt(2), x)[0] is False  
  
    assert _has_rational_power(x**2*sqrt(x), x) == (True, 2)  
    assert _has_rational_power(sqrt(2)*x**(S(1)/3), x) == (True, 3)  
    assert _has_rational_power(sqrt(x)*x**(S(1)/3), x) == (True, 6)  
  
  
def test_solveset_sqrt_1():  
    assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \  
        FiniteSet(-S(1), S(2))  
    assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)  
    assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)  
    assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)  
    assert solveset_real(sqrt(x**3), x) == FiniteSet(0)  
    assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)  
  
  
def test_solveset_sqrt_2():  
    # http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a  
    assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \  
        FiniteSet(S(5), S(13))  
    assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \  
        FiniteSet(-6)  
  
    # http://www.purplemath.com/modules/solverad.htm  
    assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \  
        FiniteSet(3)  
  
    eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4)  
    assert solveset_real(eq, x) == FiniteSet(-S(1)/2, -S(1)/3)  
  
    eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)  
    assert solveset_real(eq, x) == FiniteSet(0)  
  
    eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)  
    assert solveset_real(eq, x) == FiniteSet(5)  
  
    eq = sqrt(x)*sqrt(x - 7) - 12  
    assert solveset_real(eq, x) == FiniteSet(16)  
  
    eq = sqrt(x - 3) + sqrt(x) - 3  
    assert solveset_real(eq, x) == FiniteSet(4)  
  
    eq = sqrt(2*x**2 - 7) - (3 - x)  
    assert solveset_real(eq, x) == FiniteSet(-S(8), S(2))  
  
    # others  
    eq = sqrt(9*x**2 + 4) - (3*x + 2)  
    assert solveset_real(eq, x) == FiniteSet(0)  
  
    assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet()  
  
    eq = (2*x - 5)**Rational(1, 3) - 3  
    assert solveset_real(eq, x) == FiniteSet(16)  
  
    assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \  
        FiniteSet((-S.Half + sqrt(17)/2)**4)  
  
    eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))  
    assert solveset_real(eq, x) == FiniteSet()  
  
    eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)  
    ans = solveset_real(eq, x)  
    ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 +  
    114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 +  
    sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''')  
    rb = S(4)/5  
    assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \  
        len(ans) == 2 and \  
        set([i.n(chop=True) for i in ans]) == \  
        set([i.n(chop=True) for i in (ra, rb)])  
  
    assert solveset_real(sqrt(x) + x**Rational(1, 3) +  
                                 x**Rational(1, 4), x) == FiniteSet(0)  
  
    assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0)  
  
    eq = (x - y**3)/((y**2)*sqrt(1 - y**2))  
    assert solveset_real(eq, x) == FiniteSet(y**3)  
  
    # issue 4497  
    assert solveset_real(1/(5 + x)**(S(1)/5) - 9, x) == \  
        FiniteSet(-295244/S(59049))  
  
  
@XFAIL  
def test_solve_sqrt_fail():  
    # this only works if we check real_root(eq.subs(x, S(1)/3))  
    # but checksol doesn't work like that  
    eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x  
    assert solveset_real(eq, x) == FiniteSet(S(1)/3)  
  
  
@slow  
def test_solve_sqrt_3():  
    R = Symbol('R')  
    eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)  
    sol = solveset_complex(eq, R)  
  
    assert sol == FiniteSet(*[S(5)/3 + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3,  
        -sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 + 40*re(1/((-S(1)/2 -  
        sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9 +  
        sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + S(5)/3 +  
        I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 -  
        sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 + 40*im(1/((-S(1)/2 -  
        sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9)])  
  
    # the number of real roots will depend on the value of m: for m=1 there are 4  
    # and for m=-1 there are none.  
    eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt(  
        4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt(  
            4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2)  
    unsolved_object = ConditionSet(q, Eq((-2*sqrt(4*q**2*(m - q)**2 +  
        (-m + q)**2) + sqrt((-2*m**2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1) -  
        1)**2 + (2*m**2 - 4*m - sqrt(4*m**4 - 4*m**2 + 8*m + 1) - 1)**2  
        )*Abs(q))/Abs(q), 0), S.Reals)  
    assert solveset_real(eq, q) == unsolved_object  
  
  
def test_solve_polynomial_symbolic_param():  
    assert solveset_complex((x**2 - 1)**2 - a, x) == \  
        FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),  
                  sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))  
  
    # issue 4507  
    assert solveset_complex(y - b/(1 + a*x), x) == \  
        FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)  
  
    # issue 4508  
    assert solveset_complex(y - b*x/(a + x), x) == \  
        FiniteSet(-a*y/(y - b)) - FiniteSet(-a)  
  
  
def test_solve_rational():  
    assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)  
    assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)  
    assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)  
    assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)  
    assert solveset_real((x**2/(7 - x)).diff(x), x) == \  
        FiniteSet(S(0), S(14))  
  
  
def test_solveset_real_gen_is_pow():  
    assert solveset_real(sqrt(1) + 1, x) == EmptySet()  
  
  
def test_no_sol():  
    assert solveset_real(4, x) == EmptySet()  
    assert solveset_real(exp(x), x) == EmptySet()  
    assert solveset_real(x**2 + 1, x) == EmptySet()  
    assert solveset_real(-3*a/sqrt(x), x) == EmptySet()  
    assert solveset_real(1/x, x) == EmptySet()  
    assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \  
        EmptySet()  
  
  
def test_sol_zero_real():  
    assert solveset_real(0, x) == S.Reals  
    assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)  
    assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals  
  
  
def test_no_sol_rational_extragenous():  
    assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet()  
    assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet()  
  
  
def test_solve_polynomial_cv_1a():  
    """  
    Test for solving on equations that can be converted to  
    a polynomial equation using the change of variable y -> x**Rational(p, q)  
    """  
    assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)  
    assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)  
    assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)  
    assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)  
    assert solveset_real(x*(x**(S(1) / 3) - 3), x) == \  
        FiniteSet(S(0), S(27))  
  
  
def test_solveset_real_rational():  
    """Test solveset_real for rational functions"""  
    assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \  
        == FiniteSet(y**3)  
    # issue 4486  
    assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)  
  
  
def test_solveset_real_log():  
    assert solveset_real(log((x-1)*(x+1)), x) == \  
        FiniteSet(sqrt(2), -sqrt(2))  
  
  
def test_poly_gens():  
    assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \  
        FiniteSet(-Rational(3, 2), S.Half)  
  
  
@XFAIL  
def test_uselogcombine_1():  
    assert solveset_real(log(x - 3) + log(x + 3), x) == \  
        FiniteSet(sqrt(10))  
    assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)  
    assert solveset_real(log(x + 3) + log(1 + 3/x) - 3) == FiniteSet(  
        -3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,  
        -sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2)  
  
  
@XFAIL  
def test_uselogcombine_2():  
    eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))  
    assert solveset_real(eq, x) == \  
        FiniteSet(-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z))))  
  
  
def test_solve_abs():  
    assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)  
    assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \  
        FiniteSet(1, 9)  
    assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \  
        FiniteSet(-1, Rational(1, 3))  
  
    assert solveset_real(Abs(x - 7) - 8, x) == FiniteSet(-S(1), S(15))  
  
    # issue 9565  
    assert solveset_real(Abs((x - 1)/(x - 5)) <= S(1)/3, x) == Interval(-1, 2)  
  
    # issue #10069  
    eq = abs(1/(x - 1)) - 1 > 0  
    u = Union(Interval.open(0, 1), Interval.open(1, 2))  
    assert solveset_real(eq, x) == u  
    assert solveset(eq, x, domain=S.Reals) == u  
  
    raises(ValueError, lambda: solveset(abs(x) - 1, x))  
  
  
@XFAIL  
def test_rewrite_trigh():  
    # if this import passes then the test below should also pass  
    from sympy import sech  
    assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(  
        2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),  
        2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),  
        2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),  
        2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half))  
  
  
def test_real_imag_splitting():  
    a, b = symbols('a b', real=True, finite=True)  
    assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \  
        FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))  
    assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \  
        S.EmptySet  
  
  
def test_units():  
    assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm)  
  
  
def test_solve_only_exp_1():  
    y = Symbol('y', positive=True, finite=True)  
    assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))  
    assert solveset_real(exp(x) + exp(-x) - 4, x) == \  
        FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))  
    assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet  
  
  
@XFAIL  
def test_solve_only_exp_2():  
    assert solveset_real(exp(x/y)*exp(-z/y) - 2, y) == \  
        FiniteSet((x - z)/log(2))  
    assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \  
        FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))  
  
  
def test_atan2():  
    # The .inverse() method on atan2 works only if x.is_real is True and the  
    # second argument is a real constant  
    assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))  
  
  
def test_piecewise():  
    eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3  
    assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))  
  
    absxm3 = Piecewise(  
        (x - 3, S(0) <= x - 3),  
        (3 - x, S(0) > x - 3))  
    y = Symbol('y', positive=True)  
    assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)  
  
    f = Piecewise(((x - 2)**2, x >= 0), (0, True))  
    assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))  
  
    assert solveset(Piecewise((x + 1, x > 0), (I, True)) - I, x) == \  
        Interval(-oo, 0)  
  
  
def test_solveset_complex_polynomial():  
    from sympy.abc import x, a, b, c  
    assert solveset_complex(a*x**2 + b*x + c, x) == \  
        FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),  
                  -b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))  
  
    assert solveset_complex(x - y**3, y) == FiniteSet(  
        (-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,  
        x**Rational(1, 3),  
        (-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)  
  
    assert solveset_complex(x + 1/x - 1, x) == \  
        FiniteSet(Rational(1, 2) + I*sqrt(3)/2, Rational(1, 2) - I*sqrt(3)/2)  
  
  
def test_sol_zero_complex():  
    assert solveset_complex(0, x) == S.Complexes  
  
  
def test_solveset_complex_rational():  
    assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \  
        FiniteSet(1, I)  
  
    assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \  
        FiniteSet(y**3)  
    assert solveset_complex(-x**2 - I, x) == \  
        FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)  
  
  
def test_solve_quintics():  
    skip("This test is too slow")  
    f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979  
    s = solveset_complex(f, x)  
    for root in s:  
        res = f.subs(x, root.n()).n()  
        assert tn(res, 0)  
  
    f = x**5 + 15*x + 12  
    s = solveset_complex(f, x)  
    for root in s:  
        res = f.subs(x, root.n()).n()  
        assert tn(res, 0)  
  
  
def test_solveset_complex_exp():  
    from sympy.abc import x, n  
    assert solveset_complex(exp(x) - 1, x) == \  
        imageset(Lambda(n, I*2*n*pi), S.Integers)  
    assert solveset_complex(exp(x) - I, x) == \  
        imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers)  
    assert solveset_complex(1/exp(x), x) == S.EmptySet  
    assert solveset_complex(sinh(x).rewrite(exp), x) == \  
        imageset(Lambda(n, n*pi*I), S.Integers)  
  
  
def test_solve_complex_log():  
    assert solveset_complex(log(x), x) == FiniteSet(1)  
    assert solveset_complex(1 - log(a + 4*x**2), x) == \  
        FiniteSet(-sqrt(-a/4 + E/4), sqrt(-a/4 + E/4))  
  
  
def test_solve_complex_sqrt():  
    assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \  
        FiniteSet(-S(1), S(2))  
    assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \  
        FiniteSet(-S(2), 3 - 4*I)  
    assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \  
        FiniteSet(S(0), 1 / a ** 2)  
  
  
def test_solveset_complex_tan():  
    s = solveset_complex(tan(x).rewrite(exp), x)  
    assert s == imageset(Lambda(n, pi*n), S.Integers) - \  
        imageset(Lambda(n, pi*n + pi/2), S.Integers)  
  
  
def test_solve_trig():  
    from sympy.abc import n  
    assert solveset_real(sin(x), x) == \  
        Union(imageset(Lambda(n, 2*pi*n), S.Integers),  
              imageset(Lambda(n, 2*pi*n + pi), S.Integers))  
  
    assert solveset_real(sin(x) - 1, x) == \  
        imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)  
  
    assert solveset_real(cos(x), x) == \  
        Union(imageset(Lambda(n, 2*pi*n - pi/2), S.Integers),  
              imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))  
  
    assert solveset_real(sin(x) + cos(x), x) == \  
        Union(imageset(Lambda(n, 2*n*pi - pi/4), S.Integers),  
              imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers))  
  
    assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet  
  
    assert solveset_complex(cos(x) - S.Half, x) == \  
        Union(imageset(Lambda(n, 2*n*pi + pi/3), S.Integers),  
              imageset(Lambda(n, 2*n*pi - pi/3), S.Integers))  
  
    y, a = symbols('y,a')  
    assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \  
        imageset(Lambda(n, 2*n*pi), S.Integers)  
  
  
@XFAIL  
def test_solve_trig_abs():  
    assert solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals) == \  
        Union(ImageSet(Lambda(n, n*pi + (-1)**n*pi/2), S.Naturals0),  
              ImageSet(Lambda(n, -n*pi - (-1)**n*pi/2), S.Naturals0))  
  
  
def test_solve_invalid_sol():  
    assert 0 not in solveset_real(sin(x)/x, x)  
    assert 0 not in solveset_complex((exp(x) - 1)/x, x)  
  
  
@XFAIL  
def test_solve_trig_simplified():  
    from sympy.abc import n  
    assert solveset_real(sin(x), x) == \  
        imageset(Lambda(n, n*pi), S.Integers)  
  
    assert solveset_real(cos(x), x) == \  
        imageset(Lambda(n, n*pi + pi/2), S.Integers)  
  
    assert solveset_real(cos(x) + sin(x), x) == \  
        imageset(Lambda(n, n*pi - pi/4), S.Integers)  
  
  
@XFAIL  
def test_solve_lambert():  
    assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))  
    assert solveset_real(x + 2**x, x) == \  
        FiniteSet(-LambertW(log(2))/log(2))  
  
    # issue 4739  
    assert solveset_real(exp(log(5)*x) - 2**x, x) == FiniteSet(0)  
    ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)  
    assert ans == FiniteSet(-Rational(5, 3) +  
                            LambertW(-10240*2**(S(1)/3)*log(2)/3)/(5*log(2)))  
  
    eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)  
    result = solveset_real(eq, x)  
    ans = FiniteSet((log(2401) +  
                     5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)  
    assert result == ans  
    assert solveset_real(eq.expand(), x) == result  
  
    assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \  
        FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)  
  
    assert solveset_real(2*x + 5 + log(3*x - 2), x) == \  
        FiniteSet(Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2)  
  
    assert solveset_real(3*x + log(4*x), x) == \  
        FiniteSet(LambertW(Rational(3, 4))/3)  
  
    assert solveset_complex(x**z*y**z - 2, z) == \  
        FiniteSet(log(2)/(log(x) + log(y)))  
  
    assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))  
  
    a = Symbol('a')  
    assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))  
    a = Symbol('a', real=True)  
    assert solveset_real(a/x + exp(x/2), x) == \  
        FiniteSet(2*LambertW(-a/2))  
    assert solveset_real((a/x + exp(x/2)).diff(x), x) == \  
        FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))  
  
    assert solveset_real(1/(1/x - y + exp(y)), x) == EmptySet()  
    # coverage test  
    p = Symbol('p', positive=True)  
    w = Symbol('w')  
    assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet()  
    assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet()  
    assert solveset_real(2*x**w - 4*y**w, w) == \  
        solveset_real((x/y)**w - 2, w)  
  
    assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \  
        FiniteSet(LambertW(3*S.Exp1)/3)  
    assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \  
        FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)  
    assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \  
        FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)  
    assert solveset_real(x*log(x) + 3*x + 1, x) == \  
        FiniteSet(exp(-3 + LambertW(-exp(3))))  
    eq = (x*exp(x) - 3).subs(x, x*exp(x))  
    assert solveset_real(eq, x) == \  
        FiniteSet(LambertW(3*exp(-LambertW(3))))  
  
    assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \  
        FiniteSet(-((log(a**5) + LambertW(S(1)/3))/(3*log(a))))  
    p = symbols('p', positive=True)  
    assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \  
        FiniteSet(  
        log((-3**(S(1)/3) - 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),  
        log((-3**(S(1)/3) + 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),  
        log((3*LambertW(S(1)/3)/p**5)**(1/(3*log(p)))),)  # checked numerically  
    # check collection  
    b = Symbol('b')  
    eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)  
    assert solveset_real(eq, x) == FiniteSet(  
        -((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))  
  
    # issue 4271  
    assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(  
        6*LambertW((-1)**(S(1)/3)*a**(S(1)/3)/3))  
  
    assert solveset_real(x**3 - 3**x, x) == \  
        FiniteSet(-3/log(3)*LambertW(-log(3)/3))  
    assert solveset_real(x**2 - 2**x, x) == FiniteSet(2)  
    assert solveset_real(-x**2 + 2**x, x) == FiniteSet(2)  
    assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(  
        acos(-3*LambertW(-log(3)/3)/log(3)))  
  
    assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)  
    assert solveset_real(5**(x/2) - 2**(x/3), x) == FiniteSet(0)  
    b = sqrt(6)*sqrt(log(2))/sqrt(log(5))  
    assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)  
  
  
def test_solveset():  
    x = Symbol('x')  
    raises(ValueError, lambda: solveset(x + y))  
    raises(ValueError, lambda: solveset(x, 1))  
  
    assert solveset(0, domain=S.Reals) == S.Reals  
    assert solveset(1) == S.EmptySet  
    assert solveset(True, domain=S.Reals) == S.Reals  # issue 10197  
    assert solveset(False, domain=S.Reals) == S.EmptySet  
  
    assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)  
    assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)  
    assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)  
  
    assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)  
    assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)  
  
    assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers)  
    assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n),  
                                                  S.Integers)  
  
  
def test_conditionset():  
    assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \  
        ConditionSet(x, True, S.Reals)  
  
    assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals) == \  
        ConditionSet(x, Eq(x*(x + sin(x)) - 1, 0), S.Reals)  
  
    assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals) == \  
        ConditionSet(x, Eq(-x + sin(Abs(x)), 0), Interval(-oo, oo))  
  
    assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x) == \  
        imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)  
  
    assert solveset(x + sin(x) > 1, x, domain=S.Reals) == \  
        ConditionSet(x, x + sin(x) > 1, S.Reals)  
  
  
@XFAIL  
def test_conditionset_equality():  
    ''' Checking equality of different representations of ConditionSet'''  
    assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes)  
  
  
def test_solveset_domain():  
    x = Symbol('x')  
  
    assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)  
    assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)  
    assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)  
  
  
def test_improve_coverage():  
    from sympy.solvers.solveset import _has_rational_power  
    x = Symbol('x')  
    y = exp(x+1/x**2)  
    solution = solveset(y**2+y, x, S.Reals)  
    unsolved_object = ConditionSet(x, Eq((exp((x**3 + 1)/x**2) + 1)*exp((x**3 + 1)/x**2), 0), S.Reals)  
    assert solution == unsolved_object  
  
    assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)  
    assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)  
  
  
def test_issue_9522():  
    x = Symbol('x')  
    expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)  
    expr2 = Eq(1/x + x, 1/x)  
  
    assert solveset(expr1, x, S.Reals) == EmptySet()  
    assert solveset(expr2, x, S.Reals) == EmptySet()  
  
  
def test_linear_eq_to_matrix():  
    x, y, z = symbols('x, y, z')  
    eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12]  
    eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z]  
  
    A, b = linear_eq_to_matrix(eqns1, x, y, z)  
    assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]])  
    assert b == Matrix([[3], [0], [12]])  
  
    A, b = linear_eq_to_matrix(eqns2, x, y, z)  
    assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]])  
    assert b == Matrix([[1], [-2], [0]])  
  
    # Pure symbolic coefficients  
    from sympy.abc import a, b, c, d, e, f, g, h, i, j, k, l  
    eqns3 = [a*x + b*y + c*z - d, e*x + f*y + g*z - h, i*x + j*y + k*z - l]  
    A, B = linear_eq_to_matrix(eqns3, x, y, z)  
    assert A == Matrix([[a, b, c], [e, f, g], [i, j, k]])  
    assert B == Matrix([[d], [h], [l]])  
  
    # raise ValueError if no symbols are given  
    raises(ValueError, lambda: linear_eq_to_matrix(eqns3))  
  
  
def test_linsolve():  
    x, y, z, u, v, w = symbols("x, y, z, u, v, w")  
    x1, x2, x3, x4 = symbols('x1, x2, x3, x4')  
  
    # Test for different input forms  
  
    M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]])  
    system1 = A, b = M[:, :-1], M[:, -1]  
    Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12,  
            2*x1 + 4*x2 + 6*x4 - 4]  
  
    sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))  
    assert linsolve(M, (x1, x2, x3, x4)) == sol  
    assert linsolve(Eqns, (x1, x2, x3, x4)) == sol  
    assert linsolve(system1, (x1, x2, x3, x4)) == sol  
  
    # raise ValueError if no symbols are given  
    raises(ValueError, lambda: linsolve(system1))  
  
    # raise ValueError if, A & b is not given as tuple  
    raises(ValueError, lambda: linsolve(A, b, x1, x2, x3, x4))  
  
    # raise ValueError for garbage value  
    raises(ValueError, lambda: linsolve(Eqns[0], x1, x2, x3, x4))  
  
    # Fully symbolic test  
    a, b, c, d, e, f = symbols('a, b, c, d, e, f')  
    A = Matrix([[a, b], [c, d]])  
    B = Matrix([[e], [f]])  
    system2 = (A, B)  
    sol = FiniteSet(((-b*f + d*e)/(a*d - b*c), (a*f - c*e)/(a*d - b*c)))  
    assert linsolve(system2, [x, y]) == sol  
  
    # Test for Dummy Symbols issue #9667  
    x1 = Dummy('x1')  
    x2 = Dummy('x2')  
    x3 = Dummy('x3')  
    x4 = Dummy('x4')  
  
    assert linsolve(system1, x1, x2, x3, x4) == FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))  
  
    # No solution  
    A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]])  
    b = Matrix([0, 0, 1])  
    assert linsolve((A, b), (x, y, z)) == EmptySet()  
  
    # Issue #10056  
    A, B, J1, J2 = symbols('A B J1 J2')  
    Augmatrix = Matrix([  
        [2*I*J1, 2*I*J2, -2/J1],  
        [-2*I*J2, -2*I*J1, 2/J2],  
        [0, 2, 2*I/(J1*J2)],  
        [2, 0,  0],  
        ])  
  
    assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2)))  
  
    # Issue #10121 - Assignment of free variables  
    a, b, c, d, e = symbols('a, b, c, d, e')  
    Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])  
    assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e))  
  
  
def test_solve_decomposition():  
    x = Symbol('x')  
    n = Dummy('n')  
  
    f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6  
    f2 = sin(x)**2 - 2*sin(x) + 1  
    f3 = sin(x)**2 - sin(x)  
    f4 = sin(x + 1)  
    f5 = exp(x + 2) - 1  
    f6 = 1/log(x)  
  
    s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers)  
    s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)  
    s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)  
    s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers)  
    s5 = ImageSet(Lambda(n, (2*n + 1)*pi - 1), S.Integers)  
  
    assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3))  
    assert solve_decomposition(f2, x, S.Reals) == s3  
    assert solve_decomposition(f3, x, S.Reals) == Union(s1, s2, s3)  
    assert solve_decomposition(f4, x, S.Reals) == Union(s4, s5)  
    assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2)  
    assert solve_decomposition(f6, x, S.Reals) == ConditionSet(x, Eq(f6, 0), S.Reals)  
  
  
# nonlinsolve testcases  
def test_nonlinsolve_basic():  
    assert nonlinsolve([],[]) == S.EmptySet  
    assert nonlinsolve([],[x, y]) == S.EmptySet  
  
    system = [x, y - x - 5]  
    assert nonlinsolve([x],[x, y]) == FiniteSet((0, y))  
    assert nonlinsolve(system, [y]) == FiniteSet((x + 5,))  
    soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)  
    assert nonlinsolve([sin(x) - 1], [x]) == FiniteSet(tuple(soln))  
    assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,))  
  
    soln = FiniteSet((- y, y), (y, y))  
    assert nonlinsolve([Abs(x) - y], x, y) == soln  
    soln = FiniteSet((y, y))  
    assert nonlinsolve([x - y, 0], x, y) == soln  
    assert nonlinsolve([0, x - y], x, y) == soln  
    assert nonlinsolve([x - y, x - y], x, y) == soln  
    assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y))  
  
  
def test_raise_exception_nonlinsolve():  
    raises(IndexError, lambda: nonlinsolve([x**2 -1], []))  
    raises(ValueError, lambda: nonlinsolve([x**2 -1]))  
    raises(ValueError, lambda: nonlinsolve([x**2 -1], [sin(x)]))  
    raises(ValueError, lambda: nonlinsolve([x**2 -1], sin(x)))  
    raises(ValueError, lambda: nonlinsolve([x**2 -1], 1))  
    raises(ValueError, lambda: nonlinsolve([x**2 -1], x + y))  
  
  
def test_trig_system():  
    # TODO: add more simple testcases when solveset returns  
    # simplified soln for Trig eq  
    assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet  
    soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)  
    soln = FiniteSet(soln1)  
    assert nonlinsolve([sin(x) - 1, cos(x)], x) == soln  
  
  
@XFAIL  
def test_trig_system_fail():  
    # fails because solveset trig solver is not much smart.  
    sys = [x + y - pi/2, sin(x) + sin(y) - 1]  
    # solveset returns conditonset for sin(x) + sin(y) - 1  
    soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers),  
        ImageSet(Lambda(n, n*pi)), S.Integers)  
    soln_1 = FiniteSet(soln_1)  
    soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers),  
        ImageSet(Lambda(n, n*pi+ pi/2), S.Integers))  
    soln_2 = FiniteSet(soln_2)  
    soln = soln_1 + soln_2  
    assert nonlinsolve(sys, [x, y]) == soln  
  
    # Add more cases from here  
    # http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno  
    sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2]  
    soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers),  
        ImageSet(Lambda(n, 2*n*pi + 2*pi/3), S.Integers))  
    soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),  
        ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers))  
    assert nonlinsolve(sys, [x, y]) ==FiniteSet((soln_x, soln_y))  
  
  
def test_nonlinsolve_positive_dimensional():  
    x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', real = True)  
    assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y))  
  
    system = [a**2 + a*c, a - b]  
    assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c))  
    # here (a= 0, b = 0) is independent soln so both is printed.  
    # if symbols = [a, b, c] then only {a : -c ,b : -c}  
  
    eq1 =  a + b + c + d  
    eq2 = a*b + b*c + c*d + d*a  
    eq3 = a*b*c + b*c*d + c*d*a + d*a*b  
    eq4 = a*b*c*d - 1  
    system = [eq1, eq2, eq3, eq4]  
    sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0))  
    sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0))  
    soln = FiniteSet(sol1, sol2)  
    assert nonlinsolve(system, [a, b, c, d]) == soln  
  
  
def test_nonlinsolve_polysys():  
    x, y, z = symbols('x, y, z', real = True)  
    assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet  
  
    s = (-y + 2, y)  
    assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s)  
  
    system = [x**2 - y**2]  
    soln_real = FiniteSet((-y, y), (y, y))  
    soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y))  
    soln =soln_real + soln_complex  
    assert nonlinsolve(system, [x, y]) == soln  
  
    system = [x**2 - y**2]  
    soln_real= FiniteSet((y, -y), (y, y))  
    soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y)))  
    soln = soln_real + soln_complex  
    assert nonlinsolve(system, [y, x]) == soln  
  
    system = [x**2 + y - 3, x - y - 4]  
    assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x))  
  
  
def test_nonlinsolve_using_substitution():  
    x, y, z, n = symbols('x, y, z, n', real = True)  
    system = [(x + y)*n - y**2 + 2]  
    s_x = (n*y - y**2 + 2)/n  
    soln = (-s_x, y)  
    assert nonlinsolve(system, [x, y]) == FiniteSet(soln)  
  
    system = [z**2*x**2 - z**2*y**2/exp(x)]  
    soln_real_1 = (y, x, 0)  
    soln_real_2 = (-exp(x/2)*Abs(x), x, z)  
    soln_real_3 = (exp(x/2)*Abs(x), x, z)  
    soln_complex_1 = (-x*exp(x/2), x, z)  
    soln_complex_2 = (x*exp(x/2), x, z)  
    syms = [y, x, z]  
    soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\  
        soln_real_2, soln_real_3)  
    assert nonlinsolve(system,syms) == soln  
  
  
def test_nonlinsolve_complex():  
    x, y, z = symbols('x, y, z')  
    n = Dummy('n')  
    real_soln = (log(sin(S(1)/3)), S(1)/3)  
    img_lamda = Lambda(n, 2*n*I*pi + Mod(log(sin(S(1)/3)), 2*I*pi))  
    complex_soln = (ImageSet(img_lamda, S.Integers), S(1)/3)  
    soln = FiniteSet(real_soln, complex_soln)  
    assert nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]) == soln  
  
    system = [exp(x) - sin(y), 1/exp(y) - 3]  
    soln_x = ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(log(3)))), S.Integers)  
    soln_real = FiniteSet((soln_x, -log(S(3))))  
    # Mod(-log(3), 2*I*pi) is equal to -log(3).  
    expr_x = I*(2*n*pi + arg(sin(2*n*I*pi + Mod(-log(3), 2*I*pi)))) + \  
                log(Abs(sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))  
    soln_x = ImageSet(Lambda(n, expr_x), S.Integers)  
    expr_y = 2*n*I*pi + Mod(-log(3), 2*I*pi)  
    soln_y = ImageSet(Lambda(n, expr_y), S.Integers)  
    soln_complex = FiniteSet((soln_x, soln_y))  
    soln = soln_real + soln_complex  
    assert nonlinsolve(system, [x, y]) == soln  
  
    system = [exp(x) - sin(y), y**2 - 4]  
    s1 = (log(sin(2)), 2)  
    s2 = (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2 )  
    img = ImageSet(Lambda(n, 2*n*I*pi + Mod(log(sin(2)), 2*I*pi)), S.Integers)  
    s3 = (img, 2)  
    assert nonlinsolve(system, [x, y]) == FiniteSet(s1, s2, s3)  
  
  
@XFAIL  
def test_solve_nonlinear_trans():  
    # After the transcendental equation solver these will work  
    x, y, z = symbols('x, y, z', real=True)  
    soln1 = FiniteSet((2*LambertW(y/2), y))  
    soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y))  
    soln3 = FiniteSet((x*exp(x/2), x))  
    soln4 = FiniteSet(2*LambertW(y/2), y)  
    assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1  
    assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2  
    assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3  
    assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4  
  
  
def test_issue_5132_1():  
    system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4]  
    assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1))  
  
    n = Dummy('n')  
    eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]  
    s_real_y = -log(3)  
    s_real_z = sqrt(-exp(2*x) - sin(log(3)))  
    soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))  
    lam = Lambda(n, 2*n*I*pi + Mod(-log(3), 2*I*pi))  
    s_complex_y = ImageSet(lam, S.Integers)  
    lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))  
    s_complex_z_1 = ImageSet(lam, S.Integers)  
    lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))  
    s_complex_z_2 = ImageSet(lam, S.Integers)  
    soln_complex = FiniteSet(  
                                            (s_complex_y, s_complex_z_1),  
                                            (s_complex_y, s_complex_z_2)  
                                        )  
    soln = soln_real + soln_complex  
    assert nonlinsolve(eqs, [y, z]) == soln  
  
  
def test_issue_5132_2():  
    x, y = symbols('x, y', real=True)  
    eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]  
    n = Dummy('n')  
    soln_real = (log(-z**2 + sin(y))/2, z)  
    lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2)  
    img = ImageSet(lam, S.Integers)  
    # not sure about the complex soln. But it looks correct.  
    soln_complex = (img, z)  
    soln = FiniteSet(soln_real, soln_complex)  
    assert nonlinsolve(eqs, [x, z]) == soln  
  
    r, t = symbols('r, t')  
    system = [r - x**2 - y**2, tan(t) - y/x]  
    s_x = sqrt(r/(tan(t)**2 + 1))  
    s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)  
    soln = FiniteSet((s_x, s_y), (-s_x, -s_y))  
    assert nonlinsolve(system, [x, y]) == soln  
  
  
def test_issue_6752():  
    a,b,c,d = symbols('a, b, c, d', real=True)  
    assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)}  
  
  
@SKIP("slow")  
def test_issue_5114():  
    # slow testcase  
    a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')  
  
    # there is no 'a' in the equation set but this is how the  
    # problem was originally posed  
    syms = [a, b, c, f, h, k, n]  
    eqs = [b + r/d - c/d,  
    c*(1/d + 1/e + 1/g) - f/g - r/d,  
        f*(1/g + 1/i + 1/j) - c/g - h/i,  
        h*(1/i + 1/l + 1/m) - f/i - k/m,  
        k*(1/m + 1/o + 1/p) - h/m - n/p,  
        n*(1/p + 1/q) - k/p]  
    assert len(nonlinsolve(eqs, syms)) == 1  
  
  
@SKIP("Hangs")  
def _test_issue_5335():  
    # Not able to check zero dimensional system.  
    # is_zero_dimensional Hangs  
    lam, a0, conc = symbols('lam a0 conc')  
    eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,  
           a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,  
           x + y - conc]  
    sym = [x, y, a0]  
    # there are 4 solutions but only two are valid  
    assert len(nonlinsolve(eqs, sym)) == 2  
    # float  
    lam, a0, conc = symbols('lam a0 conc')  
    eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,  
           a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,  
           x + y - conc]  
    sym = [x, y, a0]  
    assert len(nonlinsolve(eqs, sym)) == 2  
  
  
def test_issue_2777():  
    # the equations represent two circles  
    x, y = symbols('x y', real=True)  
    e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3  
    a, b = 191/S(20), 3*sqrt(391)/20  
    ans = {(a, -b), (a, b)}  
    assert nonlinsolve((e1, e2), (x, y)) == ans  
    assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet  
    # make the 2nd circle's radius be -3  
    e2 += 6  
    assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet  
  
  
def test_issue_8828():  
    x1 = 0  
    y1 = -620  
    r1 = 920  
    x2 = 126  
    y2 = 276  
    x3 = 51  
    y3 = 205  
    r3 = 104  
    v = [x, y, z]  
  
    f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2  
    f2 = (x2 - x)**2 + (y2 - y)**2 - z**2  
    f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2  
    F = [f1, f2, f3]  
  
    g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1  
    g2 = f2  
    g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3  
    G = [g1, g2, g3]  
  
    # both soln same  
    A = nonlinsolve(F, v)  
    B = nonlinsolve(G, v)  
    assert A == B  
  
  
def test_nonlinsolve_conditionset():  
    # when solveset failed to solve all the eq  
    # return conditionset  
    f = Function('f')  
    f1 = f(x) - pi/2  
    f2 = f(x) - 3*pi/2  
    intermediate_system = FiniteSet(2*f(x) - 3*pi, 2*f(x) - pi)  
    symbols = FiniteSet(x, y)  
    soln = ConditionSet(  
        symbols,  
        intermediate_system,  
        S.Complexes)  
    assert nonlinsolve([f1, f2], [x,y]) == soln  
  
  
def test_substitution_basic():  
    assert substitution([], [x, y]) == S.EmptySet  
    assert substitution([], []) == S.EmptySet  
    system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19]  
    soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2))  
    assert substitution(system, [x, y]) == soln  
  
    soln = FiniteSet((-1, 1))  
    assert substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) == soln  
    assert substitution(  
        [x + y], [x], [{y: 1}], [y],  
        set([x + 1]), [y, x]) == S.EmptySet  
  
  
def test_issue_5132_substitution():  
    x, y, z, r, t = symbols('x, y, z, r, t', real=True)  
    system = [r - x**2 - y**2, tan(t) - y/x]  
    s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))  
    s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))  
    s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)  
    soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y))  
    assert substitution(system, [x, y]) == soln  
  
    n = Dummy('n')  
    eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]  
    s_real_y = -log(3)  
    s_real_z = sqrt(-exp(2*x) - sin(log(3)))  
    soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))  
    lam = Lambda(n, 2*n*I*pi + Mod(-log(3), 2*I*pi))  
    s_complex_y = ImageSet(lam, S.Integers)  
    lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))  
    s_complex_z_1 = ImageSet(lam, S.Integers)  
    lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))  
    s_complex_z_2 = ImageSet(lam, S.Integers)  
    soln_complex = FiniteSet(  
                                            (s_complex_y, s_complex_z_1),  
                                            (s_complex_y, s_complex_z_2)  
                                        )  
    soln = soln_real + soln_complex  
    assert substitution(eqs, [y, z]) == soln  
  
  
def test_raises_substitution():  
    raises(ValueError, lambda: substitution([x**2 -1], []))  
    raises(TypeError, lambda: substitution([x**2 -1]))  
    raises(ValueError, lambda: substitution([x**2 -1], [sin(x)]))  
    raises(TypeError, lambda: substitution([x**2 -1], x))  
    raises(TypeError, lambda: substitution([x**2 -1], 1))  
  
# end of tests for nonlinsolve  
  
  
def test_issue_9556():  
    x = Symbol('x')  
    b = Symbol('b', positive=True)  
  
    assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet()  
    assert solveset(Abs(x) + b, x, S.Reals) == EmptySet()  
    assert solveset(Eq(b, -1), b, S.Reals) == EmptySet()  
  
  
def test_issue_9611():  
    x = Symbol('x')  
    a = Symbol('a')  
    y = Symbol('y')  
  
    assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals  
    assert solveset(Eq(y - y + a, a), y) == S.Complexes  
  
  
def test_issue_9557():  
    x = Symbol('x')  
    a = Symbol('a')  
  
    assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals,  
        FiniteSet(-sqrt(-a), sqrt(-a)))  
  
  
def test_issue_9778():  
    assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)  
    assert solveset(x**(S(3)/5) + 1, x, S.Reals) == S.EmptySet  
    assert solveset(x**3 + y, x, S.Reals) == Intersection(Interval(-oo, oo), \  
        FiniteSet((-y)**(S(1)/3)*Piecewise((1, Ne(-im(y), 0)), ((-1)**(S(2)/3), -y < 0), (1, True))))  
  
  
@XFAIL  
def test_issue_failing_pow():  
    assert solveset(x**(S(3)/2) + 4, x, S.Reals) == S.EmptySet  
  
  
def test_issue_9849():  
    assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet  
  
  
def test_issue_9953():  
    assert linsolve([ ], x) == S.EmptySet  
  
  
def test_issue_9913():  
    assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \  
        FiniteSet(-(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)/3 - 100/  
                (3*(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)) + S(20)/3)  
  
  
def test_issue_10397():  
    assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)  
  
  
def test_simplification():  
    eq = x + (a - b)/(-2*a + 2*b)  
    assert solveset(eq, x) == FiniteSet(S.Half)  
    assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)  
  
  
def test_issue_10555():  
    f = Function('f')  
    assert solveset(f(x) - pi/2, x, S.Reals) == \  
        ConditionSet(x, Eq(2*f(x) - pi, 0), S.Reals)  
  
  
def test_issue_8715():  
    eq = x + 1/x > -2 + 1/x  
    assert solveset(eq, x, S.Reals) == \  
        (Interval.open(-2, oo) - FiniteSet(0))  
    assert solveset(eq.subs(x,log(x)), x, S.Reals) == \  
        Interval.open(exp(-2), oo) - FiniteSet(1)  
  
def test_issue_11174():  
    r, t = symbols('r t')  
    eq = z**2 + exp(2*x) - sin(y)  
    soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))  
    assert solveset(eq, x, S.Reals) == soln  
  
    eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)  
    s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))  
    soln = Intersection(S.Reals, FiniteSet(s))  
    assert solveset(eq, x, S.Reals) == soln  
             |