Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

""" 

This module provides convenient functions to transform sympy expressions to 

lambda functions which can be used to calculate numerical values very fast. 

""" 

 

from __future__ import print_function, division 

 

import inspect 

import textwrap 

 

from sympy.core.compatibility import (exec_, is_sequence, iterable, 

NotIterable, string_types, range, builtins) 

from sympy.utilities.decorator import doctest_depends_on 

 

# These are the namespaces the lambda functions will use. 

MATH = {} 

MPMATH = {} 

NUMPY = {} 

SYMPY = {} 

NUMEXPR = {} 

 

# Default namespaces, letting us define translations that can't be defined 

# by simple variable maps, like I => 1j 

# These are separate from the names above because the above names are modified 

# throughout this file, whereas these should remain unmodified. 

MATH_DEFAULT = {} 

MPMATH_DEFAULT = {} 

NUMPY_DEFAULT = {"I": 1j} 

SYMPY_DEFAULT = {} 

NUMEXPR_DEFAULT = {} 

 

# Mappings between sympy and other modules function names. 

MATH_TRANSLATIONS = { 

"ceiling": "ceil", 

"E": "e", 

"ln": "log", 

} 

 

MPMATH_TRANSLATIONS = { 

"Abs": "fabs", 

"elliptic_k": "ellipk", 

"elliptic_f": "ellipf", 

"elliptic_e": "ellipe", 

"elliptic_pi": "ellippi", 

"ceiling": "ceil", 

"chebyshevt": "chebyt", 

"chebyshevu": "chebyu", 

"E": "e", 

"I": "j", 

"ln": "log", 

#"lowergamma":"lower_gamma", 

"oo": "inf", 

#"uppergamma":"upper_gamma", 

"LambertW": "lambertw", 

"MutableDenseMatrix": "matrix", 

"ImmutableMatrix": "matrix", 

"conjugate": "conj", 

"dirichlet_eta": "altzeta", 

"Ei": "ei", 

"Shi": "shi", 

"Chi": "chi", 

"Si": "si", 

"Ci": "ci" 

} 

 

NUMPY_TRANSLATIONS = { 

"acos": "arccos", 

"acosh": "arccosh", 

"arg": "angle", 

"asin": "arcsin", 

"asinh": "arcsinh", 

"atan": "arctan", 

"atan2": "arctan2", 

"atanh": "arctanh", 

"ceiling": "ceil", 

"E": "e", 

"im": "imag", 

"ln": "log", 

"Mod": "mod", 

"oo": "inf", 

"re": "real", 

"SparseMatrix": "array", 

"ImmutableSparseMatrix": "array", 

"Matrix": "array", 

"MutableDenseMatrix": "array", 

"ImmutableMatrix": "array", 

"ImmutableDenseMatrix": "array", 

} 

 

NUMEXPR_TRANSLATIONS = {} 

 

# Available modules: 

MODULES = { 

"math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)), 

"mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)), 

"numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import_module('numpy')",)), 

"sympy": (SYMPY, SYMPY_DEFAULT, {}, ( 

"from sympy.functions import *", 

"from sympy.matrices import *", 

"from sympy import Integral, pi, oo, nan, zoo, E, I",)), 

"numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS, 

("import_module('numexpr')", )), 

} 

 

 

def _import(module, reload="False"): 

""" 

Creates a global translation dictionary for module. 

 

The argument module has to be one of the following strings: "math", 

"mpmath", "numpy", "sympy". 

These dictionaries map names of python functions to their equivalent in 

other modules. 

""" 

from sympy.external import import_module 

try: 

namespace, namespace_default, translations, import_commands = MODULES[ 

module] 

except KeyError: 

raise NameError( 

"'%s' module can't be used for lambdification" % module) 

 

# Clear namespace or exit 

if namespace != namespace_default: 

# The namespace was already generated, don't do it again if not forced. 

if reload: 

namespace.clear() 

namespace.update(namespace_default) 

else: 

return 

 

for import_command in import_commands: 

if import_command.startswith('import_module'): 

module = eval(import_command) 

 

if module is not None: 

namespace.update(module.__dict__) 

continue 

else: 

try: 

exec_(import_command, {}, namespace) 

continue 

except ImportError: 

pass 

 

raise ImportError( 

"can't import '%s' with '%s' command" % (module, import_command)) 

 

# Add translated names to namespace 

for sympyname, translation in translations.items(): 

namespace[sympyname] = namespace[translation] 

 

# For computing the modulus of a sympy expression we use the builtin abs 

# function, instead of the previously used fabs function for all 

# translation modules. This is because the fabs function in the math 

# module does not accept complex valued arguments. (see issue 9474). The 

# only exception, where we don't use the builtin abs function is the 

# mpmath translation module, because mpmath.fabs returns mpf objects in 

# contrast to abs(). 

if 'Abs' not in namespace: 

namespace['Abs'] = abs 

 

 

@doctest_depends_on(modules=('numpy')) 

def lambdify(args, expr, modules=None, printer=None, use_imps=True, 

dummify=True): 

""" 

Returns a lambda function for fast calculation of numerical values. 

 

If not specified differently by the user, SymPy functions are replaced as 

far as possible by either python-math, numpy (if available) or mpmath 

functions - exactly in this order. To change this behavior, the "modules" 

argument can be used. It accepts: 

 

- the strings "math", "mpmath", "numpy", "numexpr", "sympy" 

- any modules (e.g. math) 

- dictionaries that map names of sympy functions to arbitrary functions 

- lists that contain a mix of the arguments above, with higher priority 

given to entries appearing first. 

 

The default behavior is to substitute all arguments in the provided 

expression with dummy symbols. This allows for applied functions (e.g. 

f(t)) to be supplied as arguments. Call the function with dummify=False if 

dummy substitution is unwanted (and `args` is not a string). If you want 

to view the lambdified function or provide "sympy" as the module, you 

should probably set dummify=False. 

 

For functions involving large array calculations, numexpr can provide a 

significant speedup over numpy. Please note that the available functions 

for numexpr are more limited than numpy but can be expanded with 

implemented_function and user defined subclasses of Function. If specified, 

numexpr may be the only option in modules. The official list of numexpr 

functions can be found at: 

https://github.com/pydata/numexpr#supported-functions 

 

In previous releases ``lambdify`` replaced ``Matrix`` with ``numpy.matrix`` 

by default. As of release 1.0 ``numpy.array`` is the default. 

To get the old default behavior you must pass in ``[{'ImmutableMatrix': 

numpy.matrix}, 'numpy']`` to the ``modules`` kwarg. 

 

>>> from sympy import lambdify, Matrix 

>>> from sympy.abc import x, y 

>>> import numpy 

>>> array2mat = [{'ImmutableMatrix': numpy.matrix}, 'numpy'] 

>>> f = lambdify((x, y), Matrix([x, y]), modules=array2mat) 

>>> f(1, 2) 

matrix([[1], 

[2]]) 

 

Usage 

===== 

 

(1) Use one of the provided modules: 

 

>>> from sympy import sin, tan, gamma 

>>> from sympy.utilities.lambdify import lambdastr 

>>> from sympy.abc import x, y 

>>> f = lambdify(x, sin(x), "math") 

 

Attention: Functions that are not in the math module will throw a name 

error when the lambda function is evaluated! So this would 

be better: 

 

>>> f = lambdify(x, sin(x)*gamma(x), ("math", "mpmath", "sympy")) 

 

(2) Use some other module: 

 

>>> import numpy 

>>> f = lambdify((x,y), tan(x*y), numpy) 

 

Attention: There are naming differences between numpy and sympy. So if 

you simply take the numpy module, e.g. sympy.atan will not be 

translated to numpy.arctan. Use the modified module instead 

by passing the string "numpy": 

 

>>> f = lambdify((x,y), tan(x*y), "numpy") 

>>> f(1, 2) 

-2.18503986326 

>>> from numpy import array 

>>> f(array([1, 2, 3]), array([2, 3, 5])) 

[-2.18503986 -0.29100619 -0.8559934 ] 

 

(3) Use a dictionary defining custom functions: 

 

>>> def my_cool_function(x): return 'sin(%s) is cool' % x 

>>> myfuncs = {"sin" : my_cool_function} 

>>> f = lambdify(x, sin(x), myfuncs); f(1) 

'sin(1) is cool' 

 

Examples 

======== 

 

>>> from sympy.utilities.lambdify import implemented_function 

>>> from sympy import sqrt, sin, Matrix 

>>> from sympy import Function 

>>> from sympy.abc import w, x, y, z 

 

>>> f = lambdify(x, x**2) 

>>> f(2) 

4 

>>> f = lambdify((x, y, z), [z, y, x]) 

>>> f(1,2,3) 

[3, 2, 1] 

>>> f = lambdify(x, sqrt(x)) 

>>> f(4) 

2.0 

>>> f = lambdify((x, y), sin(x*y)**2) 

>>> f(0, 5) 

0.0 

>>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy') 

>>> row(1, 2) 

Matrix([[1, 3]]) 

 

Tuple arguments are handled and the lambdified function should 

be called with the same type of arguments as were used to create 

the function.: 

 

>>> f = lambdify((x, (y, z)), x + y) 

>>> f(1, (2, 4)) 

3 

 

A more robust way of handling this is to always work with flattened 

arguments: 

 

>>> from sympy.utilities.iterables import flatten 

>>> args = w, (x, (y, z)) 

>>> vals = 1, (2, (3, 4)) 

>>> f = lambdify(flatten(args), w + x + y + z) 

>>> f(*flatten(vals)) 

10 

 

Functions present in `expr` can also carry their own numerical 

implementations, in a callable attached to the ``_imp_`` 

attribute. Usually you attach this using the 

``implemented_function`` factory: 

 

>>> f = implemented_function(Function('f'), lambda x: x+1) 

>>> func = lambdify(x, f(x)) 

>>> func(4) 

5 

 

``lambdify`` always prefers ``_imp_`` implementations to implementations 

in other namespaces, unless the ``use_imps`` input parameter is False. 

""" 

from sympy.core.symbol import Symbol 

from sympy.utilities.iterables import flatten 

 

# If the user hasn't specified any modules, use what is available. 

module_provided = True 

if modules is None: 

module_provided = False 

# Use either numpy (if available) or python.math where possible. 

# XXX: This leads to different behaviour on different systems and 

# might be the reason for irreproducible errors. 

modules = ["math", "mpmath", "sympy"] 

 

#Attempt to import numpy 

try: 

_import("numpy") 

except ImportError: 

pass 

else: 

modules.insert(1, "numpy") 

 

# Get the needed namespaces. 

namespaces = [] 

# First find any function implementations 

if use_imps: 

namespaces.append(_imp_namespace(expr)) 

# Check for dict before iterating 

if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'): 

namespaces.append(modules) 

else: 

# consistency check 

if _module_present('numexpr', modules) and len(modules) > 1: 

raise TypeError("numexpr must be the only item in 'modules'") 

namespaces += list(modules) 

# fill namespace with first having highest priority 

namespace = {} 

for m in namespaces[::-1]: 

buf = _get_namespace(m) 

namespace.update(buf) 

 

if hasattr(expr, "atoms"): 

#Try if you can extract symbols from the expression. 

#Move on if expr.atoms in not implemented. 

syms = expr.atoms(Symbol) 

for term in syms: 

namespace.update({str(term): term}) 

 

if _module_present('numpy',namespaces) and printer is None: 

#XXX: This has to be done here because of circular imports 

from sympy.printing.lambdarepr import NumPyPrinter as printer 

 

if _module_present('numexpr',namespaces) and printer is None: 

#XXX: This has to be done here because of circular imports 

from sympy.printing.lambdarepr import NumExprPrinter as printer 

 

# Get the names of the args, for creating a docstring 

if not iterable(args): 

args = (args,) 

names = [] 

# Grab the callers frame, for getting the names by inspection (if needed) 

callers_local_vars = inspect.currentframe().f_back.f_locals.items() 

for n, var in enumerate(args): 

if hasattr(var, 'name'): 

names.append(var.name) 

else: 

# It's an iterable. Try to get name by inspection of calling frame. 

name_list = [var_name for var_name, var_val in callers_local_vars 

if var_val is var] 

if len(name_list) == 1: 

names.append(name_list[0]) 

else: 

# Cannot infer name with certainty. arg_# will have to do. 

names.append('arg_' + str(n)) 

 

# Create lambda function. 

lstr = lambdastr(args, expr, printer=printer, dummify=dummify) 

flat = '__flatten_args__' 

 

if flat in lstr: 

namespace.update({flat: flatten}) 

 

# Provide lambda expression with builtins, and compatible implementation of range 

namespace.update({'builtins':builtins, 'range':range}) 

 

func = eval(lstr, namespace) 

# For numpy lambdify, wrap all input arguments in arrays. 

# This is a fix for gh-11306. 

if module_provided and _module_present('numpy',namespaces): 

def array_wrap(funcarg): 

def wrapper(*argsx, **kwargsx): 

return funcarg(*[namespace['asarray'](i) for i in argsx], **kwargsx) 

return wrapper 

func = array_wrap(func) 

# Apply the docstring 

sig = "func({0})".format(", ".join(str(i) for i in names)) 

sig = textwrap.fill(sig, subsequent_indent=' '*8) 

expr_str = str(expr) 

if len(expr_str) > 78: 

expr_str = textwrap.wrap(expr_str, 75)[0] + '...' 

func.__doc__ = ("Created with lambdify. Signature:\n\n{sig}\n\n" 

"Expression:\n\n{expr}").format(sig=sig, expr=expr_str) 

return func 

 

def _module_present(modname, modlist): 

if modname in modlist: 

return True 

for m in modlist: 

if hasattr(m, '__name__') and m.__name__ == modname: 

return True 

return False 

 

 

def _get_namespace(m): 

""" 

This is used by _lambdify to parse its arguments. 

""" 

if isinstance(m, str): 

_import(m) 

return MODULES[m][0] 

elif isinstance(m, dict): 

return m 

elif hasattr(m, "__dict__"): 

return m.__dict__ 

else: 

raise TypeError("Argument must be either a string, dict or module but it is: %s" % m) 

 

 

def lambdastr(args, expr, printer=None, dummify=False): 

""" 

Returns a string that can be evaluated to a lambda function. 

 

Examples 

======== 

 

>>> from sympy.abc import x, y, z 

>>> from sympy.utilities.lambdify import lambdastr 

>>> lambdastr(x, x**2) 

'lambda x: (x**2)' 

>>> lambdastr((x,y,z), [z,y,x]) 

'lambda x,y,z: ([z, y, x])' 

 

Although tuples may not appear as arguments to lambda in Python 3, 

lambdastr will create a lambda function that will unpack the original 

arguments so that nested arguments can be handled: 

 

>>> lambdastr((x, (y, z)), x + y) 

'lambda _0,_1: (lambda x,y,z: (x + y))(*list(__flatten_args__([_0,_1])))' 

""" 

# Transforming everything to strings. 

from sympy.matrices import DeferredVector 

from sympy import Dummy, sympify, Symbol, Function, flatten 

 

if printer is not None: 

if inspect.isfunction(printer): 

lambdarepr = printer 

else: 

if inspect.isclass(printer): 

lambdarepr = lambda expr: printer().doprint(expr) 

else: 

lambdarepr = lambda expr: printer.doprint(expr) 

else: 

#XXX: This has to be done here because of circular imports 

from sympy.printing.lambdarepr import lambdarepr 

 

def sub_args(args, dummies_dict): 

if isinstance(args, str): 

return args 

elif isinstance(args, DeferredVector): 

return str(args) 

elif iterable(args): 

dummies = flatten([sub_args(a, dummies_dict) for a in args]) 

return ",".join(str(a) for a in dummies) 

else: 

#Sub in dummy variables for functions or symbols 

if isinstance(args, (Function, Symbol)): 

dummies = Dummy() 

dummies_dict.update({args : dummies}) 

return str(dummies) 

else: 

return str(args) 

 

def sub_expr(expr, dummies_dict): 

try: 

expr = sympify(expr).xreplace(dummies_dict) 

except Exception: 

if isinstance(expr, DeferredVector): 

pass 

elif isinstance(expr, dict): 

k = [sub_expr(sympify(a), dummies_dict) for a in expr.keys()] 

v = [sub_expr(sympify(a), dummies_dict) for a in expr.values()] 

expr = dict(zip(k, v)) 

elif isinstance(expr, tuple): 

expr = tuple(sub_expr(sympify(a), dummies_dict) for a in expr) 

elif isinstance(expr, list): 

expr = [sub_expr(sympify(a), dummies_dict) for a in expr] 

return expr 

 

# Transform args 

def isiter(l): 

return iterable(l, exclude=(str, DeferredVector, NotIterable)) 

 

if isiter(args) and any(isiter(i) for i in args): 

from sympy.utilities.iterables import flatten 

import re 

dum_args = [str(Dummy(str(i))) for i in range(len(args))] 

iter_args = ','.join([i if isiter(a) else i 

for i, a in zip(dum_args, args)]) 

lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify) 

flat = '__flatten_args__' 

rv = 'lambda %s: (%s)(*list(%s([%s])))' % ( 

','.join(dum_args), lstr, flat, iter_args) 

if len(re.findall(r'\b%s\b' % flat, rv)) > 1: 

raise ValueError('the name %s is reserved by lambdastr' % flat) 

return rv 

 

dummies_dict = {} 

if dummify: 

args = sub_args(args, dummies_dict) 

else: 

if isinstance(args, str): 

pass 

elif iterable(args, exclude=DeferredVector): 

args = ",".join(str(a) for a in args) 

 

# Transform expr 

if dummify: 

if isinstance(expr, str): 

pass 

else: 

expr = sub_expr(expr, dummies_dict) 

expr = lambdarepr(expr) 

 

return "lambda %s: (%s)" % (args, expr) 

 

 

def _imp_namespace(expr, namespace=None): 

""" Return namespace dict with function implementations 

 

We need to search for functions in anything that can be thrown at 

us - that is - anything that could be passed as `expr`. Examples 

include sympy expressions, as well as tuples, lists and dicts that may 

contain sympy expressions. 

 

Parameters 

---------- 

expr : object 

Something passed to lambdify, that will generate valid code from 

``str(expr)``. 

namespace : None or mapping 

Namespace to fill. None results in new empty dict 

 

Returns 

------- 

namespace : dict 

dict with keys of implemented function names within `expr` and 

corresponding values being the numerical implementation of 

function 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> from sympy.utilities.lambdify import implemented_function, _imp_namespace 

>>> from sympy import Function 

>>> f = implemented_function(Function('f'), lambda x: x+1) 

>>> g = implemented_function(Function('g'), lambda x: x*10) 

>>> namespace = _imp_namespace(f(g(x))) 

>>> sorted(namespace.keys()) 

['f', 'g'] 

""" 

# Delayed import to avoid circular imports 

from sympy.core.function import FunctionClass 

if namespace is None: 

namespace = {} 

# tuples, lists, dicts are valid expressions 

if is_sequence(expr): 

for arg in expr: 

_imp_namespace(arg, namespace) 

return namespace 

elif isinstance(expr, dict): 

for key, val in expr.items(): 

# functions can be in dictionary keys 

_imp_namespace(key, namespace) 

_imp_namespace(val, namespace) 

return namespace 

# sympy expressions may be Functions themselves 

func = getattr(expr, 'func', None) 

if isinstance(func, FunctionClass): 

imp = getattr(func, '_imp_', None) 

if imp is not None: 

name = expr.func.__name__ 

if name in namespace and namespace[name] != imp: 

raise ValueError('We found more than one ' 

'implementation with name ' 

'"%s"' % name) 

namespace[name] = imp 

# and / or they may take Functions as arguments 

if hasattr(expr, 'args'): 

for arg in expr.args: 

_imp_namespace(arg, namespace) 

return namespace 

 

 

def implemented_function(symfunc, implementation): 

""" Add numerical ``implementation`` to function ``symfunc``. 

 

``symfunc`` can be an ``UndefinedFunction`` instance, or a name string. 

In the latter case we create an ``UndefinedFunction`` instance with that 

name. 

 

Be aware that this is a quick workaround, not a general method to create 

special symbolic functions. If you want to create a symbolic function to be 

used by all the machinery of SymPy you should subclass the ``Function`` 

class. 

 

Parameters 

---------- 

symfunc : ``str`` or ``UndefinedFunction`` instance 

If ``str``, then create new ``UndefinedFunction`` with this as 

name. If `symfunc` is a sympy function, attach implementation to it. 

implementation : callable 

numerical implementation to be called by ``evalf()`` or ``lambdify`` 

 

Returns 

------- 

afunc : sympy.FunctionClass instance 

function with attached implementation 

 

Examples 

======== 

 

>>> from sympy.abc import x 

>>> from sympy.utilities.lambdify import lambdify, implemented_function 

>>> from sympy import Function 

>>> f = implemented_function(Function('f'), lambda x: x+1) 

>>> lam_f = lambdify(x, f(x)) 

>>> lam_f(4) 

5 

""" 

# Delayed import to avoid circular imports 

from sympy.core.function import UndefinedFunction 

# if name, create function to hold implementation 

if isinstance(symfunc, string_types): 

symfunc = UndefinedFunction(symfunc) 

elif not isinstance(symfunc, UndefinedFunction): 

raise ValueError('symfunc should be either a string or' 

' an UndefinedFunction instance.') 

# We need to attach as a method because symfunc will be a class 

symfunc._imp_ = staticmethod(implementation) 

return symfunc